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Abstract.  We report on an underlying hardware approach to implement a neural network for real-time image halftoning.  We present simulation and experimental results using a modified current starved comparator as the quantizing element that has a 40 fold reduction in pixel current over our previous designs. The neuron is self-biasing with error weighting achieved through current division to enable operation at a variety of bias voltages. The circuit is designed for integration with a flip-chip bonded photodiode array for imaging applications.
Background
Digital halftoning is a technique originally developed for grayscale print and display applications but has progressed to color and multispectral applications.  In the case of grayscale images, halftoning is a process for converting continuous tone images into binary valued images. The human visual system perceives the illusion of a continuous tone even though only black and white values are used to render the image. An optoelectronic implementation of the error diffusion neural network (EDN) uses a photodiode array integrated with an underlying electronic neural network for halftone computation. EDNs spatially distribute the quantitization error across an image through weighted interconnects to reduce correlated artifacts and perform spectral noise shaping. Our approach to the error diffusion neural network provides the ability to perform real-time image halftoning for applications such as remote sensing, xerography, and facsimile enabling digitization in a single step. This report describes specific improvements in the design and performance of the silicon circuitry. 

Theory
Halftoning Theory

One of the most popular halftoning processes, originally introduced by Floyd and Steinberg[1], uses an error diffusion algorithm in which each individual pixel value is quantized and the resulting quantization error is diffused in a predetermined weighted pattern to neighboring pixels. The distributed error influences the quantization decision of the neighboring pixels in order to improve the overall quality of the halftoned image. 

A variety of error diffusion algorithms have been proposed which differ in their diffusion pattern [Jarvis, Stucki]. In conventional unidirectional error diffusion, the algorithm raster scans the image (typically from upper left to lower right) and the quantization error from each pixel is diffused forward and down in a fixed, deterministic weighted pattern. For each pixel, a binary quantization decision is made based on the intensity of the individual pixel and the weighted error diffused from the previously quantized pixels.  As a result of this unidirectional processing, the diffusion filter is necessarily casual and results in undesirable visual artifacts that are not part of the original image but instead are a result of the halftoning algorithm.  Several of these correlated visual artificats are identified by the arrows in the halftoned image in Figure 1. 

We have developed a two-dimensional error diffusion algorithm that improves overall halftone image quality [2,3]. In this implementation, all quantization decisions are made in parallel and the error is diffused symmetrically in two spatial dimensions. Visual artifacts previously attributable to the unidirectional halftoning algorithm are eliminated and the overall halftoned image quality is improved as depicted in Figure 2.

Computer simulations of the two-dimensional error diffusion neural network have produced some of the best halftoned images to date. However, software implementation is not practical due to the computational complexity of the algorithm. The neural algorithm is ideally suited for implementation in analog circuitry. 
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Fig. 1.  Visual artifacts from halftoning process. The image on the left is the original gray scale. The image on the right has been halftoned using the Floyd-Steinberg algorithm. Note the visual artifacts seen near the arrows. 
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Fig. 2.  Reduced visual artifacts from the halftoning process. The image on the left is the original gray scale. The image on the right has been halftoned using the Shoop-Ressler algorithm. Note the reduction in visual artifacts as compared to Figure 1.

Previous work

We have previously explored several optoelectronic or smart pixel technologies as possible hardware implementations to achieve real-time function of the neural halftoning algorithm.[4] Smart pixels integrate optical devices with solid state circuitry to take advantage of the speed and processing capabilities of solid state electronics and the parallelism of optics for input. Proof-of-concept smart pixel arrays (SPAs), using different smart pixel technologies were manufactured and tested to evaluate their capability to implement the full-scale error diffusion neural network: flip-chip bonding of gallium arsenide (GaAs) self electro optic effect device (SEED) modulators on silicon CMOS circuitry [5,6]; liquid crystal spatial light  modulators integrated with silicon CMOS circuitry, referred to as liquid crystal on silicon (LCOS) [7]; and monolithic integration of LEDs with GaAs circuitry using Epitaxy-on-Electronics (EoE) [4,8]. All have demonstrated promise as viable technologies to produce SPAs capable of high quality halftoned images at video frame rates. These proofs of concept circuits however consumed too much power for large scale integration. 

Recently we designed a new neuron architecture that is scalable to smaller feature sizes as well as meets reduced current requirements for practical array sizes.  The following sections describe the basic theory, new neural circuitry, design methodology, preliminary experimental results and analysis from our recent design in 1.5 m silicon.  Our target process is 0.35 m with NIR photodiode array integration for limited visibility sensing. 
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Fig. 3.  Basic EDN neuron.  All state variables are currents. A single pixel on the photodiode array generates an input current of x(r,c).  

Error Diffusion Network Functionality

Basic Neuron

Figure 3 depicts the block diagram of a single EDN pixel. The theoretical analysis underpinning the EDN is described elsewhere [2,3].  The circuitry to implement a single neuron of the error diffusion neural network consists of a one-bit quantizer with finite slope, two summing nodes, and error weighting for the diffusion filter. The error weighting comprises the largest physical portion of the design. All state variables are represented as currents which lends itself to photodiode array implementation. The input optical input image generates analog photocurrents corresponding to individual pixel intensities. The input current at a particular row (r) and column (c) is represented by x(r,c). Error currents from adjacent neurons are subtracted creating the state variable u(r,c) which is then passed to the quantizer. The function of the quantizer is to provide a smooth, continuous thresholding function for the neuron producing the output signal y(r,c).  The output signal is compared to the original state variable u(r,c).  The difference between the original quantizer input u(r,c) and the output y(r,c) is the total error current (r,c). This error current is spatially distributed to adjacent neurons according to a weighted 2-D error diffusion filter shown in Figure 4. The error diffusion filter is circularly symmetric with the coefficient weights inversely proportional to the radial distance from the neuron. 
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Fig. 4.  2-D Error diffusion filter. The central dot represents an individual neuron. The numbers represent the desired error current fraction diffused to nearby neurons. The labels in parentheses were used during simulation.

The neuron-to-neuron interconnections are accomplished using the CMOS metallization layers. Our original work relied upon a Carver Mead-based quantizer using a wide-range transconductance amplifier. Each neuron comprised 90 transistors, but consumed nearly 2 mA per pixel in 0.5 m technology making it unrealistic for large-scale integration. 

Design Methodology

Although the circuit is an analog current based device, we use standard digital CMOS fabrication runs available through MOSIS. Accurate analog simulations normally require SPICE models that include small geometry and subthreshold effects. Unfortunately extracted run parameters provided by MOSIS represent an average set of extracted parameters optimized for a digital audience. We analyzed extracted run parameter sets and opted for larger transistors than normally required for digital circuits to minimize mismatch effects.
We began our efforts using 5V 1.5 m silicon (AMIS ABN) because lower fabrication costs allow us to iterate prior to going to smaller feature sizes. Once we have verified circuit operation and experimental procedures in the 1.5 m process we intend to move to 0.5 m AMIS C5F. Our ultimate goal is 3.3V 0.35 m TSMC that offers area savings and achieves packing densities required to create large image sizes. 
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Fig. 5.  Basic neuron circuit without the error weight circuitry.  State variables are represented by analog currents
Current starved Comparator based neuron

Desired Neuron Characteristics

The 2-D EDN theory places several constraints on the circuit implementation. The quantizer must be symmetric about zero input current with quantized current output that is positive or negative. A quantizer transition slope of approximately thirty produces the best images. Error currents are linear scaled percentages that are bi-directional with allowable tolerances on the order of ten percent and desired weights of 11.24%, 7.45%, 2.45% and 1.81%. Small current values must be accurately summed and passed to neighboring elements. The network convergence time must be quick enough to allow video frame rates. The analog circuit must tolerate run-to-run parameter variations. A photodiode offset equal to half of the quantizer range must be subtracted from each pixel compensating for the positive only input photocurrent. Finally, we desire the circuit to work with different bias voltages enabling a rudimentary gain control for low light conditions. The circuitry shown in Figure 5 implements all of these features and depicts the core of the neuron: a one-bit quantizer with finite slope and two summing nodes. Lower bias voltages produce a quantized output for a lower input current level, i.e. gain control. 

Summing Nodes

Summing elements are constructed using cascoded inverter pairs with diode connected inputs (see the first set of 8 transistors in Figure 5). These modified inverter pairs form a unity-gain push/pull current amplifier with low input impedance, high output impedance, reduced bias current, and cutoff exceeding several MHz. The stage has a nominal current gain of minus one. The DC bias current for each summing node is 2.32 A (1.16 A per stack). However the nodes linearly transfer current with current inputs exceeding +/-2 A. 

Quantizer
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The quantizer is a modified current starved comparator often found in VCO circuits. A reference current is generated by a four diode-connected transistor stack (P:M8, M37 & N: M66, M95) similar to the summing node input. To achieve of slope near thirty, two cascoded outputs serve as high impedance loads reducing the sharp quantizer transition. The quantizer itself generates a +/- 1.16 A output centered about zero input current. The output is monitored by a parallel comparator driving an open drain NMOS transistor. A third quantizer with input tied to VDD generates a photodiode offset current fed to the first summing node. 
Fig. 6.  Diffusion error weight circuitry for the four error weights.  The first three weights have four outputs each labeled A-D. Error weight 4 has eight outputs labeled A-H.  The circuit scales the error current (r,c) by 11.11%, 7.41%, 2.47%, and 1.85% respectively.

Error Weights

The error weight circuitry is depicted in Figure 6. Originally we tried W/L scaling to generate the error currents. However, DC offset currents were generated as a result of the non-identical transistors being tied to summing node inputs. The resulting offsets per neuron had magnitudes exceeding the generated error currents. We compensated for the systematic offsets at the expense of twenty percent more transistors than employing a fractional current division approach. In contrast, random process mismatches generate offsets that should average out across an entire array of devices. By loading a high impedance summing node output with nine low impedance diode connected stacks, we generate an error current that is one ninth or 11.11% of the original current in a single stack. The mirrored current lies within five percent of the 11.45% desired value. We generate the second weight by tying two high impedance outputs into three low impedance loads and mirroring the result (7.41% is roughly two thirds of 11.11%). The remaining weights are realized in a likewise fashion. The weights are then spatially fed to adjacent neurons as shown in Figure 4. Although the entire neuron contains 256 transistors, we can build the entire circuit from only one set of matched PMOS/NMOS transistors. The tradeoff for the self-biasing diode connected transistor stacks is reduced power supply noise immunity. However, the target application is battery powered and the ability to retain functionality at lower supply voltages coupled with scalability makes this an attractive approach. 
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Fig. 7.  (a) Simulated neuron response vs. input photocurrent.  The quantizer output current is scaled by one quarter.  (b) Simulated error weights with linear fits.

Simulation Results and Chip Layout

Simulations in PSPICE used the BSIM 3.3.1 model and extracted MOSIS parameters. Simulation specifics are listed in Table I. Figure 7 depicts the typical neuron response over the input current range sweep to 2.4 A. The quantizer output has been reduced by four to emphasize the error weights. The simulated error weights by themselves are shown in Figure 7 along with linear curve fits. Simulated neuron frequency response exceeds 100 kHz with network convergence times under ten microseconds for a 32 x 32 array. 
	Feature Size
	

	
	Parameter Set
	NMOS (m)
	PMOS (m)
	Bias Current

	1.5 m
	T24P AMIS ABN
	4.0 x 8.8
	10.4 x 9.6
	~ 72 A

	0.5 m
	T51A AMIS C5N
	1.5 x 2.7
	3 x 1.8
	~50 A


TABLE I.  Simulated Parameters
Simulated halftones using extracted MOSIS parameters from multiple runs produced results in concert with theory. We were software limited to 32 x 32 arrays. The 32 x 32 simulation contained 1,024 pixels comprising over 250 thousand transistors. Figure 8 depicts the one-quarter, one-half, and three-quarter grayscales for the T24P parameter set. 
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 Fig. 8.  Simulated output for a 32 x 32 array for (a) one-quarter, (b) one-half, (c) and three-quarter grayscale inputs. 

We recently fabricated a three neuron, Tiny Chip in 1.5 m silicon through MOSIS. Figure 10 shows the complete chip layout, blow-up of the central neuron with locations of the key elements, and a micrograph of the finished device.
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Fig. 9.  (a) Chip layout for three neurons including HiESD pad circuitry with (b) single neuron and (c) micrograph of fabricated central neuron on AMIS ABN run T58B via MOSIS. 

Experimental results
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Fig. 10. Simplified experimental setup consisting of PC based ICCAP software driving an Agilent 4156C Semiconductor Parameter Analyzer with devices mounted in an Agilent 16442 Test fixture 

Our experimental setup consisted of a PC running ICCAP and an Agilent 4156C Semiconductor Parameter Analyzer. Devices were mounted in an Agilent 16442 Test fixture.  Basic DC measurements are listed in Table II. The results are in good agreement with extracted layout simulations using the T58B run parameters. The simulations do not include any bonding parasitics. 

	DC Test
	

	
	Simulated
	Measured Mean
	Std. dev
	n

	Neuron Bias Curent 
	74.3 A
	71.5 A
	0.7 A
	10

	Transition threshold
	1.16 A
	1.18 A
	0.08 A
	5


TABLE II.  Measured results for 1.5 m Neurons
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Fig. 11.  (a) Simulated monitor transistor output showing quantizer transition.  (b) Measured monitor output showing quantizer transition shifts introduced by additive or subtractive error current.  Shifts ranged from +/- 200nA in 50nA increments. 
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Fig. 12.  (a) Measured comparison of four duplicate error weights.  (b) Comparison of four different error weights from single device.  Results from MOSIS T63Y run. 

We conducted a series of swept measurements to confirm neuron operation. Figure 11 depicts measured monitor output current demonstrating symmetric quantizer transition shifts introduced by additive or subtractive error current. The 50nA incremental shifts ranged +/- 200nA.  The quantizer transition shifted within picoamps of the expected results.  Figure 12 shows results from the error weight measurements.  It is difficult to measure the actual current flowing through the error weights.  However, by measuring the voltage we can approximate the current flow between nodes.  We measured the same error weight and determined that the variation (n=20) was less than 2% between individual weights of the same size.  We then determined the ratio of the error weights to each other to confirm our ratio metric approach to designing the error weights.  The expected values is in parentheses for a sample size of n=4: Error Weight 1 - 11.10% Measured (11.11% expected),  Ratio of Error Weight 1 to 2 - 66.5% Measured (67% Expected),  Ratio of Error Weight 2 to 3 - 33.7% Measured (33% Expected), and Ratio of Error Weight 2 to 4 ~ 25.3% Measured (25% Expected). 

Future Direction 

We are confident that we have identified a circuit topology and technical approach to real-time halftoning. This solution allows implementation of the entire neuron utilizing a single pair of matched NMOS/PMOS transistors. Our next step is migration to 0.5 m devices including row/column decode and refined output circuitry.  We will continue the development of smart pixel technology in an effort to demonstrate a hardware platform capable of providing real-time processing for the error diffusion neural algorithm.  Our initial goal will be to expand our new design to larger array sizes while optimizing the layout. We will first investigate a 10 x 10 or larger, electrical EDN in 1.5 m and 16 x 16 array size 0.5 m silicon.  We expect to meet the neuron sizing and interconnect requirements for flip chip bonding in 0.35 m silicon.  The final demonstration will require collaboration with MIT Lincoln Labs for flip chip bonding with one of their 32 x 32 NIR APD arrays. 
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