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A readily automated procedure for testing and calibrating the wavelength scale of a scanning hyperspectral imaging camera is described. The procedure uses the absorbance features from a commercial dydium oxide filter as a wavelength standard. The procedure was used to accurately determine the pixel positions to a fraction of the sampling interval. An algorithm was developed to determine the wavelength for any given abscissa and the accuracy of the estimated wavelength for a given calibration. During this investigation we determined that the sampled pixels show both trend and serial correlation as a function of the spatial dimensions. The trend and serial correlation are filtered out by using an efficient local linear regression model of order three with different sample size for different spectral band. The sample size is selected optimally. Experimental results will be presented to show the improvement in the accuracy of the calibration equation computed using the corrected pixels.

Background

This research details and justifies an algorithm to estimate the wavelength and determine the accuracy of the estimated wavelength for calibration pixels that do not form an independent random sample.  Due to an unknown systematic error interjected by the hyperspectral imaging camera, the relative wavelength position of pixels in the cube drift as a function of the spatial domain so that the trend is a function with two spatial variables. This trend is much more significant for pixels along one of the spatial dimension (column) than the other spatial dimension (row) and has a similar pattern for each column of pixels so that the trend can be reduced to a function of only one variable (column). In addition to the trend, serial correlation in the spatial domain exists and behaves similarly to the trend. The serial correlation function is also much more significant for pixels along the column than the row. The serial correlation function can also be reduced to a function of only one variable (column). The calibration pixels have a trend as a function of column number and serial correlation as a function of column number and thus the pixels do not form an independent random sample. The error introduced by not using an independent random sample in the calibration is significant if we wish to use hyperspectral imaging for identifying unknown samples by matching acquired spectra with independent library spectra.  Thus, an algorithm to filter both the trend and serial correlation from the pixels is needed before the pixels are used in computing the calibration equations. Such an algorithm has been briefly described in [1], but is presented in more detail in this paper. 
Hyperspectral imaging shows great promise in many commercial and defense related remote sensing applications.  By pattern matching the library spectra of know samples, the absence or presence of these samples can be identified in a hypercube.  However in order to have confidence in the assignments made within an image based on matching library spectra, the abscissa representing the wavelength dimension at each pixel in a hypercube must be known with great confidence.  Since each pixel in the image cube represents an independent spectrum, each pixel can have a separate and independent calibration.  This necessitates the need to properly calibrate each pixel within the image plane with a well defined and robust calibration standard.  

Experiment

Theory

Remote sensing platforms generally use a passive means to detect an object from a distance.  What the detector actually samples is a portion or band of the electromagnetic spectrum representative of the target.  The sampled electromagnetic spectrum is a continuum of energy that carries specific information about the physical nature or surrounding environment of the target.  The intensity of an observed electromagnetic spectrum is also proportional to the amount or concentration, number of particles per unit volume, of the species.  Hyperspectral imagery is capable of recording the relative intensity of electromagnetic radiation divided among hundreds of narrow bands.  The data collected through hyperspectral analysis is represented by a cube, where two of the dimensions represent spatial information, x and y axes of the focal plane, and the third dimension represents an intensity at a given wavelength (Figure 1).  

Imaging spectrometers collect hyperspectral data with one of three basic instrumental designs.  The first type utilizes a “whisk-broom” scanner design.  While the forward motion of the platform defines the y-axis, the x-axis is defined by an oscillating mirror.  As the mirror rotates, the radiance of an individual pixel is focused onto a diffraction grating.  The light is then dispersed and imaged onto an array detector that records the spectrum.  The second type uses a “push-broom” scanner design.  In this design, the x-axis is sampled as a complete stripe of pixels.  This spatial array is then spectrally dispersed onto the focal plane of a two dimensional array detector that records the spectrum at each coordinate.  The third type uses a two dimensional detector array for spatial sampling and uses filters to select the appropriate wavelength.   Because the bandwidth of a filter is normally very broad in comparison to a spectral feature, this approach is not as selective as the other two.  While the “push-broom” arrangement provides a greater dwell time on each spatial pixel, providing a greater signal-to-noise ratio, this scanner design requires a relatively large two dimensional array detector [2].

The wavelength presented at a pixel from a hyperspectral imaging camera that uses a prism or grating system is not automatically known with certainty.  However if the focal plane is stable, the abscissa in the spectral domain can be calibrated from the dispersion of a well defined standard. In order to determine the wavelength of features in spectra accurately, it is necessary to have an algorithm to model the wavelength as a function of the abscissa and determine the accuracy of the estimated wavelength. Calibration within the wavelength domain of a hyperspectral camera is much more complicated than that of an array spectrometer.  Since each pixel in the image contains an independent spectrum, theoretically each pixel could have a separate calibration equation.  
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Figure 1:  Hyperspectral Data Cube

The calibration equation for estimating the wavelength for any abscissa can be obtained by using a simple linear regression model of known wavelength versus relative pixel position at the focal plane.  In addition to estimating the wavelength, to have confidence in the calibration it is necessary to determine the accuracy of the estimated wavelength. A sample of calibration equations can be generated by fitting the simple linear regression model to each of the absorbance pixels from an entire cube. If the absorbance pixels from the entire cube formed a random sample, the intercepts and slopes of the simple linear regression equations would form an independent random sample from a bivariate normal distribution. A scatter plot of the intercepts and slopes would form points enclosed by an ellipse which is basically the confidence ellipse. The confidence ellipse shows the ellipse of uncertainty in the estimated intercept and slope. In this research, an algorithm to estimate the wavelength for a given abscissa and determine the accuracy of the estimated wavelength for an independent random sample of calibration pixels has been developed. 

Experimental Set-up

The data cubes were acquired with an SOC 700-Visible  Hyperspectral Imaging System (Surface Optics Corporation 11555 Rancho Bernardo Rd. San Diego, CA 92127) using software written at Picatinny Arsenal, NJ.  The imager acquires a 640 pixel by 640 pixel image that is 120 wavelengths deep in approximately four seconds.  A data cube then consists of 640×640 pixels and each pixel has 120 spectral bands of unknown wavelengths. For our purposes, each run in the experiment consists of approximately 10 separate data cubes. In order to generate a well defined calibration at each pixel, data cubes were generated by imaging the hyperspectral imaging camera into an attached integrating sphere (Labsphere, North Sutton, NH). The integrating sphere generated a uniform; National Institute of Standards (NIST) calibrated radiance at each pixel. The wavelength calibration standard was a commercially acquired 72mm Hoya™ red intensifier filter (didymium oxide).  The absorption bands of this filter (figure 2) were determined to ± 0.2 nm through calibration with a NIST certified didymium oxide filter (Avian Technologies, Wilmington, OH). Since the sampling interval of the hyperspectral imaging camera was ~4 nm, the uncertainty in the filter calibration was more than an order of magnitude smaller and generously adequate for our purposes.  To generate an absorbance spectrum at each pixel in the data cube, two separate cubes were acquired; one using the Hoya™ red intensifier filter (red cube) and another cube acquired using only white light (white cube). The absorbance was calculated in the normal fashion by taking the negative logarithm of the ratio of the two data cubes.  More precisely, the intensity of the partial pixel at row
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Figure 2: Didymium Oxide Filter, 50.8 mm x 50.8 mm (Hoya V-10 Filter) with traceability of measurement to: ASTM Test Method E 1331-96, Test Method E903-96, NRC Certificate PO1948 (Didymium Oxide Glass)

Experimental Results and Discussion
Wavelength Calibration Algorithm

In this section, an algorithm based on local linear regression of order three with different sample size for different spectral band to filter out the trend and serial correlation from the calibration pixels is described. The sample size is odd and is selected optimally based on the autocorrelation function and partial autocorrelation function. 

In general, no significant registration problem in the spatial domain is observed among the cubes in a single run so averaging all the cubes in a single run would reduce random fluctuation in the pixels. Averaging the cubes however, did not reduce the trend and serial correlation in the pixels. The spectral intensity of the partial pixel at row
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 in a mean white cube which is used in the algorithm is denoted by 
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The trend and serial correlation in a column of pixels can be described by a P-dimensional vector function with row number as the independent variable. The P-dimensional vector function of one variable can be adequately represented as P scalar functions with row number as the variable. Each scalar function describes the trend and serial correlation along a column of pixels for one spectral band. The part of the scalar function that describes the trend can be estimated by a global linear regression model of an appropriate order. In order to describe both trend and serial correlation, the scalar function can be adequately estimated by a set of local linear regression models of order three with varying sample size. The interpolated position of a spectral band within a pixel along a column will be referred to as the partial pixel for that spectral band. The partial pixel at each row number, except the first and last few rows, is modeled by a linear regression model of order three with varying sample size. The partial pixel at the each of the first few rows or the last few rows cannot be estimated by a local regression model because it does not have sufficient sample points. Thus, the partial pixel at the each of the first few rows or last few rows is estimated by the closest local regression model that has sufficient sample points.

A local linear regression model of order three with an appropriate odd sample size 
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 Equation (2) can be written compactly as
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where it is assumed that 
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 is a constant. The best estimator of the regression coefficient
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A predicted partial pixel from row
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. The predicted partial pixels from a given column of pixels for a given spectral band are computed as follows:
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It is possible to substantially reduce the computational cost associated with the local linear regression model of order three. The main computational cost is the computation of the estimated regression coefficients
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 depends only on sample size and does not depend on row so it needs only to be computed once for each sample size. By centering the abscissa in the formulation of the local linear regression model (3), the predicted partial pixel is the estimated intercept so it is obtained efficiently without using the other estimated regression coefficients. It is substantially more efficient to compute the quantity 
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 first for a range of sample sizes and then to store these quantities in memory. This quantity is computed symbolically.

The sample size is selected based on the autocorrelation function and partial autocorrelation function to minimize the trend and serial correlation in the corrected pixels. The partial pixel value of a spectral band from a column of pixels looks like a non-stationary time series that can be represented by an Autoregressive Integrated Moving Average model (ARIMA). Without the trend, the stationary times series can be represented by an Autoregressive Moving Average model (ARMA). The ARMA model is characterized by the autocorrelation function and partial autocorrelation function in which both of these functions decay to zero exponentially [3,4]. A local linear regression model can reduce the trend and serial correlation if the sample size is selected appropriately. 

To reduce the trend and serial correlation, the sample size is selected to minimize the absolute values of the autocorrelation functions and partial autocorrelation functions of the corrected partial pixels in which the partial pixels are partitioned into ten time series.  The autocorrelation function for the 
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The partial autocorrelation function for the 
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 time series from the predicted partial pixel 
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The sample size for predicted partial pixel 
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To remove the trend and serial correlation from the partial pixels of a spectral band from a column of pixels, the predicted partial pixel is subtracted from the mean predicted partial pixel and the resulting difference is divided by the predicted partial pixel. The resulting quantity is multiplied by the partial pixel and is added to the partial pixel to generate the corrected partial pixel 
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The corrected partial pixel still contains the random fluctuation, but has minimal trend and serial correlation. The corrected partial pixels from the mean red cube are obtained in the same way. The corrected partial pixels from the mean white cube and mean red cube are used to generate the absorbance at each pixel for estimating the calibration equation. In order to estimate the wavelength for any abscissa in the spectrum, a linear regression model of order one is fitted to the estimated abscissa of the absorbance peaks with known corresponding wavelength. A linear regression model of order two is used to estimate the abscissa of the peaks. The number of sample points is selected so that the peak is within the points and the points are within the two nearest inflection points. Using these criteria the maximum numbers of sample points varies for different peaks, but they are all at least five. For this experiment the number of peaks selected is six and the number of sample points used for each peak is five. 
Numerical Results

Numerical results obtained using data cubes from the calibration of a hyperspectral imaging camera are presented in this section. It is not feasible to actually see the pixels of an absorbance cube in a high-dimensional space, but the trend and random fluctuation in the pixels can be observed from the angle between the pixels and a reference pixel. The angle for a pixel from a row is computed as the cosine angle between a pixel from that row and the mean pixel of that row. The angle for a column of pixels and for the pixels in the main diagonal are computed in a similar way. The angles from a row of pixels in an absorbance cube show random fluctuation but do not show any significant trend as shown in Figure 3 for Row 320. However, the angles from both a column of pixels and the pixels in the main diagonal in an absorbance cube look similar and show random fluctuation and significant trends as shown in Figure 4 for Column 320 and in Figure 5 for the diagonal pixels. The maximum angle for a row of pixels is less than 1 degree and for a column of pixels and the pixels from the diagonal is less than 5 degrees. Thus, the trend is much more significant in the column than in the row and the trend is a more serious problem than the serial correlation. By averaging all the cubes in a single run, the angles from all three types of pixels in the mean absorbance cube show reduced random fluctuation but no change in the trends as shown in Figures 6, 7, and 8. 
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The mean calculated absorbance spectrum of the wavelength standard from a data cube is used to estimate the trend and serial correlation in a column of pixels. The graphs of partial pixel positions of the calculated spectrum versus row show different shape for different spectral bands. However, only the partial pixels at Spectral Band 74 of Column 320 are shown in Figure 9 for illustration and they indicate trend and random fluctuation as a function of row number. The estimated trend and random fluctuation due to the serial correlation are shown in Figure 10. The corrected partial pixels which have minimal trend and serial correlation are shown in Figure 11. 
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Figure 10. Reflectance versus row of 640 estimated

partial pixels without random fluctuation at spectral 

band 74 (Column 320, Mean White Cube, Run 12)
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Figure 12. Autocorrelation versus lag of 640 

partial pixels at spectral band 74

 (Column 320, Mean White Cube, Run 12)
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Figure 13. Partial autocorrelation versus lag of 640 

partial pixels at spectral band 74 

(Column 320, Mean White Cube, Run 12)

020406080100120

0.2

0.3

0.4

0.5

Spectral Band

Maximum correlation
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and partial autocorrelation versus spectral 

band (Column 320, Mean White Cube, Run 12)


The total number of points from the corrected partial pixels is 640 and the autocorrelations and partial autocorrelations are computed for 10 time series of size 64 each as shown in Figures 12 and 13 for the corrected partial pixels at Band 74 of Column 320. The maximum correlation and sample size for all the other spectral bands are shown in Figures 14 and 15, respectively. This algorithm is applied separately to both the cube acquired using white light and the cube acquired using the Hoya™ red intensifier filter. The maximum angle for a row, a column, and a diagonal of pixels from the corrected absorbance cube is less than 1 degree as shown in Figures 16, 17, and 18.
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corrected absorbance pixels 

(Diagonal, Mean White Cube, Run 12)
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Figure 16. Angle versus column of 640 

corrected absorbance pixels 

(Row 320, Mean White Cube, Run 12)
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(Diagonal, Mean White Cube, Run 12)


In order to obtain a prediction equation for estimating the wavelength for any abscissa in the spectral band, a linear regression model of order one is fitted to the abscissa of the peaks of an absorbance pixel as shown in Figure 19 with known corresponding wavelengths. The abscissa and the corresponding wavelengths of the six selected peaks are shown in Figure 20 for an absorbance pixel from Row 320 and Column 320. 
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If a sample of absorbance pixels forms an independent random sample, a scatter plot of the estimated regression coefficients would form a solid ellipse. The scatter plots of intercept versus slope for the absorbance pixels from each row (row 30 to 600 at an increment of 30) are shown in Figures 21-24. In these plots each row of absorbance pixels forms an ellipse indicating that there is no significant trend along the row. The plots also show that the ellipses in Figures 21-24 do not overlap in general indicating that the ellipses are from different populations. This means that there is a significant trend that is a function of row number.  The scatter plots of intercept versus slope for the absorbance pixels from each column (column 30 to 600 at an increment of 30) are shown in Figures 25-28. In these plots each column of absorbance pixels forms a straight line indicating that there is significant trend in a column of pixels. Thus, there is significant trend as a function of row number in a column of pixels. The scatter plot of intercept versus slope for all of the absorbance pixels from the mean white cube shown in Figure 29 forms a straight line. As a result of the trend and serial correlation in the absorbance pixels, the uncertainty in the estimated intercept ranges from 390 to 410 nanometers and the uncertainty in the estimated slope ranges from 4.1 to 4.3 nanometers.
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Figure 25. Regression coefficients of pixels 
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Figure 26. Regression coefficients of pixels 
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Figure 30. Regression coefficients of corrected 

pixels from row 30, 60, 90, 120, and 150
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Figure 34. Regression coefficients of corrected 

pixels from column 30, 60, 90, 120, and 150
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Having filtered out the trend and serial correlation, the scatter plots of intercept versus slope for the corrected absorbance pixels are shown in Figures 30-33 for each row (row 30 to 600 at an increment of 30) and in Figures 34-37 for each column (column 30 to 600 at an increment of 30). In these plots each row of corrected absorbance pixels forms an ellipse and these ellipses overlap one another. Similarly, each column of corrected absorbance pixels forms an ellipse and these ellipses overlap one another. The scatter plot of intercept versus slope for all of the corrected absorbance pixels from the mean white cube shown in Figure 38 forms an ellipse. Having filtered out the trend and serial correlation from the absorbance pixels, the uncertainty in the estimated intercepts has significantly improved to a range of 392.5 to 394 nanometers and the uncertainty in the estimated slopes has significantly improved to a range of 4.2651 to 4.283 nanometers. Thus, the algorithm has significantly improved the uncertainty in the calibration equation used to estimate the wavelength for a given spectral band.
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Figure 38. Regression coefficients of all 

640x640 corrected pixels from a cube
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In this work we have shown that errors in wavelength calibration can cause as much as a 20 nm deviation in the spectrum and that if taken for granted would result in an erroneous assignment or classification from library spectra. The algorithm and calibration procedure described here successfully filtered out the trend and serial correlation that resulted from the scanning optical arrangement in the hyperspectral imaging camera.  In doing so, the uncertainty in the intercept was reduced to less than the wavelength sampling interval and greatly improved the confidence in any acquired spectrum.
Future Direction
The current research laid the foundation for future exploitation of the hyperspectral imaging (HSI) system.  Future research will focus on applying HSI technology and Raman spectroscopy to the problem of remote (>100m) chemical detection. HSI has many potential military applications and future research will focus on broadening those possible applications.  

Short Term - This effort has two linked fronts – design and optimize Raman-hyperspectral one meter experiment in conjunction with developing a signal processing algorithm that can accurately identify chemical compounds from the experimental output. Experiment design includes the addition of a telescopic lens to the HSI system and optimization of data collection parameters.  A continuous loop of data interpretation/ algorithm design mirrors the experimental design process.  Our goal is to demonstrate the ability to detect and identify a single chemical at one meter.

Long Term – Research will expand detection range to 100 meters with multiple chemicals targets and scenarios.  A scanning system incorporated and the modification of the detection algorithm.

End State – At the completion of the proof of concept at one meter, we will begin looking for potential customers willing to sponsor a technology transfer.  Our goal is that by the completion of the 100 meter detection demonstration, a technology transfer plan will be in place and allow for the easy transition to a customer.  Designing the research with COTS materials should allow the rapid development from a 6.2/6.3 lab prototype to a 6.4, environment testable instrument.
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