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1.4 Modeling With Technology 
 
In the previous section, we discussed the use of a linear model to solve a problem 

that we may see in economics:  finding the equilibrium point in a system governed by 
traditional rules of supply versus demand.  You were also given the functions that 
showed the supply and demand behaviors; these functions were both “determined by 
previous analysis.”  In this section, we will do the analysis to develop the supply and 
demand curves so we can find the equilibrium point of an economic system. 

 
Suppose we are analysts for a large oil company and we want to analyze the 

behavior of the American oil market to make more money.  The company has access to 
data collected through years of business.  We will conduct an analysis of the price of oil 
(U.S. dollars per barrel), the demand of oil (millions of barrels per day in the United 
States), and the supply of oil (same units as demand). 

 
First, we will develop a linear model that enables us to represent oil demand, given 

the price of oil.  See Table 1.4 for the data (data is fictional, also linked on the course 
website). 

 
 
 
 
 
 
 
 
 
 
 

Table 1.4:  Oil Demand vs. Price 
 
We now have a problem that we must solve:  develop a linear model for the data 

above, so it is possible to determine the equilibrium price of the system.  What must we 
do to solve the problem?  A process for solving the problem would certainly be in order! 

 
Step 1.  Transform the Problem.  Given in Table 1.4 is the data we will analyze.  

The independent variable is the price of oil because that determines the demand of oil 
(the dependent variable).  We must find a model that fits through the data so we can 
make predictions.  Our first step in finding the most appropriate model is to use the 
skills learned in our first problem solving lab to plot the data.  See Figure 1.12 for a plot 
of the data found in Table 1.4.   
 

Price ($ 
per Barrel) 

Demand (Millions 
of Barrels per Day) 

75 17.22 
80 16.58 
85 15.94 
90 15.05 
95 14.90 
100 13.72 
105 13.43 
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Figure 1.12:  Plot of Oil Price vs. Demand 
 
 
It is easy to see that a straight line will not perfectly fit through the data.  That’s 

OK!  A model that you fit to actual data very rarely will fit perfectly through every 
data point – but we must do the best we can.  It seems that a line will be able to give 
us a model that is “good enough” to solve the problem at hand:  find the equilibrium 
point of our system.  The plan we will use will be to find values for the parameters 
associated with a line (the slope and y-intercept). 

 
Step 2.  Solve the Problem Using the Most Appropriate Techniques.  To finalize our 

solution plan, we should remind ourselves of the general form of the model we selected.  
The general form of a line is:  daxy += .  Notice that we have two parameters, ‘a’ and 

‘d.’  We have two variables, ‘x’ and ‘y.’  We can solve for our parameters if we select 
values for the variables, forming a system of equations.  Because we have two 
parameters we need to solve for, we will need two equations, selecting two data points.  
If the first and last data points are representative of the general trend of the data, it is 
common to select the first and last data points to estimate an initial model.  Let’s see 
what happens when we use these points:  (x, y) = (75, 17.22) and (105, 13.43).  The 
model we will have after solving for our two parameters should go through the two data 
points we used to develop the parameters – a useful fact when reflecting on our solution.  
Now that we have our two data points, let’s form our equations:  

  

da
da
+=
+=

10543.13
7522.17

 

 
 We could solve these equations using substitution.  Let’s use one of the technology 
tools we have at our disposal – Mathematica, which would be much faster than 
substitution!  In the problem solving lab, we learned how to solve two equations in two 
unknowns.  Let’s apply that knowledge here. 
 
 
 
 
 

Figure 1.13:  Solving Two Equations in Two Unknowns (Mathematica) 
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 The Government Accountability Office (GAO) defines sensitivity analysis as the 
determination of how sensitive outcomes are to changes in the assumptions. The 
assumptions that deserve the most attention should be those with the greatest amount 
of uncertainty and effect on the outcome.  

 The Mathematica output indicates that a line with a slope of about -0.1263 and y-
intercept of approximately 26.695 will run through the two data points we selected.  
The final equation is:  695.261263.0 +−= xy . 
 
 Step 3.  Interpret the Solution.  Perhaps the most important step in the modeling 
and problem solving process is interpreting the solution – communicating it in non-
mathematical terms and reflecting upon whether or not the solution we attain solves the 
problem posed.  To help interpret the solution, let’s plot a graph of the linear model we 
developed on the same axes as the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.14:  Illustration of Estimated Linear Model 
 

 The model we have developed, relating demand to price with the equation 
695.26Oil_Price1263.0Oil_Demand +−= seems do a nice job of describing the data 

provided in Table 1.4.  The model does seem to fit directly through the first and last 
data points, as expected.  The domain and range of the function follow: 
 

]22.17,43.13[:)(
]105,75[:)(

yRange
xDomain

 

 
People that do modeling for a living are curious people.  Our initial assumption was 

that the first and last data points were “good enough” from which to create an initial 
model.    What if we changed the assumption we used about which points to choose?  
Let’s try the third and sixth data points, (85, 15.94) and (100, 13.72).   

 
Again, using Mathematica to solve for our parameters, our slope and y-intercept are 

-0.148 and 28.52, respectively.  The slopes are different by about .02 (about a 15% 
difference) and the y-intercepts by less than 2.0 (7%).  It appears that the model’s y-
intercept is less sensitive to change than the model’s slope.  We complete a sensitivity 
analysis by testing how much change in an assumption will impact the final model.  
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In general, we prefer a model that is robust against change.  That means, when an 
assumption changes, the model remains essentially the same.  It is undesirable to have a 
model that fluctuates wildly with changes in the assumptions. 

 
We compared the two models, algebraically.  We can also compare them graphically 

by overlaying the second model over the first model and data.  As expected, the two 
developed models do not look much different (see Figure 1.15).  In the next section, we 
will discuss methods to determine which of the algebraic models is truly the best model.  
For now, we will choose the first model we developed, 695.261263.0 +−= xy . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15:  A Comparison of Linear Oil Demand Models 
 

 
This linear model will enable us to find the equilibrium point of the oil supply and 

demand system, after the supply curve is plotted. 
 
 

Question 1  Given the data in Table 1.5 (and on course website), develop an equation 
for the supply of oil, in millions of barrels per day, given the price of a barrel of oil. 

 
 
 
 
 
 
 
 
 
 

Table 1.5:  Oil Supply vs. Price 
 
 
 After determining the model for calculating oil supply as a function of selling 

price, we are now prepared to determine the equilibrium price of the system we are 
analyzing.  There are two possibilities for the equilibrium price:  it could occur inside 

Price ($ 
per Barrel) 

Supply (Millions of 
Barrels per Day) 

75 2.56 
80 3.42 
85 3.50 
90 3.85 
95 4.62 
100 4.90 
105 6.13 
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the current domain values of our functions, [75, 105].  It could also occur outside those 
values, meaning we must extend our models.   

 
If we predict a value inside the current domain of our function, it is said that we are 

interpolating.  For example, if the equilibrium point occurred at a selling price of $87, it 
would be a price inside our domain; therefore, we would interpolate. 

 
If we were to predict a value outside the current domain, meaning we must extend 

our model, it is said that we are extrapolating.  For example, if the equilibrium point 
occurred at a selling price of $115, it would be a price outside our domain.  We would 
have to extend our model (it may still be a good model); therefore, we would 
extrapolate. 

 
 
 

 
 
 
Question 2  Determine the equilibrium point of the oil supply and demand system 
described in this section.  Is the answer an interpolation or extrapolation of our model? 
 
 
Example 1  In 1986, the Space Shuttle Challenger experienced a catastrophic failure in 
its solid rocket booster.  The explosion, 73 seconds after liftoff, claimed both the crew 
and shuttle.  The cause of explosion was later determined to be an o-ring failure in the 
right solid rocket booster.  The final investigative report concluded that cold weather 
was a contributing factor.  
 

The o-rings in the solid rocket boosters on the space shuttle are designed to expand 
when heated to seal different chambers of the rocket so that solid rocket fuel is not 
ignited.  According to engineering specifications, the o-rings must expand by at least 5% 
in order to ensure a safe launch.  The temperature on the day of launch was 29 degrees 
F.  O-ring expansion data was collected on the previous nine launches and is shown in 
Table 1.6.  
 

Temp (degF) 93 88 87 81 73 72 68 64 55 
% Expansion 22.3 21.0 20.6 19.7 18.7 19.0 17.3 16.2 15.5 

Table 1.6: O-Ring Expansion Data for Space Shuttle Challenger Launches 

 
If you were given this data prior to launch, what would you have recommended?   

 
 

Step 1.  Transform the problem.  We must answer the question posed above:  should 
the shuttle launch.  We must identify what is given in the problem. 

 
o We have data from the previous nine launches.   
o We know that the temperature at time of launch was 29 degrees F. 
o We know that o-rings must expand by 5% to ensure a safe launch. 
o Can we draw a picture (graph)?  YES! (see Figure 1.16 on the next page) 

 
 What must we find in the problem?  We need a model to determine what the 

percent expansion of an o-ring will be if we have a launch temperature of 29OF.  

We define interpolation as the act of making predictions within the domain 
of known values or data.  Extrapolation is the act of predicting values 
outside of the domain of the data. 
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Because we need to find the expansion, that will be our dependent variable.  The 
variable is the “cause” of the o-ring expansion is the temperature, the independent 
variable. 

 
 In addition to identifying what is given and what we need to find, there is an 
important assumption to be made:  that o-rings react to temperature in a predictable 
manner at temperatures outside the domain of current launch temperatures (e.g., there 
is not a temperature at which the o-rings stop expanding). 
 
 Let’s use Mathematica to plot this graph, instead of Excel.  The following 

command will 
result in the plot of our data. 
 

 

Figure 1.16: Mathematica Graph of O-Ring Data 

 
 The ListPlot command plots the data points, while the PlotRange command tells 
Mathematica the “y” values to plot, rather than giving the standard plot starting at 
zero.  The AxesLabel command enable you to label the x and y axes.  From this point 
on, it will be your choice whether to use Excel or Mathematica to plot data. 
 

After graphing the data point, we can see that the data seem to follow a linear 
pattern; therefore, we should use our knowledge of linear models to develop a model 
that we can use to extrapolate whether or not the shuttle should launch at a 
temperature of 29OF.  Because we will use a linear model, the general form of the model 
is:  dTempaTempExpansion += )()( . 

 
Our plan will be to estimate values for the parameters (a and d) of our linear model.   

To estimate two parameters, we need two data points that represent the data well.   We 
see the data in Figure 1.16.  For this model we will assume that the first and last data 
points will lead us to reasonable estimates of our parameters.  Keep in mind that when 
choosing data points to estimate the parameters, the goal should be to minimize the 
deviation from the general trend of the data.   
 
 Step 2.  Solve Using the Most Appropriate Technique.  Our plan will be to use the 
first and the last point to formulate two equations with two unknowns (a and d).  We 
will then solve these two equations simultaneously and use the solutions to estimate the 
two parameters of the linear function.  Finally, we’ll need to determine our model’s 
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domain and range.  Using our first and last data points, we create two equations with 
two unknowns.  Our two equations are:  
 

da
da

+=
+=

)55(5.15
)93(3.22

 

  
Figure 1.17 highlights the use of our Mathematica skills to solve both equations 

simultaneously for a and d. We find our estimated slope is 0.18 and our y-intercept is 
5.66.  Our final model is:  66.5)(18.)( += TempTempExpansion . 

 

 
 

Figure 1.17: Using Mathematica to Solve Two Simultaneous Equations 

 
 
Thus, our model is:  ( ) 0.18 5.66Expansion Temp Temp= ⋅ + .  The data show our domain and 
range to be: 

 

}3.225.15|{:
}9355|{:

≤≤
≤≤

yyRange
xxDomain

 

 
 

 
Step 3.  Interpret the Solution.  The final step of the modeling and problem solving 

process is to communicate and reflect upon the solution that we have derived.  Through 
interpreting the model developed, we see that on the day of launch, the temperature 
was 29 degrees F; therefore, our model predicts:  ( )(29) 0.18 29 5.66 10.88Expansion = + =  
 

According to the model we created, the o-rings would have expanded nearly 11%.  
Our results indicate the o-ring expansion adheres to the engineering standards for a safe 
launch.   It is upon reflection that we realize that our model may very well be flawed.  
After all, the Space Shuttle exploded.  Was there something in the data that could have 
led us to that predict a dangerous launch? 
 

Let’s test an assumption to determine the sensitivity of our model.  We assumed 
that the first and last data points were representative of the trend in our data.  So, let’s 
make a minor change to our selection and see what happens.  Instead, we’ll choose the 
second and last data points and see how much of an affect this has on our solution.   

 
 
 
 

 

Figure 1.18: Using Technology to Test the Sensitivity of our Assumptions 
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Making this change slightly decreased our slope and increased our y-intercept 

(Figure 1.18).  This also causes our new prediction on the day of launch to be:  
(29) 0.17(29) 6.33 11.26Expansion = + =  

 
Our new model predicts an even greater expansion than the last (former model is 

solid line, latter, dashed).  Figure 1.19 shows the data versus the two possible models 
described in the text, and how the models are plotted.  

  
 

 
 

 

Figure 1.19:  O-Ring Sensitivity Analysis 
 
 
Our analysis concludes that the launch should have been safe; however, since we 

know this wasn’t the case, perhaps our assumptions were not valid.  Specifically, our 
assumption to select a linear model and our assumption that the data accurately 
represent what happens to o-rings at other temperatures may be invalid.  We will re-
visit this idea later in the course. 
 
 
Question 3  The data represented in Table 1.6 are posted on the course website.  Using 
this data and a linear model, would it have been possible to predict the Challenger’s 
explosion?   
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Question 4  Given the following height and weight data from R-Day of 10 male new 
cadets,  
 
Weight (pounds) Height (inches) 

150 68 
155 70 
140 67 
138 66 
170 71 
185 73 
195 74 
200 75 
175 72 
165 70 

 
answer the following questions. 
 

a. What type of model do you think would be appropriate to predict a male 
new cadet’s height given his weight?   

b. Predict the height of a male cadet that weighs 100, 160 and 300 pounds.   
c. Does your model have any limitations? What impact do these limitations 

have on the domain and range of your model? 
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*Question 5  The National Collegiate Athletic Association (NCAA) exists to promote a 
commitment to excellence in both the classroom and the “fields of friendly strife.”  Data 
is provided below that describes NCAA’s membership since 19501. 
   

Year 
Active 
Members 

1950 362 

1955 449 

1960 524 

1965 579 

1970 645 

1975 704 

1980 738 

1985 793 

1990 828 

1995 903 

2000 977 

2001 977 

2002 1005 

2003 1024 

2004 1028 

2005 1027 
 

a. Determine a model for NCAA membership as a function of time.  Be sure to give 
the domain and range of your model.   

 
In its 2004 Annual Report, the NCAA noted that it anticipated that its membership growth 
rate will slow in coming years.    
 

b. Based on the prediction in the Annual Report, what characteristics would best 
describe a model of NCAA membership in the future? 

 

                                                 
1 2004 NCAA Membership Report, Retrieved 26 January, 2006, from 
http://www.ncaa.org/library/membership/membership˙report/2004/2004˙ncaa˙membership˙report.pdf 

 




