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1.5 Model Evaluation I (Fit of Functions) 
 
 
 We have used our knowledge of problem solving and properties of linear functions to 
develop models to help communicate solutions to several problems, like identifying the 
height of an enemy operative, determining the size of cadets for uniform issue, and 
calculating the equilibrium price of a supply and demand system.  Developing models is 
useful, but our models are limited if we do not know how good they are.  This section 
will focus, not on the development of models, but on their evaluation.  We will discuss 
how to determine a model’s “goodness,” thereby putting more credibility behind the 
predictions we make. 
 

1.5.1   Model Evaluation (Subjective) 
 

So far, we have informally used two tests to determine our model’s goodness:  the 
nature of the data test and the “eyeball” test.  We will now formally define these tests. 

 

• Nature of the Data:  The underlying structure of the data; i.e., how the data 
would appear if collected in a “perfect world.”  For example, we would expect 
projectile motion to follow a parabolic trend as gravity acts on the projectile. 

• Eyeball Test:  A qualitative measure that determines how closely a model 
appears to fit a given data set. 

 
We may consider a linear model to be “good” if we knew about the circumstances 

under which the data were collected and expected the modeled quantities to be 
proportional – a measure that the model matches the nature of the data.  If we graphed 
the model and the prediction looked like it closely represented the data (passes the 
eyeball test), then we may call it a “good” model, like the models presented in Figure 
1.20.  Today, we will develop a means to quantitatively evaluate just how good a model 
is.  How can we tell if one model is really better than another?  We will explore this 
question and more in this lesson.   
 
 Let’s consider the average demand, the model we discussed in Section 1.1, and the 
two demand models we developed in Section 1.4.   
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It appears in Figure 1.20 that the average does not “fit” the data well.  In fact, the 

model underpredicts for the first half of the data and overpredicts for the second half of 
the data.  Both estimated linear models seem to be a reasonable fit of our data set.  
Which line is the better linear model most accurately predicting oil demand given the 
price of oil per barrel?  Both the solid and dashed lines seem to provide a good 
approximation, but they clearly are different lines (models).  So which model best fits 
the data?  We need to define a measure for best fit so that we can compare the models 
we developed. 
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Figure 1.20:  A Comparison of Linear Oil Demand Models 

 

1.5.2    Model Evaluation (Sum of Squared Error) 
 
One way to determine which model is “best” quantitatively is to measure the 

distance between the values predicted by the model, ŷ , and the actual data points, y.  
This distance is our error, e.  (This symbol, e, is not to be confused with the number, e 
≈ 2.72).   

 
Let’s look at the situation a bit closer.  If we look at a single data point from Figure 

1.20, say, (95 dollars, 14.72 million barrels) we see that both estimated linear models 
under-predict the actual amount of oil in demand.  This is because both models lie 
slightly below the point.  Does this mean that our models are wrong?  Absolutely not!  
The models still capture the general trend of the data; they just predict that consumers 
will demand less oil, given the oil’s selling price.  

 
So, how good or bad are our models?   

To quantify, or put a numerical value on 
how good or bad they are, we measure 
the distance between our predictions and 
the actual data points (see Figure 1.21).  
In this case, our demand for oil is 14.72 
million barrels our solid model predicts a 
demand of about 14.70 million barrels.  
 

What is the error of the solid model? 
Well, it’s demandpredicteddemandactual − , 

or in this case, it is  02.070.1472.14 ≈−  
million barrels.   

Figure 1.21: Closer Look at Our Errors
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This calculation shows that the model under-predicts the actual demand by 0.02 million 
barrels of oil.  What would have happened if we looked at the point just to the left, (90, 
14.88).  In this case, our model over-predicts; the error is 448.0328.1588.14 −=− million 
barrels.   
 

So, what do we do with this information?  How can we come up with a single 
number that quantifies how good or bad the entire model is?  Let’s look at a couple of 
possibilities.   
 

A-Not-So-Good-Idea:  If we sum the errors for each model, perhaps the model with 
the lowest sum would be the better of the two models.  Notationally, with n points in a 
given model, this is written:  
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The above notation may be a little intimidating at first.  If we read it from the 

inside out, it may become a little easier to understand.  The quantity )( ii yy
∧

−  means 

“the actual data point minus the predicted value.”  The subscript i  helps us to keep 

track of which data point we are calculating.  For example, )( 11

∧

− yy  is the calculation of 

the error for the first data point, where )( 22

∧

− yy  is the second error calculation.  The 

symbol ∑
=

n

i 1
means “the sum from the first value to the nth (n is the final value).  So, 

putting it all together, ∑
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)(  means “the sum of errors, from 1 to n.” 

 
There is one major problem with this technique.  If we assume a positive distance 

when the data point is above the line and a negative distance below the line, a value of 
zero may only mean that we overestimated and underestimated exactly the same 
amount.  A value of zero would occur because the positive and negative errors would 
cancel each other out.  We really want to measure the total deviation of the model from 
the data which this method does not capture.   
 
A-Bit-Better-Idea:  Perhaps we could take the absolute values of the distances.  
Notationally, with n points, this is written:   
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Using absolute values may seem reasonable, but when absolute values are involved, 

trying to minimize the error between the model and the actual data using calculus 
techniques becomes quite difficult. 
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A-More-Acceptable-Idea:  A more common and acceptable method is to square the 
distances before we sum them.  Notationally, with n points, this is written:   
 

2 2

1 1

ˆ( )
n n

i i i
i i

y y e
= =

− =∑ ∑  

 
This accomplishes two purposes.  First, it eliminates any negative errors (that might 

cancel out positive errors), and second, it emphasizes those data points that are furthest 
from our model.  That is, we are severely penalized for data that are far from our model 
when the distance is squared.  The value of summing the square of the errors is called 
the Sum of Squared Errors (SSE).   If we compare two models using this method, the 
one with the smaller SSE indicates that the model “fits” the data better than the one 
with the larger SSE.  We will consider other model evaluation methods in future lessons. 
  

How can you calculate the SSE using MS Excel?  First, create two columns next to 
your data and model to track the error and squared error terms.  Figure 1.22 
demonstrates one way to set up an MS Excel spreadsheet. 

 

Figure 1.22: Sample MS Excel Spreadsheet 
 

Given a linear model with a slope of -0.148 and an intercept of 28.52, the model 
portrayed in Figure 1.22 displays an SSE value of about 2.1211.  Is this good?   What 
can we do with this value?  SSE is a relative number.  This means that it is only useful 
when we can compare it with the SSE values from other models.   

 
Think about it this way – suppose that we had a data set that had one million 

points.  By some stroke of genius, let’s say you found a model that was only 0.1 units 
off from each of the one million data points.  To the naked eye, the data and your 
model appear to be exactly the same. The error for each point is only 0.1 and the 
squared error for each of these points 0.01.  Yet the SSE for this model is:  
 

( )2 21, 000,000 0.1 10,000data points units units⋅ =  

 
What does this tell us?  Is this a large or small number?  Unfortunately, an SSE by 

itself does not tell us much.  Without comparing this SSE to the SSEs of other models, 
we cannot tell if the SSE above is high or low.   
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Question 1  Figure 1.22 shows the calculation of the SSE for the second estimated linear 
model, with parameters ‘a’=-0.148 and ‘d’=28.52.  Is it better than the first estimated 
linear model developed in Section 1.4, with parameters ‘a’=-.1263 and ‘d’=26.695? 

 
Question 2  Using the Space Shuttle Challenger data set from Section 1.4, create a 
spreadsheet like the one shown in Figure 1.22.  What is the SSE for the model estimated 
in Section 1.4?  If you change the values of the slope and intercept for this model, can 
you get a smaller SSE?   
 

1.5.3   Model Evaluation (Coefficient of Determination) 
 

Another quantitative measure commonly used in statistics is the coefficient of 

determination, or 
2r .  This value is bounded by zero and one (0 ≤ 2r  ≤ 1), and is a 

measure of the amount of variation of the data for which your model can account.  So, 

an 2r = 0.83 would mean that 83% of the variation of the data can be accounted for by 
your model, the remaining 17% of the variation must be the result of some other factors 
not covered in your model.   
 

 
 

Before we calculate 
2r , we must define a key term, the Sum of Squares Total, SST.  

Recall that the Sum of Squared Error was a measure of how the model you developed 
compared to the data for which it was developed.  SST is similar, but instead of 
calculating the error between the data and a model you estimated, SST calculates the 
error between the data and the mean – the simplest model in our toolkit. 

 
The mean is a simple model with just one parameter, so we expect it to be our least 

accurate model.  Because SST quantifies the error of the least accurate model, we can 
say that it is the measure of how the worst model, the mean, compares to the data for 
which it was developed.  SST is calculated in a similar manner to SSE, 
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where SST is the sum of squared deviations of the y-values of the data from the sample 

mean of the data.  The sample mean is the average of the given outputs denoted y .  

SST is the relative measure of how bad the mean is as a model, that’s why it’s called 
Sum of Squares Total – it’s the total amount of squared error using the worst model.   
 

If we divide SSE (the error between the data and the model you developed) by the 
SST we get the percentage of error in the data that our model does not explain.   

 

The coefficient of determination or r2 is a measure of the amount of 
variation of the data accounted for by the model and is bounded by zero 

and one (0 ≤ 
2r ≤ 1).     

SST
SSEr −=12     (1) 
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The best possible model would have zero error (SSE = 0), accounting for 100% of 
the variability in the data.  If we subtract the percentage of error that our model does 
not account for from 100% (or 1), we get a measure of error that the model does 

account for.  Therefore, 
SST
SSEr −= 12 . 

 
Example 1  In Section 1.4, you created a linear model for homework that predicted the 
height of an R-day cadet based on his or her weight.  Our best fit model is: 
 

( )( ) 0.135451 47.94905height weight weight= +  

Domain :{ | 90 300} (90,300)
Range :{ | 60.13 88.57} (60.13,88.57)

weight weight
height height

< < =

< < =
 

 

It has an SSE of approximately 1.95.  Now, we will turn our analysis to 
2r  to determine 

the accuracy of our model. Recall, we will need to calculate SST using Equation (2) on 
the previous page where SST is calculated by:          
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Since we determined the SSE of this model previously, we focus here on how to 

calculate the SST.   
 

• First, we must determine the sample mean which is the average of the data 
values; here it is the average height.  The average height  is 70.6 inches. 

• Next, we determine how far each of the data values is from this mean - that is, 
determine the deviations of the y-values of the data from the sample mean of 
the data.   

• Then, we square each of these values.  

• Finally, we sum them up.   
 
The SST for this example is 80.4.   

 

The final step in determining the 
2r  is to use Equation (1) inputting our SSE and 

SST where appropriate. 
 

2 1.94705456
1 0.975783

80.4
r = − =  

 
Here, our model accounts for 97.6% of the variation in our y-values.  This indicates 

that our model is very accurate for this data set.  
  

One attribute of 
2r  is that, unlike SSE, it is a standardized or normalized measure.  

In other words, 
2r  values do not need to be compared to substantiate the use of one 

model over another.  If your model has a high 
2r  it indicates it is accurate for the set of 

data you are modeling.   
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Caution!  A high 
2r  value does indicate the model is accurate for the data but does 

not necessarily indicate that it is appropriate for the situation being modeled.  Similarly, 

a low 2r  (say in the low 40s) does not necessarily mean the model is not useful.  For 
example, we can find polynomial models to fit every data set but not every data set 
should be modeled with a polynomial function. To ensure a model is both accurate and 
appropriate, employ more than one evaluation tool.   
 

1.5.4   Model Evaluation (Number of Parameters) 
 

An important consideration when modeling is the relationship between the number 

of parameters in a model and the measure of ‘goodness’ (often SSE or 
2r ).   Every time 

we add a new parameter to a model, the SSE will get smaller and 
2r  will always get 

larger, even though the added parameter may end up being of insignificant value.  The 
question for modelers is, “when are enough parameters enough?”  It’s often best to use 
this notion of Albert Einstein, “Keep things as simple as possible, but no simpler.”   
 

Let’s explore an example that will show use the effect of adding additional terms and 
parameters to a model.   
 
 
Example 2 In the following graph, Figure 1.23, we once again see the seven points of 
data that define the oil demand problem, this time with three models overlaid on the 
data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.23: Oil Demand Modeled with Three Models 
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Clearly, the relationship between the independent variable and the dependent 
variable is decreasing.  Let’s model the data with polynomials having one, two, and 
three parameters (mean, linear with non zero y-intercept, and quadratic).  NOTE:  To 
estimate the 3-parameter model, we chose three representative data points and used a 

polynomial of the form dcxaxf ++= 2)()( , which you’ll see again in section 1.8.  Table 
1.7 lists the model, minimum SSE, and corresponding parameter values for the data.   
   

parameters model Min SSE a c d 

1 d 7.52   15.21 

2 daxxf +=)(  0.49 -0.1263  26.695 

3 dcxaxf ++= 2)()(  0.51 -.0053 -81.99 16.611 

  Table 1.7: Polynomial Models 
 

From the graph and the table, we can note a few important things.  First, the 
minimum SSE for the one-parameter model is an order of magnitude higher – has a 
change of more than 10 times – than the two-parameter model (a linear model).  But, 
the improvement of going to a three-parameter model (a quadratic model) is only about 
4%.  Also, graphically the one-parameter model is clearly poor, while the other two are 
virtually indistinguishable from each other.  Finally, then the third parameter, a, is 
introduced, its value (a = -0.0053) is so close to zero when compared to the scale of the 
other parameters, that it is not a useful addition to the modeling process. 

 
Because the addition of the third parameter is not useful in this case, we would 

decide to use the simpler linear model.  However, we noticed that the SSE decreased 
when we added a parameter to model, a fact that will always hold true.  A larger 
number of terms will always result in lower SSE (and larger r2).  In fact, a polynomial of 
degree n – 1 will always fit n data points.  For example, a data set of two points can be 
fit perfectly by a degree 1 polynomial (a line).  Also, three points can be fit by a 2nd 
degree polynomial (a quadratic).  Each would have a SSE = 0.  A polynomial of degree 
n - 1  will always fit n data points.  But if a polynomial of degree n – 2 can closely fit 
the data points, why use a more complicated model?   
 

In Example 2, there were 7 data 
points.  A 6-degree polynomial can 
model these points “perfectly,” with 
an SSE of zero and r2 of 1.  A 6-
degree polynomial is a very “wiggly” 
function (see picture at right).  As 
you would expect, the function is 
also very complicated: 
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Notice that the model’s trend is opposite of the data, seeming to indicate that for 
prices higher than $105, demand will increase.  It doesn’t make sense that higher price 
would yield higher demand.  This model, though it fits every data point, is not going to 
be useful for prediction. 

 
As mentioned previously, in every case, as you add a parameter, SSE will decrease.  

But the important question is, “does the improvement in SSE justify the disadvantage 
of adding a parameter and increasing the complexity of the model?”  The nature of the 
disadvantage of having too many parameters lies in the strength of the estimates for 
those parameters.  Every parameter that needs to estimated essentially ‘takes away’ 
some of the information in the sample.  Estimating two parameters from seven data 
points will be fairly easy and will result in relatively accurate estimates for those two 
parameters.  On the other hand, estimating 6 parameters from 7 data points is far more 
complicated and will likely result in parameters of little consequence, such as a from 
Table 1.7.  Furthermore, once you have more parameters than data points, it is not 
possible to estimate any of the parameters.   
 

What’s a good rule of thumb in determining how many parameters to add to your 
model?  When adding an extra parameter doesn’t give noticeable graphical 
improvement or a noticeable improvement on SSE, then stop adding parameters.  What 
is noticeable?  This is a tough question and often depends on the situation…another 
example of why modeling has a “science” component and an “art” component.  
Remember:  for the model you develop to have meaning, you must be able to interpret 
its results to a decision maker.  If you are unable to communicate the effect of an 
additional parameter, it’s a good bet that you may not need that parameter!   
 
Question 3  You are working with a group of student interns for the National Center for 
Atmospheric Research (NCAR) in Boulder, Colorado, monitoring the global warming 
situation.  NCAR has access to data about 2CO  concentrations in the atmosphere 
(below and on course website).  Let x represent the number of years since 1995.   
 
years 0 1 2 3 4 5 6 7 8 9 
CO2 ppm 361.6 364.0 364.6 367.3 369.6 370.5 372.1 373.5 376.1 379.0 
 

a. Develop a linear model that fits these data.  Show all work in how you obtained 
your model and put a graph of your model on the same axes as the scatterplot. 

 
b. Select two different points to estimate a linear model. 
 
c. Thoroughly evaluate your model’s, meaning:  use the nature of the data test, the 

eyeball test, SSE, 
2r , and number of parameters.  Is your model a good fit for 

the data? 
 

d. These data were all observed in March of each year.  Based on your model what 
were the CO2 ppms in September 2001? 

 
e. Based on your model what is your prediction for the CO2 ppm in March 2100?   
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f. The equation used at NCAR to predict CO2 ppm was 6.36182.12 += xy .  Plot 
this equation with your model and the data on your scatter plot.  Which 
equation seems to be the “better” model?  Explain your reasoning. 

 
 
Question 4  Using the models developed in Example 1 of Section 1.4 (O-Ring Data), 

determine the 
2r  value for each model.  Which appears to be the better model?  Based 

on your understanding of the problem, interpret the meaning of your 
2r  values and 

explain what it indicates about the best model. Discuss your findings. 
 
*Question 5 You are working with a group of student interns for the park services at 
Yellowstone National Park in Wyoming.  Old Faithful is one of 400 geysers within the 
park.  It is named Old Faithful, because the time of next eruption can be predicted by 
the duration of Old Faithful’s eruption.  Since the original model was established, the 
intervals between eruptions have tended to increase.  The park service would like you to 
set up a model with current data and answer a few of their questions with the model. 
Below are some current data on Old Faithful’s eruptions.1 The data is also linked on the 
course website. 
 
 
 
 
 
1 These data were obtained from Yellowstone National Park. 
 

a. Based on the graph you develop, does it appear that interval is 
approximately a linear function of duration? 

 
b. What is the slope of the line that models this data?  Explain in practical 

terms (duration and interval) the meaning of this slope? 
 
c. What is the y-intercept for your model?  Does this intercept have any 

practical meaning?  If so, what is it? 
 
d. Thoroughly evaluate the model you developed, meaning:  apply the nature 

of the data test, the eyeball test, and r2. 
 
e. Suppose that you observe an eruption that lasts 2 minutes and 40 seconds.  

Based on your model, predict when to expect the next eruption. 
 
f. The equation used by the park service to predict the intervals between 

Old Faithful’s eruptions is 3014 += xy .  Compare this equation with your 

model.  Which equation seems to be the “better” model?  Explain your 
reasoning. 

 

x duration in minutes 1.8 1.98 2.37 3.78 4.3 4.53 1.82 2.03 2.82 3.83 4.30 4.55 1.88 2.05 

y interval in minutes 56 59 61 79 84 89 58 60 73 85 89 86 60 57 




