Massive Data Sets: Challenges for Statistics

Karen Kafadar
Indiana University
kkafadar@indiana.edu
http://math.cudenver.edu/~kk

Acknowledgements:
E.J. Wegman, GMU,; D. Marchette, NSWC; G. Davis, UVA;
R.L. Jacobsen, UCB
AFOSR F4}9620-01-1-0274 (EJW); ARO DO7-zxx (KK)




OUTLINE

Motivation: Massive data from Genomics, Internet,
: Fraud detection literature

Guiding principles; Take-home messages

Genomics: Microarray data; Multiple testing Multiple testing

Internet traffic data (Sample data from GMU)

IP addresses, ports, message sizes

Classification, Tiny signals in massive background
Morals: Computing, Analysis, Inference

. Further research

New framework for inference from massive data sets?




1. Motivation: Massive Data

e (Genomics:

Measure mRINA expression in response to stimulus from
50K-70K genes/person

Goal: Identify function of genes

Size: 0.5-1.0 Million/experiment (50K x 20 people)

Relatively easy: Specified hypotheses

Internet:

Cybersecurity, computer viruses, network attacks:
Scientific computing, financial transactions, business
operations, security procedures, .

Goal: Detect attacks before they force shutdowns
Size: Thousands of packet transmits per minute




Colliding beams of electrons (SLAC) or protons (CERN)
accelerated at very high energies (MeV /GeV /TeV)

Collisions yield short-lived particles that decay into more
short-lived particles in any one of 100,000 ways (“events”)

Most events well-characterized (particles, speeds, lifetimes)

Others less well understood (e.g. those with b-mesons)

. Find target events of interest amidst millions of
“uninteresting” events

: Millions per minute




Common Theme: Tiny signal in vast sea of noise

Detect abnormal behavior: disease surveillance; nuclear product

mfg; phone/charge card usage; financial transactions; .

Easier when:
data streams stratify into smaller data sets
smaller sets are roughly independent of each other
sets can be modeled simply and parametrically
nature of potential abnormality is well-characterized

residual distribution is well specified =- assess probability of

abnormality

SPC-type tools are applicable




Genomics: Many hypotheses — but straightforward

Internet: Many vaguely-specified hypotheses (outliers, excess
packets/transmissions, signals of potential attacks

: Too many partially-specified hypotheses to characterize —
so the best we may be able to do is to reduce background

(EDA) — i.e., find a rough measure of “uninteresting” events
and remove them (rates 1%, 0.3%, ...)




Features of Internet traffic data:
e Relentless (“streaming”)

e Not independent of other systems: thousands of messages

from thousands of ports/addresses each minute

Diverse (text, numeric, image)
Dispersed (geographically)
e Data often not from some convenient mathematical pdf

What data should be collected?
How can anomolies be detected?




Relentless (“streaming”)

“Events” are assumed to be relatively independent of each
other (e.g., occurrence of event type A tells us nothing about

the probability of event B occurence)

High-precision measurements — when we can see them
Mis-identified tracks associated with events

Data are not from a convenient mathematical pdf




An example of an “inconvenient” mathematical pdf

(from high-energy physics):
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Fraud Detection Literature

o (General overview: R.J. Bolton, D.J. Hand (2002), “Statistical
fraud detection: A review” (with discussion), Stat. Sci.

Ezxperimental design: M. Schonlau, W. DuMouchel, W-H Ju,
A.F. Karr, M. Theus, Y. Vardi (2002), “Computer intrusion:
Detecting masquerades,” Stat. Sci.: designed experiments to

evaluate algorithms for detecting masquerade user (stratify by

user, identify characteristic features of user’s “signature”)

Modeling: W.S. Cleveland, D.X. Sun (2000), “Internet traffic
data,” JASA: Models for times between web accesses and

challenges of long-range dependence and stationarity
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o Telephone calling fraud (stratify by user): K.C. Cox,
S.G. Eick, G.J. Wills (1997), “Visual data mining: Recognizing
telephone calling fraud;” C. Cortes, D. Pregibon (2001),
“Signature-based methods for data streams,” Data Mining and

Knowledge Discovery Data Mining and Knowledge Discovery:
Nuclear product manufacturing: Spiegelman+Rosenblatt 1984

Disease surveillance: Siegrist et al. 2004, Stroup et al. 1989,
Waller and Gotway 2004

Bioterrorism: Hutwagner et al. 2003, many others

Visualizing network data: S. Krasser et al. 2005: “Real-time
and forensic network data analysis using animated and
coordinated visualization” IEEE Workshop on Information
Assurance, USMA: PC/time plots

11



New data types/structures have lead to advances in statistics
(EJW, PJH)

Data from agricultural expts = Design of experiments
“Large” data sets = Statistical graphics
No specified probability distribution = Nonparametrics

Non-Gaussian distributions = Robust methods

Many-featured data = Multivariate statistics/displays

Clinical trials = Sequential analysis
Testing many hypotheses = Multiple comparisons

Many other examples ...
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“Take-Home Messages”
Prevalence of streaming data will increase
Basically unusuable in raw form; require much pre-processing
Detecting “exotic” requires characterizing “typical”

Streaming data offer new challenges for Statistics/CS:

data value: what data to collect/discard (STAT)

data warehouse: acquisition, storage, distribution (CS)
tools, algorithms for pre-processing (STAT, CS)

new methods for analysis — robust, “sufficient” (STAT)
new informative visual graphical displays (STAT, CS)
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Guiding Principles

Lessons from EDA

“... ‘exploratory data analysiss’ is an attitude, a state of flexibility,

a willingness to look for those things that we believe are not there,
as well as for those we believe might be there. Except for emphasis
on graphs, its tools are secondary to its purposes.... the tool-kit of

exploratory data analysis 1s, and must remain, open-ended.”

“Data analysts regard their models as a basis from which to
measure deviation, as a convenient bench mark in the wilderness,

expecting little truth and relying on less.”

— JWT, “Comment” (Parzen), JASA 1979, pp.121-122
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“Statistics 1s ‘reactive” — wvery responsive to new problems that

arise in chemastry, biology, physics, ...” — P. Hall

“Advances in powerful computing equipment has had a dramatic
impact on statistical methods and theory. It has changed forever

the way data are analyzed” — P. Hall

“Far better an approximate answer to the right question, which s

often vague, than an exact answer to the wrong question, which

can always be made precise” — JWT 1962, p.13

“Better a precise measure of something important than an

imprecise measure of something unimportant” — D. Byar

“The greatest value of a picture is when it forces us to notice
what we never expected to see” — JWT, EDA, p.vi
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nnwxuu .
e Start with simplest of models
e Remove the obvious, magnify the residual

Iterate robustly, note non-conforming pieces

Control E(missed), not P{missed} — by piece

Make good use of graphical displays

“Cognostics”, “scagnostics” — diagnostics from
cognitive/scatterplot displays (Tukey + Tukey 1985)
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“Graphs will certainly be increasingly ‘drawn’ by the computer
without being touched by hands. More and more, too, as better
procedures of diagnosis and indication are automated, graphs, and
other forms of expository output, will, in many instances, cease to
be the vehicle through which a man diagnoses or seeks indications,

becoming, instead, the vehicle through which the man supervises,

and approves or disapproves, the diagnoses and indications already
found by the machine.” — JWT 1962, p.60
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Atmospheric concentration of CO,

€02 minus quadratic fit

(a) co2 data set

(c) co2, adjusted (quadratic)

co2 adjusted for linear trend

€02 minus quadratic
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(b) co2, adjusted (linear)

T
1980

Year
quadratic fit: =2.17 + 0.030(date-1980) + .013(date—1980)"2

(d) Quadratic residuals by month
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Atmospheric CO2, adjusted

I
1980

Year
adjusted for linear/quadratic/seasonal trends
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3. Microarray data
DNA (genetic code: A,C,G,T) in cell nucleus

triplets of nucleotides code for amino acids

(ex: AAA or AAG codes for Lysine)

Genes = organized strings of nucleotides (in triplets)
Genes code for proteins (e.g., insulin)

Proteins made in cell cytoplasm

Cell needs genes into cytoplasm (only coding part of DNA)

DNA copy (cDNA: AT/CG); Excise introns; T — U (mRNA)

Gene expression — measure of mRNA concentration

— which may correlate with protein production
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Ex (Kim Kafadar): Ca?* signaling in yeast cells

Ca®T needed for cells to survive stresses (e.g., high salt, alkaline

pH, cell wall damage); promotes signaling through calcineurin
(protein phosphatase)

What does calcineurin do?

dephosphorylates & activates Crzlp/Tcnlp/Hal8p transcription
factor; Crzlp accumulates in cell nucleus, activates gene

transcription whose products promote adaptation to stress
What inhibits Crzlp?
Start with Ca?*
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Grow 2 batches of cells: w/Ca?", w/o Ca?"

Wait 30 (£) min; harvest cells, collect mRNA
Reverse-transcribe mRNA back to cDNA (U — T)
Denature (“un-zip” — single strand)

Label “no-Ca” cells w/green flourophore (532nm)
Label “Ca” cells w/red flourophore (635nm)
Hybridize both to cDNA slide
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cDNA slide:

e Single-strand copy of each gene (“probe”) printed in defined

locations (“spots”)
Ca/no-Ca flouorophore-labeled cDNA mixture placed on slide

cDNASs in mixture find matching partners

match = binding energy = radiates (532 if green; 635 if red)

Laser scanner records fluorescence by pixel

“Red” if more red-tagged mRNA (Ca batch)

“Green” if more green-tagged mRNA (no-Ca batch)
o “Yellow” if not much difference

Which spots (genes) have more red than green? Multiplicity
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Bonferroni not practical (/N when N = 50,000 is 107° =
Zerit — %%®v

MC procedures control P{> 1 False Positive} < «

Benjamini & Hochberg (JRSSB 1995): FDR
Control Exzpected Proportion of false positives < «

We know that focusing on only the mean of a distribution
(e.g., W = # significant by chance alone ~ Bi(N, «)) is
simpler than focusing on a quantile (100(1-a)%-point of W)

Simplified: slides “spot” genes in “blocks” of ~ 500 — 1000

Transform (red, ) to standard bivariate Gaussian; look for

genes outside circle

Process issues; Big p, small n; correlation among p (genes)

24



14

ST %2019 1 %9019 €T %019

[ARENLE! T 00l 0T »doig 6 %019

Ldog 9d0|g §d0|g

€001 ¢doid 72019




9¢

¢edoig 0€ 2019 6¢ d0id

8¢ d0ld LegXdoid 9¢ dold S¢ dolg

v 3d01d €¢%01d ¢edolid Te>poig

0c doig 61 20| 8T %2019 L1 20|




4. Internet Traffic Data

Collected from anonymous surveillance machines outside “firewall”
to monitor incoming/outgoing traffic [Marchette 2001, Computer

Intrusion Detection and Network Monitoring]
All internet communications are transmitted via packets
Fundamental unit of information is packet

Packet consists of data and headers that control the
communications via IP, TCP

Flow = exchange of packets between source-destination pair
Connections = collections of flows (these data)

After much pre-processing, data file has summary statistics on

size/duration of flows (millions per hour)
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4. Sample Data Set From George Mason Univ.

length
0.23
0.27
0.04
1389.10
373.99
0.13
1498.11
0.04
122.38

SIP
4367
18146
18208
24159
60315
28256
25699
18208
94985

DIP
54985
9675
28256
17171
37727
18208
4837
28256
4179

DPort
443
3921
1255
23
2073
80
9593
1251
1298
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SPort
1631
20

80

80

80
80

Npkt
9

15

6

845
1759
10
65803
o

Nbyte
3211
49
373
5906

834778

816

30661821

373
85599




TCP

Instructions for delivering/sequencing packets coming from
one machine, destined for another

Data passed through “ports” (logical, rather than physical,
location; identifies connection through which data are passed

between machines)

216 — 65,536 ports per machine

— 210 Ports 0-1023: “well-known ports”

— Registered Ports 1024-49151 (e.g., 2049 for Sun’s nfs)
— 214 Ports 49152-65536: dynamic/private ports

Unprotected ports are prime candidates for intrusion, so
monitor amount of traffic in/out of ports
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e Among the 2% “well-known” Ports 0-1023:

21
22
23
25
80
110
443
554

ftp
ssh/scp
telnet
smtp
http
pop3
https

rtsp

file transfer protocol

secure shell /copy

network connection

mail transmission protocol
conventional web port (also 8080)
pop3 mail

secure web encryption

real-time streaming video/audio

e DPort = Destination Port; SPort = Source Port
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Message sizes

Three (correlated) measures of “size” of session:
duration or len = duration (length) in seconds
Nbyte = Number of bytes
Npkt = Number of packets

Highly skewed distributions: use log transformation
f(x) =log(1l 4+ y/x): log.len, log.byte, log.pkt

(log(z) spreads many small z’s too much)

Potentially suspicious:
Few packets, each with many bytes
Many packets, each with very few bytes
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Summary statistics over 135,605 records (1 hour in 2002)

min
10%
25%
med
75%
90%

max

#!

len
0.0
0.2
0.3
0.6
3.8
21.5
3482.5
9101

SIP
259
4930
9765
20258
41282
62754
65276
2504

DIP DPort

259
4024
8705
25164
45900
58202
65262

0139
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20
80
80
80
80

SPort
20
1187
1369
1849
3681
10000
10000
6742

Npkt
2

9

10
12
21
45
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5. ‘Visual Analytics’: Exploratory Plots

Detecting “exotic” requires characterizing “typical”

e Size variables are highly skewed (already seen)

e Boxplots suggest exceesive numbers of “outliers”
e Need better display of distribution

Letter value plots
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Letter value Displays
Estimate quantiles corresponding to tail areas 27%:
e Median (271): depth = dj; = (1 + n)/2
Fourths (272): depth = dp = (1 + |dy])/2
Eighths (272): depth = dg = (1 + |dF])/2
Etc. until extreme (depth = 1)

When dj, is a half-integer, average two adjacent order statistics

Actual tail area is closer to (d, — 3)/(n + %) [UREDA §2G]

Aymptotic correlation between adjacent LVs & /\W = 0.707
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Letter value box plots

Small data sets: Limited information about tails
Boxplots show fourths, extent of data beyond fourths
Large data set: Tail quantiles more reliable

= Extend boxplots to include more letter values beyond

median, fourths

“Stopping Rules”: how many LVs to show?
How to display letter values?

Which observations are labeled as ‘outliers’?

Plot still shows only actual data values
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Message Size and Length, 135,605 Sessions
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More exploratory plots
e Preponderance of relatively short sessions (next)

e Number of active sessions in 120 successive 30-second

non-overlapping intervals (mean 923, SD 140, ~ 30 limit 1343,
max 1299 = expected max of 120 N(923,140?) variates)

Plot of log.len vs Session Start Time should be relatively

uninteresting
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Session start time
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I
40

Session start time
+: SIP = 65246, DIP = 45900, DPort = 80, SPort = 10000
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55 6.0

5.0

40 45

30 35 40 45 50 55 6.0

3.0 35

T - : : T
1.15 1.20 1.25 1.30 1.65 1.70 1.75 1.80 1.85

(@) 1.14<log.len<1.31 (b) 1.62 <log.len <1.87
377 highlighted points: SIP 1681, DPort 25, Sport 10000, 43-50 packets 292 highlighted points: SIP 23070, DIP 336, DPort 80

29

(c) 1.9<log.len< 2.6 (d) 2.6 <log.len <3.0
60 highlighted points: Dport 554, 1000-2000 packets
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6. Single sessions — ‘activity’ sessions

Single sessions are too detailed and not sufficiently

summarized

Example: SIP 5001 invokes DPort 80 (Web)
http://... pulls in images from ports on other servers

Example: SIP invokes DPort 21 (ftp)
ftp invokes a control session (like telnet), extended duration

but few bytes/packets until file transfer request (e.g., get or

send), which initiates many further sessions

Goal: summarize these individual sessions, all related to single

activity, into one “activity session”
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Example of Activity session
SIP 5001 (probably 1 user, could be 2 wireless users)

348 sessions (mostly in minutes 30-32):
262 web (80), 79 DPort=2523, 7 other DPorts
146 DIP=34045, 91 DIP=29007, 53 DIP=19969, 58 other

DIP 19969: 3 “activities” consisting of 18, 19, 16 sessions; time
between sessions within activities < 0.18 seconds; time

between “activities” is 9 seconds and 360 seconds (6 minutes)

Define “activity”: Same SIP, DIP, DPort, similar

(increasing) SPort, time between sessions < 1 second
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Source IP 5001, Dest IP = 19969, DPort 80

Source Port

=t
-
=
-
o
o
]
;'
-
=t
-
!
o
(]

I I
19 20

time (minutes into the hour)
(3 activities: 18, 19, 16 sessions)
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Summarize “activities” for SIP 5001, DIP 19969, DPort 80:

1. Duration 3.14 seconds, #packets = 612, #bytes=373,915
2. Duration 2.65 seconds, #packets = 473, #bytes=249,811
3. Duration 1.49 seconds, #packets = 264, #bytes= 76,073

Likewise, 146 sessions where DIP=34045, and 91 sessions where
DIP=29007, can be collated into “activities”
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Source IP 5001, Dest IP = 29007

=
o
a
0]
o
=
=3
o
2}

T
325

time
(Dest Port = 2523 for all but first 10)
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Source IP 5001, Dest IP = 34045

=
o
a
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o
=
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o
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time
(Dest Port = 80 for all 146 sessions)
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Source IP = 5001, Dest IP = 34045, Dest Port = 80

=
o
a
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o
=
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o
2}
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Conclusions:

o “User” or “Activity” sessions are the natural units to study

e Modeling these “activity” session will aid in our understanding
Internet traffic data

e These models will yield better tools for identifying

“exotic” or subversive behavior

e Current research: Davis, KK, Marchette
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Evolutionary Displays for Internet data
Exploratory plots are useful for modeling activity sessions
Adapt evolutionary plots to summarized data
Can we summarize as quickly as the data arrive?

Fast algorithms can do little more than compare and add

(linear operations)

Robust methods usually rely on medians and sorts

Fast + robust = compare and (keep or discard), follow by

linear operations
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Waterfall Diagrams (Wegman and Marchette 2003)

e “Streaming plot”: Plot a point at location (s, t), where

t (time) = session start time (starts at 0, continues upward),

s is a source IP (SIP) or source port (SPort)

SIP: 4837 (occurs 4,754 times), 13525 (occurs 4,448 times),
65246 (occurs 12,150 times)

SPort: Trends across plot may indicate scanning SPorts

Useful for monitoring attempted access: For a given session
(exchange of packets), initial port may be assigned arbitrarily;
subsequent ones assigned by incrementing pattern
characteristic of operating system. Attacker can tell from
pattern of SPort increments about operating system
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Source Port
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Skyline plots

“Streaming plot”: Plot access of DPorts or SPorts

Recall: 353 of the 380 DPorts (92.9%) occur < 5 times; the 3
most frequent DPorts are expected (http, https, smtp)

Plot X when DPort is accessed (apart from “well-known” ports
0-1023); red X if count > 10

Likewise for SPort but higher “control limit” 12% (4%) of the
6742 unique SPorts occur > 50 (100) times

Building a “skyline”
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HEP experiments: Colliding beams of particles (MeV,GeV)
Each collision (event) = sub-particles (products)
Huge detector (“bandshell” of wires): detects sub-particle

Thousands of computer programs:
— reconstruct particle tracks; connect particles w/tracks

— estimate particle lifetime, momentum, mass

— identify (?) particles (ex: +, mass 0.14GeV/c* = ‘7t)

(decay type)

(Parameter of model for specific decay)
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Examples from chart of Standard Model (http://CPEPweb.org)

1. neutron (udd) B-decay to a proton (uud), an electron (e™),

and an antineutrino (7,)

electron-positron (ete™) collision = meson pair B°BY via a

virtual v photon or virtual Z boson

proton pair (pp) collision = many hadrons (baryons gqq or

gqq or mesons ¢gq) and bosons (force carriers)

Masses, charges, spins of ¢’s (u,d,t,b,c,s), plus theory of behavior
(Standard Model), determine masses, charges, spins of ~ 120

currently known baryons (~ 140 mesons)
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ES AND INTERACTIONS

FUNDAMENTAL PARTICL

FERMIONS
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Hundreds of thousands of possible decays (events)

~ 100 events per nanosecond

Data collection for 1 day would fill 6 CDs

Massive filtering steps (“triggers”) to discard data from 99+%

of events
SLAC saves data from ~ 100 events per hour
Sensor resolution: may miss some particles from event

Mis-ID: may connect particle to wrong event
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SLAC collides beams of electrons, at energies designed to generate

events with many b’s

Example: Features of “target” decay of interest:

1. b’s are produced (~20% of saved events)

2. b’s decay into neutral B-mesons (B'BY, not BTB™)

3. Bor BY = ptp= = 77t Unln~
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Use data to rule out likely “imposters”
(# sub-particles, final Fy < or = Ejy, etc.)

Data: AE, mp, Tthr, m,+, m,-, Hy, Hj
— assuming our target decay occurred!

Physicists use stmulations to assess what the data from our
target event should look like (univariate pdfs); discard events
where data lie outside “cuts” of “likely” regions on each
variable

Some real “imposter” data is generated from events at

different energies: assume frequency of “imposter”’ events is
b

the same at energy where target decay occurs

Likelihood ratio test on all possible “imposters” not practical
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e But we might be able to reduce “background” by considering
“likelihoods” from “top 20” most likely imposter decays

How realistic are the simulated data sets?

Can we approrimate the “likelithoods” of the “top 20” events?

How well do mixture models fit with non-Gaussian components?
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From Cybersecurity to Counterterrorism: Challenges

Data
e Massive data sets and

e Massive data sources

o Szewczyk (ACAS’04): Land purchases in Florida + Disney
stock prices = more Mickey

Monitoring
e Inspection of each unit not feasible = Sampling plan
Need “sampling plan” for entire data sets
Inspection of each process step not feasible = Key indicators

Need “key indicators” for analysis steps
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Methods: Control Charts
e Traditional focus: low data rates, single process
e Today: Many processes, high rates

Example: Accumulated weight of checked baggage
e Cusum, EWMA for detecting small changes fast

e Excellent baseline information for intelligent choice of cusum,
EWMA chart parameters

Example: Rare events in combination

e # cash paying customers within 3 hours

e Univariate/Multivariate(?) Poisson chart

e Shewhart charts for sudden changes quickly
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Summary and future work

New data types/structures lead to advances in science

Information age = Excellent opportunities for collaborations
among statisticians, computer scientists, engineers
Streaming data require:

— much pre-processing to be interpretable

— much summarization so they can be displayed

— fast, scalable processing algorithms

Streaming data offer new challenges to statisticians:

— data acquisition, storage, distribution

— fast algorithms and meaningful displays

— new methods or combinations of classical+robust ones

We still need exploratory plots:
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detecting “exotic” requires characterizing “typical”
EDA helps to identify natural ”units” for study
We need new tools & displays for streaming data, but ...

Displays will be monitored by non-statisticians, so

interpretation must be clear:

“Churchill Eisenhart ... defined practical power as the product
of the mathematical power by the probability that the procedure
will be used. A compact procedure may well be used so much
more often as to more than compensate for its loss of

mathematical power.”
— J.W. Tukey, “A Quick, Compact, Two-Sample Test to

Duckworth’s Specifications,” Technometrics 1(1), p.32
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