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Motivation for Research

• Spann, M. (2006), “Bayesian Adaptive Designs for 
Non-Inferiority and Dose Selection Trials”, Ph.D. 
thesis Baylor Universitythesis, Baylor University.

• Edmonds, J. (2008), “The Impact of a Misclassified Edmonds, J. ( 008), The mpact of a Misclassified
Response on Bayesian Adaptive Designs”, Chapter 
of Ph.D. thesis, Baylor University.



Background

• Fixed-sample designs have been and remain the 
most commonly used approach in phase II and 
phase III trials (Berry, 2001)p ( y, )

Two therapeutic arms are usually considered, 
enabling straightforward treatment comparisons
Specify a sample size to achieve appropriateSpecify a sample size to achieve appropriate 
sample size requirements

C l d l d il l• Can lead to slow and unnecessarily costly 
development



Adaptive Designs

• Increasingly popular in clinical trials
Modifications to the trial or statistical procedure are 
often necessary
Afford potentially safer and more efficient trials
Designs are flexibleDesigns are flexible

• We are concerned with how Bayesian adaptive 
designs are affected by measurement error.



Examples in the Literature

• Giles et al. (2003) used a Bayesian adaptive design
to select most effective treatment for acute
myeloid leukemia requiring only 34 patients.

• ASTIN study sponsored by Pfizer used an
adaptive design to estimate a dose response curve
to discover the 95% effective dose, (Krams et al.,
2003)2003).

• Thall and Russell (1998) used Bayesian decision
criteria for dose finding and safety monitoring in
Ph I/II li i l t i lPhase I/II clinical trials.

• Bekele and Shen (2005) used a Bayesian approach
and a latent variable to jointly model toxicity and
biomarker expression for dose findingbiomarker expression for dose finding.



Covariate Measurement Error

• Statistical task: ‘learn’ the relationship between an 
outcome variable y and an explanatory variables x
and z

z represents those predictors measured without 
error
x represents those that cannot be measured 

tlexactly

• A rough or surrogate variable w is often recorded 
in place of x, which complicates inference



Covariate Measurement Error

• The parameters in the model relating y and (z,x) 
cannot be estimated directly by fitting y to (z,x).  

• Substituting w for x, making no adjustments, leads 
to poor estimation of the relationship between y

d ( )and (z,x).

• Goal:  infer the correct relationship between y and p y
(z,x) indirectly by fitting a model relating y and (z,x) 
accounting for measurement error.



A Measurement Example

• Let x be the long-term average systolic blood 
pressure and y be cholesterol level

i d b d i hx is assumed to be measured with error 
w measured systolic blood pressure
y cholesterol levely

• w differs from x
Significant temporal variation
Instrument error
Reader errorReader error



A Measurement Example

• Suppose y and x are linearly related:

0 1y xβ β ε= + +

• x is measured with error

0 1y β β

• Simulate a data set, with independent errors,        
β0 = 145, β1 = 1, and σ = 0.25, along with the β0 , β1 , , g
least squares fit for the line. 

• We cannot observe x, thus we use our surrogate 
variable w.



A Measurement Example

• The plots above show an attenuation (flattening) of the 
regression line for the error prone data with moreregression line for the error-prone data with more 
variability



A Measurement Example



Correcting for g
Measurement Error

• We must specify a parametric model for each 
component of the data:

R d lResponse model
Measurement error model
Exposure modelp

• When the measurement model includes classical 
l if di ib icomponents, we must also specify a distribution 

for the unobserved x given the observed z



Measurement Error Model

• Classical Error
w = x + u (Additive Error)

o w is an unbiased measure of x
o u is independent of x
o Also, E(u|x,z) = 0 , ( | , )

w = x⋅u (Multiplicative Error)

• Choice is classical if an error-prone covariate is 
measured for each individualmeasured for each individual



Non-differential      
Measurement Error

• w contains no information about the 
response other than what is available in x

• More formally:  the conditional distribution 
of  y|x,w is the same as that for y|x.y| , y|



A Bayesian Adaptive Design y p g
Accounting for ME

• Consider an illustration for a logistic 
regression model demonstrating the effects 

f d i d iof measurement error on an adaptive design 

C id t B i d ti d i• Consider a two-arm Bayesian adaptive design 
for assessing superiority utilizing adaptive 
allocation in the context of the Framingham g
Study.



The Framingham Study

• Large cohort study following individuals for the 
development of coronary heart disease (Kannel, 
et al., 1986), )

• Main predictor of interest is systolic blood 
hi h i d b d i hpressure, which is assumed to be measured with 

error. 

• As per Carroll et al. (2006), we calculate the 
adjusted systolic blood pressure, ln(SBP−50), 
where SBP is long-term average systolic blood g g y
pressure for two separate visits.



The Bayesian Model

• For simplicity’s sake, our model will include SBP, 
xi , and treatment effect, tj (1 or 0) 

• The observed response for each patient is 
denoted by y

, 1,..., , for each of two treatments, 1, 2ij jy i n j= =%

• Let wij be the surrogate recorded for blood 
pressure on two separate visits



The Bayesian Model

• Suppose a study is to have at most n = 100
subjects for which blood pressure, wij , and 
treatment response y are observed for alltreatment response, yij , are observed for all 
subjects. 

• Two replicate measurements for the surrogate 
variable, wij , are made for each subject, with the 
replicates being conditionally independent givenreplicates being conditionally independent given 
the unobserved xi.



The Bayesian Model

Consider the logistic regression model

( ) 0 1 2logit 1| ,ij i j i jp x t x tβ β β= = + +

where

-1
0 1 2| , ~ Bernoulli[logit ( )]ij i j i jy x t x tβ β β+ +



The Bayesian Model

• Assuming the measurement error is additive, 
a classical measurement model is represented 
byby

( )| , ~ ,ij i ij i uw x y N x τ

• Moreover, for the exposure model, a normal 
model is convenient:

( )~ ,i xx N μ τ



The Bayesian Model

• In order to proceed under the Bayesian context, 
we must introduce prior distributions for all 
unknown parameters: (β τ τ )unknown parameters: (β, τu, τx)

• Assuming prior independence of all unknown 
parameters, the joint distribution is given by:

( , , ) ( ) ( ) ( )u x u xπ τ τ π π τ π τ=β β

• Moreover, the joint posterior distribution is given 
by:

( , , | ) ( , , | ) ( , , )u x u x u xfπ τ τ τ τ π τ τ∝β y β y β% %



The Bayesian Model

Define the logistic regression model as

logit( | , ) ( , , ),ij i j i jp x t m x t= θ

where, 

Pr( 1| , )
( , , ) log

Pr( 0 | , )
ij i j

i j
ij i j

y x t
m x t

y x t
⎡ ⎤=

= ⎢ ⎥
=⎢ ⎥⎣ ⎦

θ
Pr( 0 | , )ij i jy x t⎢ ⎥⎣ ⎦



The Bayesian Model

• The likelihood is proportional to:

n n⎡ ⎤( , , )

1 1
( | ) exp ( , , ) log{1 }i jm x t

i i j
i i

f y m x t e
= =

⎡ ⎤
∝ − +⎢ ⎥

⎣ ⎦
∑ ∑ θy θ θ%

• The posterior distribution is proportional to:

( )
n n

m x t⎡ ⎤∑ ∑ θ( , , )

1 1
[ | , ] exp ( , , ) log{1 } ( )i jm x t

i j i i j
i i

x t y m x t eπ π
= =

⎡ ⎤
∝ − +⎢ ⎥

⎣ ⎦
∑ ∑ θθ θ θ



The Bayesian Model

The posterior predictive distribution is 
proportional to:

( , , )[ | , , ] exp ( , , ) log 1 i j
n n

m x t
new i i jy y m x t e θπ θ⎧ ⎡ ⎤∝ − +⎨ ⎣ ⎦⎩

∑ ∑y x z%
1 1

2 2
0 1

[ | , , ] p ( , , ) g

( ) ( )                   

new i i j
i i

i i i i

y y

x z w xα α
τ τ

= =
⎨ ⎣ ⎦⎩

⎫− − −
+ + ⎬

⎭

∑ ∑y

x uτ τ ⎭



Prior Distributions

• In our hierarchical model structure, we assign 
independent informative normal priors on β0, β1, 
and β in the outcome modeland β2 in the outcome model. 

• For some unknown, positive φ, we assumeFor some unknown, positive φ, we assume 
τu = φτx or τx = φτu

⎧
1

x x u

u

φτ τ τ
τ

τ τ τ

≤⎧
⎪= ⎨ >⎪ x x uτ τ τ
φ

>⎪⎩



Alternative Prior Structures/(1 )λ λ−

• As per Carroll et 
al. (2006), an 
alternative prior

Induced Prior for λ / (1-λ)

alternative prior 
structure is to 
take

(1 )
x

u
λττ
λ

=
−

for 0 < λ < 1.

(1 )λ

for 0 < λ < 1.



Hierarchical Model



Bayesian Adaptive Designs
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Adapted from Spann(2006)



Effects of Measurement Error
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Effects of Measurement Error
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Effects of Measurement Error
Fixed Allocation probabilities areFixed

Allocation

Calculate
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( )* 1| , , , ,j u xP y = τ τy α β% %

Effects of Measurement Error
FixedFixed 
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Effects of Measurement Error
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Effects of Measurement Error
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Effects of Measurement Error
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A Simplified Bayesian       S p ed ayes a
Adaptive Design
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Examples Illustrating Performance E a p es ust at g Pe o a ce
under Measurement Error

• Scenarios 
motivated by the 
coronary heart 
di l

Scenario

Parameter I II
disease example

• Patient’s SBP is 
β0 −6.5 −6.5

given by the 
surrogate variable, 
wi

β1 1.5 1.3

• Patient’s true SBP, 
xi, ranges between 
90 d 130 i

β2 0.4 0.4

4 0 4 090 and 130, using 
ln(SBP−50).

μ 4.0 4.0



Treatment Effect

• The treatment 
effect, β2, is a 
parameter of 
interest in both 
patient 
allocation 

b bili iprobabilities 
and stopping 
points in the 
adaptive designadaptive design 
scheme. 



Model Check

• Every patient entering the trial during the adaptive 
phase requires the computation of a posterior 
predictive probability based on data accrued to that 

ipoint.

• For each entering patient, posterior and posterior g p p p
predictive distributions must be constructed.  This 
is done using MCMC methods: 

• MCMC specifications:
2 chains
60,000 iterations
Burn-in of 1,000 
Thinning of 10



Scenario I

• We place normal priors on the regression 
coefficients β0, β1, and β2.

• To emulate an informative prior, we place a 
Gamma (25, 1) prior on τx since the mean of that 
di ib i d h “ ” l fdistribution corresponds to the “true” value of    
τx = 25 used to generate the data. 

• Although we used τu = τx in our data generation, 
suppose we believe that τu is slightly smaller than 
τx . In that case, we might place a Beta (12, 1) prior x , g p ( , ) p
on φ, for τu = φτx . 



Priors for Scenario I



Results: Scenario I



Results: Scenario I



Results: Scenario I



Results: Scenario I

ModelModel

Results Gold Standard Naïve Adjusted

Patient Stopping Point 48 71 49

Final Allocation
Probability for T1

53% 56% 55%Probability for T1

Number of Patients
Assigned to T2

10 26 11



Scenario II

• We use τu = 11 and τx = 25 in this example

• Prior structures for the regression coefficients arePrior structures for the regression coefficients are 
as in Scenario I

• Suppose again we believe τ is smaller than τ To• Suppose again we believe τu is smaller than τx. To 
emulate an informative prior, we place a Gamma 
(25, 1) prior on τx since the mean of that 
distribution corresponds to the “true” value of    p
τx = 25 used to generate the data. 

• In that case we place a Beta (8 8) prior on φ forIn that case, we place a Beta (8, 8) prior on φ, for 
τu = φτx . 



Priors for Precision: P o s o P ec s o :
Scenario II



Results: Scenario II



Results: Scenario II



Results: Scenario II



Results: Scenario II

ModelModel

Results Gold Standard Naïve Adjusted

Patient Stopping Point 32 100 33

Final Allocation
Probability for T1

56% 56% 56%Probability for T1

Number of Patients
Assigned to T2

3 40 4



Discussion
• The use of adaptive design methods in clinical 

trials is steadily increasing.

• These designs are efficient, ethical, and 
potentially require fewer patients to be enrolled 
into a trial. 

• In clinical research, the ultimate goal of a clinical 
trial is to evaluate the effect of a test treatment 
compared to a control. 

• However the effect of a treatment can often beHowever, the effect of a treatment can often be 
misleading due to measurement error.



Future Research

• A study of the Berkson measurement error model.

• Further research could involve procedures for data p
where measurement error or misclassification is 
differential.

• Perform simulation studies that correspond to the 
scenarios illustrated today.

Wh h f l l i h l l f• What other factors play a role in the level of 
disturbance measurement error inflicts on the design, 
and to what extent (e.g., decisions driving the 
allocation, initial allocation probabilities, treatment , p ,
similarities and differences, initial sample size)?
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