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ABSTRACT: Strictly proper scoring rules are used to elicit a person’s true probability beliefs 

about an uncertain outcome.  The application of strictly proper scoring rules to grading in an 

academic environment is not new and is typically restricted to classes centered on Decision 

Analysis.  For the purpose of explanation, a typical application of strictly proper scoring rules in 

academic grading would be as follows:  assume that a multiple choice question with four 

possible answers has correct answer “D” and is worth one point.  The traditional technique 

requires students to select one right answer, so if a student answers “D”, the student receives a 1 

or a 0 for all other answers.  Conversely, a strictly proper scoring rule requires the student assign 

probabilities that each possible answer is correct, say A=0.1, B=0.2, C=0.05, D=0.65.  The 

student’s score depends on the scoring rule applied.  Under the logarithmic scoring rule, the 

student would receive ln(0.65) points or -0.43.  The scores are obviously bounded by (-∞, 0].  

Usually, the instructor rank orders students’ scores and then assigns final grades.  This situation 

can be extremely punitive for students who assign a low probability to a correct answer, and only 

slightly rewarding for those who submit their true understanding of the problem.  Alternatively, 

the quadratic scoring rule allows a range of scores for the “correct” answer but is bounded 

between -1 and 1 allowing the instructor to similarly rank the scores.  We discuss a modification 

of the quadratic rule applied at the United States Military Academy in our Decision Analysis 

course.  In our approach, we are restricted to an absolute grading requirement - the grade a 

student earns is not curved in any way.  We explore the trade off between information gained 

about the students’ true beliefs and points awarded.  We examine initial student feedback and 

compare probabilistic grades to the hypothetical traditional multiple choice grades.  Finally, we 

explore options for integrating strictly proper scoring rules into other engineering courses. 

 

Introduction  

 The mission of the United States Military Academy is "To educate, train, and inspire the 

Corps of Cadets so that each graduate is a commissioned leader of character committed to the 

values of Duty, Honor, Country and prepared for a career of professional excellence and service 

to the Nation as an officer in the United States Army".
1
 During their four years of education at 

West Point, cadets learn the value of being bold, decisive leaders who are committed to action.  

What is often not as well learned however is the risk assessment associated with committing to 

the wrong course of action and the consequences therein.  Quite naturally, cadets tend to apply 

the decisive action – and minimal risk assessment – they learn in a field training environment to 

their academic requirements.  For most of these students, the real world will quickly manifest 

itself as a hostile environment in which a new platoon leader must weigh life or death situations 

laced with multiple levels of uncertainty.  In our Decision Analysis course for Systems 

Engineering cadets, we aspire to make our students better assessors of probability and risk, and 

thereby better decision-makers in the face of uncertainty, through a series of challenging and 

thought provoking “probabilistic multiple choice” problem sets.  Secondly, we aspire to gain 

more information about the state of our students’ information regarding course material by 

having them respond to questions in a way that has more distinction than a binary response. 
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 In an effort to make our students better assessors of probability, we have introduced the 

concept of probabilistic scoring rules, also known as Strictly Proper Scoring, in the Decision 

Analysis course.  Essentially, this approach requires each student to solve a group of multiple 

choice problems and then assign a probability that each of the given multiple choice answers is 

correct.  This method allows a student who is not confident in her answer to assign her true 

beliefs about the answer to the problem.  Although there is a correct answer, this scoring method 

also allows students to earn partial credit for assigning some probability to the correct answer. 

 

In this paper, we begin by discussing the background of probabilistic scoring rules and 

then discuss the technical aspects of the approach.  We then transition to our application, our 

assessment of the study to this point and then conclude with a discussion of the future directions 

of our study. 

 

Background and Motivation 

  

Before beginning, it is useful to understand the grading environment within which we 

developed the following paper.  At the United States Military Academy the Dean of the 

Academic Board prohibits instructors from grading on a curve or determining a grade merely by 

rank ordering the students.  Instead of these ex post methods, each course must implement an ex 

ante standard which is published at the beginning semester.  Although we agree with the ex ante 

standard, appropriateness of ex post versus ex ante standards is not the subject of this paper.  The 

grading standard is a part of the environment in which the scoring method of choice must be 

implemented.  It is just that restrictive environment that encourages an innovative approach to 

scoring that fits within the prescribed structure.  The innovation described pertains to assessing 

the state of understanding of the student when answering complex questions with several 

possible answers – commonly known as multiple choice questions.   

With a traditional multiple choice instrument the student must choose one answer he 

believes is the correct answer.  Lowman asserts that evaluating only the right answer creates 

anxiety in students and encourages an end product focus with students placing more emphasis on 

the results than the process.
2
  Moreover, the student could have guessed at the correct (or 

incorrect) answer thus providing virtually no information to the instructor regarding the student’s 

level of understanding for that particular problem.  To avoid these situations an instructor might 

opt for other scoring methods. 

An instructor may assign problems for the students to solve and demonstrate they 

understand the material by providing a written methodology from start to finish.  The instructor 

can then review the written submission and reward partial credit for the correct portions.  This is 

time intensive, but a necessary tool to determine how well individual students understand the 

material at hand.  It is also difficult to synthesize which portions of the problem set reveal 

systemic problems across many students.  Additionally, the student could have been adept at 

following the pattern of an example problem.  This might be desirable in some courses where 

pattern recognition is a key step in the learning process, but at some point the student has to learn 

the material beyond rote memorization.  Determining how well the student understands the 

material becomes subjective at best.   

One alternate technique of assessing a student’s understanding is by using Coombs’ 

Elimination Testing technique for multiple choice questions.  This requires the student to 

eliminate all those possible answers he believes incorrect, and leave only those that might be 
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correct.  For every incorrect answer eliminated the student receives one point, but if they 

eliminate the correct answer, they lose 3 points (for a four choice question).
3
  This scoring 

method allows scores between -3 and +3, which make a direct use impractical at the United 

States Military Academy.  The score can be normalized between 0 and 1, adapting it to the 

approved format.  Forcing the student to eliminate some options might not actually capture the 

student’s true beliefs about the options, forcing each to still apply a binary probability to each of 

the options and determine how high the probability must be before the student does not eliminate 

each option.  Although this technique is slightly better than traditional multiple choice methods, 

the score will be discrete and therefore requires an estimation of the student’s true beliefs.  

 

Collet conducted an empirical evaluation of elimination scoring and compared it to classical 

choice and weighted choice scoring methods.  That research found there was no difference 

between elimination scoring and classical scoring, but there was a difference between 

elimination scoring and weighted scoring, with elimination scoring having a statistically better 

reliability and criterion related validity.  The Collet sample size of 29 students was quite small 

and could have provided more robust results with a larger sample.
4
  Collet did not address 

whether or not elimination scoring possesses the strictly proper scoring rule property (addressed 

below).   

 

Instead of only allowing discrete scores, it might be beneficial to take the next step and 

move to a continuous scoring function.  Implementing a continuous scoring function can 

reinforce the principles of cumulative probability and subjective probability while introducing an 

innovative scoring method – a combination of simultaneous adaptive learning and scoring. 

 

Probabilistic scoring rules are used in a variety of ways.  In the late 1960s, probabilistic 

scoring rules were introduced as a means for evaluating meteorologists’ probability assessments 

on the weather.
5,6

  Probabilistic scoring is used in the field of medicine to evaluate diagnosis of 

disease.  Probabilistic scoring is used in the world of finance to evaluate market analysts’ 

predictions.  Recently, probabilistic scoring is used in the development of speech recognition 

software.   

 

Probabilistic scoring rules applied in an academic environment are not new.  Shuford, 

Albert, and Massengill began the discussion of probabilistic scoring in education in 1966.
7
  

Decision Analysis courses at Stanford and Texas A&M currently apply strictly proper scoring 

rules to many of their graded assignments.  Most programs use the logarithmic scoring rule 

which allows a student to earn an infinitely negative score on any question, and theoretically fail 

an entire course over the smallest question.  These other programs have the ability to rank order 

and subsequently assign a grade for the course.  This ranking and grade assignment is counter to 

the guidance established by the US Military Academy’s Dean of the Academic Board and as 

such, our application has been modified from this more drastic approach which we explain in 

greater detail later in this paper.
8
  Regardless of the approach, the mathematical manipulations 

may seem unnecessarily complex for grading a simple homework.  We explain these rules below 

and then follow with the explanation of the payoff in educational value for the increased 

calculation burden. 
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Probabilistic Scoring Rules 

 

 Consider an individual X  who assesses a probability distribution over n > 1 mutually 

exclusive and collectively exhaustive events.  Let b = (b1,…,bn)  be a vector of X’s “true 

probability beliefs,” where bi is the probability that event i will occur.  Let r = (r1,…,rn)  be a 

vector of X’s “actual probability report,” where ri is the probability that event i will occur.  In 

that the n events are mutually exclusive and collectively exhaustive, the sum of the probabilities 

(b1,…,bn)  and (r1,…,rn)  are both equal to 1.  A scoring function S is strictly proper iff X’s 

expected score is strictly maximized by setting r = b; that is, X’s score is strictly maximized by 

reporting his or her true probability beliefs.
 6,7,9,10

  We note that assigning a uniform distribution 

over the n events equates to an admission of no information (or insight); under strictly proper 

scoring rules, it is better to admit that you have no information than to guess.  This is a large 

departure from traditional multiple-choice scoring.   

 

Many scoring rules have been developed, but three of the most popular (for n multiple choice 

questions) are:   

 

  Quadratic (Q):   Qi(r) = 2ri – r • r 1,1  (1) 

  Spherical (S):   Si(r) = ri / (r • r)
1/2

 1,0  (2) 

  Logarithmic (L): Li(r) = ln(ri) 0,  (3) 

 

where ri is the probability assigned to the correct answer (i=1…n).
11

 

 

As discussed by Bickel, the first thing to notice is that scoring rule L (equation 3, above) 

is defined as local, or that the assessor’s score only depends on the probability assigned to the 

correct answer; a higher probability assigned to the correct answer will always result in a higher 

score.  Locality is considered desirable by some because it should be easier for evaluated 

individuals to understand and it generates consistent rank orderings among assessors for the 

same assessments.  Conversely, scoring rules Q (equation 1, above) and S (equation 3, above) 

are global, as the scores depend on both the probability assigned to the correct answer and the 

probabilities assigned to the remaining incorrect answers.  Under these global rules, a reward is 

given to the probability assessed to the correct answer and a cost is deducted for probabilities 

assigned to incorrect answers.  This implies that one assessor may assign a higher probability 

than another assessor to the correct answer but receive a lower score.  This means that if 

individuals X and Y assigned [0.7,0.1,0.1,0.1] and [0.7,0.3,0,0] vectors respectively on an n=4 

exercise with the first answer being true upon revelation, then X would receive a higher score 

even though they assigned identical probabilities to the correct answer.  Individuals X and Y are 

equally rewarded for their assignment to the correct answer, but Y receives a larger penalty due 

to a concentration of probability assigned to a particular incorrect answer.  In both cases, X and Y 

may have assigned their true probability beliefs.  We believe that locality is desirable in 

situations where rank ordering results are important, and also recognize that an argument that the 

inclusion of probabilities assessed to both correct and incorrect answers with a global scoring 

rule also has merit.  On a contextual level, the evaluator must decide whether to evaluate 

assessors locally or globally.
11
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Another consideration is whether or not the scoring rule is bounded.  If an individual 

assigns a probability of 0 to the correct answer under scoring rule L, then the result is an 

infinitely negative score, from which the assessor can not recover.  This essentially results in an 

expected value of -∞ which increases the assessor’s risk aversion.  As scoring rule L results in 

only non-positive values, the evaluator must rank order the scores to assign positive scores (or 

the students would never do their homework at all!)  This rank ordering and then “curving” or 

“shifting” the scores for grading may be less appealing to the evaluator who wants to score 

assessors according to an ex ante standard rather than an ex post rank.  Finally, if an evaluator 

concludes that a negative score on any given assessment exercise is not acceptable, then L will 

not work without being truncated.  However, If L is truncated (vice being unbounded below), 

then the scoring rule is no longer considered strictly proper.  In contrast, both Q and S are 

bounded, and can easily be linearly transformed to any desired scale.  We note that by definition 

a linear transformation of a strictly proper scoring rule is still strictly proper.
9
 

 

USMA Approach 

 

The primary objectives of the Decision Analysis course at the United States Military 

Academy are for the cadets to cover both single and multiple objective decision analysis as well 

as risk attitudes.  We began early in the semester to train the students to be better assessors of 

probability through integration of a modified quadratic scoring rule.  Our goals for using this 

system rather than a traditional multiple-choice method are: 1) Train students to be better 

decision-makers through probability assessment and 2) Provide the instructors with more 

information about each student’s true level of understanding of the material. 

 

We use a linear transformation of the quadratic scoring rule (global, bounded) which 

allows scores on individual questions to be between 0 and 5 points.  There are three problem sets 

valued at 25 points each – so each problem set includes 5 questions, and each question has four 

possible answers.  An example question is provided below in Figure 1. 

 

 
Figure 1:  Sample Problem Set Question 

 

The score for any particular question is calculated by using the formula in equation 2, above or 

more specifically, equation 4 below. 

 

 2.5 + 2.5 Qi(r) (4) 

 

where r is the vector of reported probability assessments, and ri is the probability assessed to 

the correct answer.  Note that Qi(r) (from equation 2, above) returns a score on the interval [-

1,1]; using equation 4, we have linearly transformed this rule to return a score on the interval [0, 

5].  Once again, a linear transformation of a strictly proper scoring rule is still strictly proper.
9
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Similarly, the original interval can be transformed to the interval [0, 100] and interpreted as a 

percentage and any number of points can then be assigned to various questions. 

 

Figure 3 depicts the possible score ranges for differing assessments on the correct answer.  

The fact that Figure 3 displays ranges of possible scores given the probability assigned to the 

correct answer is a result of the global property.  It visually depicts how student X scores better 

than student Y even though they both assigned the same probability to the correct answer.  

Student Y incurs a larger cost for the distribution of a larger probability on a single incorrect 

answer in accordance with his or her true beliefs.  To attain the absolute maximum score, the 

student must assign a probability of 1.0 to the correct answer, and conversely, to attain the 

absolute minimum score, the student would assign a probability of 1.0 to any of the incorrect 

answers.  Both of these techniques equate to approaching the problem set as a traditional 

multiple choice exercise when a student can choose only one right answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Possible Scores for Student X and Student Y 

 

 This approach has several features that we find desirable.  First, it allows us to establish, 

publish, and score against an ex ante standard rather than using a student’s ex post rank to 

determine grades.  This means that a student knows where they stand in the course as soon as 

they receive the solutions and scores rather than waiting until the end of the course to see their 

ranking.  In line with current research on effective teaching, we have avoided a grading system 

that puts students in competition with their classmates and we keep students informed of their 

progress throughout the term.
12

 

  

 Second, if a student is uncomfortable or ignorant about this grading system, they can still 

use a multiple-choice approach by answering with nothing other than 1s and 0s.  In our in-class 

explanations and demonstrations, we advise them that this does not maximize their expected 

score; we use this to advocate assigning their true probability beliefs.  We also show them how 

this allows the student to receive partial credit on a multiple choice type of question. 

 

 Third, this methodology does not produce negative scores.  We believe that the 

possibility of a negative score on any particular problem increases the level of risk aversion in 

Student X 

Student Y 
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some students.  We want to foster a risk neutral attitude in our students’ approach to our problem 

sets.  In doing so, we recognize that some will actually act in a risk seeking manner, but we have 

found that it is harder to convince our students out of risk aversion than it is to convince them out 

of risk seeking behavior.  This discussion also reinforces the fact that the best strategy is to 

assign true probability beliefs. 

 

 Finally, we reward an admission of ignorance with a 62.5% score; this equates to a “high 

F” on our scale.  A student attains this score by assigning equal probabilities to all possible 

answers.  This reinforces the principle that it is better to admit ignorance than to feign 

understanding.  We, the instructors, get more information about our students’ state of 

information as it relates to course material. 

 

Assessment 

 

We have used two tools to assess our approach:  the student scores and a brief student 

survey.  The student scores provide a means for hypothetical comparisons between different 

scoring rules and the opportunity to explore the advantages and disadvantages for students under 

each rule.  The student survey provides insight into student awareness, motivation, and risk 

attitudes concerning the first problem set administered.  (Note that previous editions of this 

course did not have similar problems sets and thereby making direct comparisons impossible.) 

 

Scores on the initial problem set averaged 75%.  As a part of their submission, students 

were required to also submit their “total commitment” answer – that is, the student had to pick 

one and only one correct answer.  This was used to calculate a hypothetical score under 

traditional multiple choice conditions.  If scored in the traditional multiple choice manner, the 

course average would have decreased to 70%.  More interesting yet, only 16 of the 74 students 

chose to answer every question as if it were a traditional multiple choice environment, and only 3 

of the 16 achieved 100%.  In comparison, 41 students realized an improvement in their grade for 

the assignment over a traditional multiple choice environment, and only 15 experienced a 

reduction in their score.  This includes 2 students who received zero credit for problems on 

which they assigned probabilities whose sum exceeded 1.  If we remove the students whose all-

in answers do not match their assigned probabilities, then the maximum points lost on a 25 point 

problem set was 0.9625, or 3.85% of the assignment. 

 

We collected student feedback after the first problem set but before any student had 

received their grade for the event.  67 of the 74 students completed the 10 question survey which 

attempted to assess the students’ attitude towards the scoring rule, their perception of their grade, 

and some brief questions to assist with future measurements of risk attitudes. 

 

There were 16 students that scored the same when comparing traditional multiple choice 

scoring and our scoring methods.  Of those, only 11 indicated that they believe their scores 

would be the same.  This shows a misunderstanding or ignorance of how the scoring rule is 

calculated.  Of the 67 respondents, 63 (94%) predicted their scores would be within +/- 10% of 

traditional multiple choice scoring rules, but only 30 of 67 (45%) were accurate in predicting 

how the probabilistic scoring rule would affect their grades.  Additionally, 59 of the 67 (88%) 

respondents indicated that they are indifferent or prefer probabilistic multiple-choice over 
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traditional multiple-choice.  Also of note, 63 of 67 (94%) respondents stated they spent the same 

amount of time or longer on this assignment than they would have if it were scored in a 

traditional multiple-choice manner.  Not a single student choose to answer every question with 

equal probabilities, or totally ignoring the assignment and settling for a guaranteed 62.5%. 

 

 Our most interesting findings concern the information gained by the instructors.  When 

students choose to answer with anything other than assigning a probability of one to an answer, 

the instructor gains some piece of information about the student.  Since the points we are willing 

to give cost us no more than the computing power necessary to accurately calculate a score, there 

is virtually no investment on the instructors’ part.  For that minimal investment instructors can 

learn about each student as long as each answers with their true beliefs.  The probabilities 

assigned to both correct and incorrect answers give us a better fidelity about the current state of 

our students’ information.  This reveals where the students as a whole could use improvement or 

review of material.  We aim to gather more data before we quantify the level of information 

gained relative to traditional multiple-choice scoring. 

 

Future research 

 

We believe that our scoring rule has a valid application in our Decision Analysis course.  

It can also be leveraged in other engineering courses to elicit the true level of understanding of 

students.  Initial student feedback is positive, with some skepticism mixed in as well.  The 

students continue to improve their ability to assess their own understanding of probability and 

the uncertainties they face.  We believe this understanding of probability and uncertainty is 

applicable in all areas of engineering education.  

 

Our next direct application will be to use the probabilistic portion to gain feedback only 

from students in SE375 – Statistics for Engineers.  In that course, the student responses will 

provide information only and not be graded.  The intent is to gain early information about 

student understanding of material, and then adjust lessons as necessary to account for the level of 

understanding.  

 

We have also talked to other course directors within the Department of Systems 

Engineering as well as program directors outside of the department.  Initial interest is 

encouraging in that every person to which we have pitched our technique has expressed a 

willingness to integrate some portion of this method into future courses. 

 

 Possible future research will focus on several areas.  Our ultimate goal is to improve each 

student’s ability to assess uncertainty and apply that improved ability to the decision situations in 

their everyday lives.  We intend to continue soliciting feedback from students in several areas 

and looking for significant relationships that may improve the quality of instruction over the next 

several years.  We plan to evaluate the relationships between learning styles, risk attitudes, and 

probabilistic scoring rules.  We also will assess students’ performance based on course objectives 

and their approach to probabilistic scoring rules.  We will also continue to pursue opportunities 

to include probabilistic scoring rules in other courses at West Point.  We believe there is merit in 

exploring the possibility of finding a strictly proper scoring rule that is both local and bounded.  
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We also hope to compare the accuracy of multiple probability assessors with various states of 

information as compared to an individual expert assessor. 

 

Conclusion 

 

 Every decision situation requires the decision maker to consider four elements: the 

decision to be made, uncertain events, possible consequences, and values and objectives.
13

  We 

have explicitly focused this paper on the uncertain events, but have encouraged the incorporation 

of the other three elements by allowing an infinite spectrum of possible outcomes and requiring 

each student to weigh their values and objectives against those uncertain events and 

consequences.  By doing so, we hope to build a cohort of future leaders more aware of the 

uncertainties affecting their decisions and the ramifications of their bold commitment to action.  

We do not attempt to strip away the bold and decisive nature; rather we strive to augment the 

deft commitment to action with an ability to recognize the uncertain nature of future events and 

mitigate the risk of bad outcomes. 
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