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1.6 The Generalized Exponential Function 
 
Take a moment to conduct an internet search on the word “exponential.”  

When this chapter of the text was being written, Google returned over 7 million 
hits on sites or articles that somehow referenced “exponential.”  Below are just 
a few of the quotes you may find. 
 
“The death toll from the Indian Ocean tsunami is set to rise exponentially 
above current estimates of 150,000 as relief workers reach remote villages and 
survivors succumb to disease, UN officials warned today.”1  
 
“Scientists are finding that electromagnetic flux of unknown spectrum in action 
may be the root cause of the exponentially increasing number of earthquakes in 
the last eighteen months.”2  
 

Exponential growth or decay…you hear the term used by newscasters, 
political pundits, and people you talk with, but what precisely does it mean?   
 

You may have personal experience with exponential functions in a place that 
may be important to you in the future - an interest bearing savings account.  
Perhaps you have taken a class at some point in your life where you learned a 
function that allowed you to compute the value of an account that accrued 
interest continually.  You may have heard it referred to as PERT, or seen it 
presented as Equation (1); this equation is an exponential function.   
 

rtV Pe=      (1) 
where:  

V is the value of the account at the time that you are interested 
(dependent variable) 

P is the principal, or initial value invested (parameter) 
e is the base (parameter) 
r is the interest rate (parameter) 
t is the time that has passed (in the same units as the period referred to 

in rate) since the initial investment. (independent variable) 

What makes this function exponential is that there is a constant base raised 
to a variable power.  In this case, the base is e which is also approximately 
2.71828.  The most basic form of the exponential function is:  

( ) xf x b=      (2) 

where b is the constant base (parameter) raised to a variable power x, the 
independent variable.  Do not confuse this with the power function (learned 
later) where the independent variable is the base.  Remember: the exponential 
function has the independent variable in the exponent. 

                                                 
1 http://www.guardian.co.uk/tsunami/story/0,15671,1382973,00.html 

2 qd.typepad.com/19/2005/01/its_been_a_whol.html 
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1.6.1 Properties of Functions 
 
 Recall that a function is said to be an increasing function if the average rate 
of change of f(x) is positive on every interval.  Conversely, a function is 
classified as a decreasing function if the average rate of change of f(x) is 
negative on every interval.  Similarly, we say a function is increasing on an 
interval if the average rate of change of f(x) is positive on the interval.  Also, a 
function is decreasing on an interval if the average rate of change of f(x) is 
negative on every interval.  More precisely, 

 
If we trace a graph from left to right, we notice our hand will move up 

when the function is increasing and down when decreasing.  In Section 1.3, we 
saw that a linear function increases when it has a positive slope and decreases 
with a negative slope.  This extends to other functions – a positive rate of 
change indicates the function is increasing and negative, decreasing. 

 
 In the linear case, we saw that the rate of change was constant and its 

sign determined if the line was increasing or decreasing.  We will see many 
examples of exponential functions that increase or decrease and their rates of 
change that also increase or decrease.  The next subsection catalogs the three 
cases of exponential functions and their corresponding changing rates.   

1.6.2 Three Cases of the Basic Exponential Function, bx 
 
There are three cases of this basic exponential function; each case has a 

different value for b. 
 
Case 1: b >  1.  This function increases as the domain values increase.  
This can be seen in the first table of Figure 1.24a.   This case of the 
exponential function also increases at an increasing rate.  This can be 
seen by investigating the average rates of change which are also shown in 
Figure 1.24a.  Notice how these rates are increasing.  Thus the function 
is not only increasing but increasing at an increasing rate.   A graph of 
this type of function is shown in Figure 1.24b.  These functions are 
normally referred to as growth functions. 
 
Case 2: 0 >  b >  1.  This function decreases as the domain values 
increase. This can be seen in the second table of Figure 1.24a.   This case 
of the exponential function also decreases at an increasing rate.  This can 
be seen by investigating the average rates of change.  Notice in the 
second table of Figure 1.24a how these rates are increasing.  Thus the 
function is not only decreasing but decreasing at an increasing rate.  
These functions are normally referred to as decay functions. 
 

A function is decreasing on an interval if )()( 21 xfxf >  whenever 21 xx <   

and 21, xx are in the interval. 

A function is increasing on an interval if )()( 21 xfxf <  whenever 21 xx <   

and 21 , xx are in the interval. 
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Case 3: b = 1.  This function equals 1 everywhere.  The average rate of 
change of this function will always be zero (Figure 1.24a) regardless of 
whether or not the domain values increase or decrease.  Since this case 
results in a constant function (Figure 1.24), we will not investigate this 
case any further in this section. 
 

**NOTE** We only consider values for b that are greater than or equal to 
zero.  Why?  Well, what happens when you raise a negative real number to a 
power?  If the exponent is an even integer, then the answer is a positive real 
number.  If the exponent is an odd integer, then the answer is a negative real 
number.  If the exponent is any non-integer real number, then the answer is a 
complex number.  In this course, we will focus on real-valued functions.  That 
is, we will concentrate on functions whose domains and ranges are both subsets 
of the real numbers. 

 
b = 2 b = .5 b = 1 

x f(x)=bx AVG 
RoC 

x f(x)=bx AVG 
RoC 

x f(x)=bx AVG 
RoC 

-2 0.250  -2 4.000  -2 1  
-1.5 0.354 0.207 -1.5 2.828 -2.343 -1.5 1 0 
-1 0.500 0.293 -1 2.000 -1.657 -1 1 0 

-0.5 0.707 0.414 -0.5 1.414 -1.172 -0.5 1 0 
0 1.000 0.586 0 1.000 -0.828 0 1 0 

0.5 1.414 0.828 0.5 0.707 -0.586 0.5 1 0 
1 2.000 1.172 1 0.500 -0.414 1 1 0 

1.5 2.828 1.657 1.5 0.354 -0.293 1.5 1 0 
2 4.000 2.343 

 

2 0.250 -0.207 

 

2 1 0 

Figure 1.24a:  Average Rates of Change for Exponential Functions (Cases 1-3) 
on Domain -2 <  x <  2 

 

Figure 1.24b:  Graphs Depicting Basic Exponential Functions 

Case 1:  Increasing at 
an Increasing Rate 

Case 2:  Decreasing at 
an Increasing Rate 

Case 3:  Constant 
Function (Rate of 

Change = 0) 
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Question 1 Plot graphs of each of the three cases for exponential functions, 
different from those shown in Figure 1.24b.  Evaluate the functions over the 
domain [-3, 3] for each case.  For Case 1, assume  b = 1.5, for Case 2, assume b 
= .4, and for Case 3, assume b = 1.  Identify the domain and range of each of 
these functions. 
 
 
1.6.3 The Generalized Exponential Function 
 
 

The graphical and associated word descriptions of the behavior of exponential 
functions provided above will prove very useful in your modeling efforts.  
However, it is important to recognize other forms of the exponential function and 
their patterns of behavior as well.  In this course, we will investigate the more 
generalized exponential function listed below. 

 
         (3) 
 
 
The three cases of the basic exponential function shown in Figure 1.24 share the 

property that the parameter a = 1 and that the parameter d = 0.  The 
parameters for a generalized exponential function (in a similar manner to that for 
the linear function) control the shape and location of its graph. 

 
Generalization 1.  We can shift any graph of a function upward or downward by 
adding a parameter to the function: 
 

( )y f x d= +  
 

If d is positive, we will shift or translate the function’s graph upward.  If d is 
negative, we will shift or translate the function’s graph downward.   Unique to 
exponential functions is that the parameter d also indicates the location of a 
horizontal asymptote.   

 
  
 

Generalization 2.  By changing the a parameter, we can flip the function about 
the horizontal asymptote, or line y = d.  We can also stretch and shrink the  
function vertically.  Table 1.8 shows the vertical stretch and shrink of an 

exponential function, xexf =)( .   
 
 
 
 
 

dabxf x +=)(

A vertical asymptote of a curve is a line ax =  where the values of the 
function f(x) approaches infinity as x approaches the undefined point a. 

A horizontal asymptote of a curve is a line Ly =  that the function f(x) 
approaches as x approaches infinity. 
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x xexf =)(  

“Base” Function 

xexf 10)( =  
Vertical Stretch 

xexf 10.0)( =  
Vertical Shrink 

-2 .1353 1.353 .01353 
-1 .3679 3.679 .03679 
0 1 10 .1 
1 2.7182 27.182 .27182 
2 7.389 73.89 .7389 

 
Table 1.8:  Tabular Representation of Vertical Stretching and Shrinking 

 
Note that the first column is the base function, the second includes a vertical 

stretch.  The a parameter is increased, so for each value of the independent 
variable, the value of the vertically stretched function is larger than that of the 
base function.  In the third column, we implement a vertical shrink by decreasing 
the value of the a parameter.  For each value of the independent variable, the 
function value is smaller. 

 
We can see the effect of changes made on the a parameter graphically, as well 

as in a table.  The upper left picture in Figure 1.25 is xexf =)( .  The upper right 
function shows the result of negating the function.  In addition, we can vertically 
stretch or shrink the graph of any function by increasing or decreasing the a 
parameter.  The bottom left function illustrates the effect of decreasing the value 
of the a parameter; the bottom right shows the effect of increasing the a 
parameter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.25:  Illustrating the Effect of Changing the a Parameter in the 
Exponential Function 
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Generalization 3.  The parameter b determines the shape of the function.  Recall 
the three cases of the exponential function illustrated in Figure 1.24a and b.  
Another illustration of the impact of the b parameter is shown in Figure 1.26. 

 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.26:  An Illustration of Generalizations 2 & 3. 
 

The first case, increasing at a decreasing rate, means that our finger will 
move up as we trace left to right on the upper left curve in Figure 1.26 
(increasing), but not as fast at the end as at the beginning.  Next, decreasing at a 
decreasing rate means when traced, our finger moves down, but we actually 
decrease faster at the end.  Let’s explain in terms of the average rate of change, a 
concept we discussed in the context of linear models.   

 
We see that the function in the upper right quadrant is decreasing; that is, 

the dependent variable is getting smaller as the independent variable increases.  
The next area to address is the rate at which the function is decreasing, an 
analysis of the rate of change.  In doing this, always move from left to right on 
the path of the function. 

 
First consider the ruler labeled “Step 1” in Figure 1.27, measuring the 

average rate of change between the points )5.7,1(  and )0.7,4( . 

661.
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  Next, consider the ruler labeled “Step 2” in Figure 1.27, measuring the 

average rate of change between the points (4, 7.0) and (7, 4.5). 
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Notice that -.833 <  -.166, therefore the average rate of change (or the 

slope) is decreasing and the function is decreasing at a decreasing rate. 

Exponential Function
(Impact of a and b

parameters)

Decreasing at 
an Increasing 

Rate

Increasing at 
an Increasing 

Rate

Increasing at 
a Decreasing 

Rate

Decreasing at 
a Decreasing 

Rate

a<0, 0<b<1

a>0, 0<b<1 a>0, b>1

a<0, b>1
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a<0, b>1
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Figure 1.27: Illustration of Decreasing at a Decreasing Rate. 

 
 We will use Figures 1.26 and 1.27 to describe many standard functions in the 
upcoming lessons, including exponential functions in this section. 
 

The box below summarizes the exponential properties we have discussed so 
far.  You should have a good understanding of each of these.  
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Properties of Exponential Functions of the form dabxf x +=)( : 
 

o If 1>a , and 

• 1>b , the function will increase at an increasing rate as the independent 
variable increases. 

• 10 << b , the function will decrease at an increasing rate as the 
independent variable increases. 

• 1=b , the function will remain constant an equal to the sum of the 
parameters a and d as the independent variable increases. 

 

o If 1<a , and 

• 1>b , the function will decrease at a decreasing rate as the independent 
variable increases. 

• 10 << b , the function will increase at a decreasing rate as the 
independent variable increases. 

• 1=b , the function will remain constant an equal to the sum of the 
parameters a and d as the independent variable increases. 
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You should also have a good understanding of the Law of Exponents which is 
summarized in the following box. 
 

 
 
 
 
 

 
 
 
 
 

 
You may want to take some time right now to navigate to the interactive 

website located at:  
 
http://www.dean.usma.edu/departments/math/MRCW/MA103/exponential/live graph.html 
 
(You can also link to this website through the MA-103 course webpage).  Once 
there, adjust the parameters to see how the graph changes.  Intuitively, we see 
that if the equation had the values a=1, d=0, then we are back to our simplest 
type of exponential function described in Equation (2). 
 
Question 2  In your own words, describe how changes in the parameters of the 
generalized exponential function affect its shape. 
 
Question 3  In Table 1.9 there are three sets of data that represent three different 
functions.  Which data comes from an exponential function? Can you identify the 
other types of functions from the data?  Do you need more information for the 
first two data sets? 
 

x y x y x y 
0 20.0000 0 20.0000 0 20.0000 
1 21.0000 1 21.0000 1 21.0000 
2 22.1000 2 22.0500 2 22.0000 
3 23.2775 3 23.1525 3 23.0000 
4 24.6425 4 24.3101 4 24.0000 
5 26.2650 

 

5 25.5256 

 

5 25.0000 

Table 1.9: Values for Question 33 

 

                                                 
3 This problem is from Functioning in the Real World, A Precalculus Experience by Gordon, Gordon,  
Tucker, and Siegel, pg. 83 

Law of Exponents for Exponential Functions: 

1) x y x ya a a+ =  

2) 
x

x y
y

a
a

a
− =  

3) ( )x y xya a=  

4) ( )x x xab a b=  



CHAPTER 1.  MATHEMATICAL MODELING   54 

1.6.4 Applications of the Generalized Exponential Function 
 

Example 1  Modeling the Growth of an Investment.   
Let’s discuss the growth of money in a traditional savings account.  If money 

in the account grew in a linear manner, the changes in the account from year to 
year, as we learned in Lesson 4, would all be the same (there would be a constant 
average rate of change).  The second column of Table 1.11 illustrates how a 
$1000 investment might actually grow in a savings account.  You can see in the 
third column, the average rate of change between each successive year is NOT 
constant and thus, the growth is NOT linear.  In fact, the average rates of 
change are increasing because the more money that is in the account, the more 
money there is to make additional interest.  The balance of the account can be 
modeled with a Case 1 exponential function where parameter a > 0 and 
parameter b > 1.   

 
Suppose your parents put money into a bank account for you after you 

graduated the sixth grade.  You are not sure what the interest rate is, but based 
upon old annual statements, you can see the growth that has occurred.  You 
would like to know how much will be in that account when you retire from the 
military after 20 years of service (23 years from now, year 7).   

 
 
 
 
 
 

 

 

 

Table 1.10: Average Rate of Change of an Exponential Function 
 
 
Step 1:  Transform the problem.  We are given a table of data, we must 

examine the table. 
 

• Define the variables: 
o Independent variable (input):  year 
o Dependent variable (output):  amount of money in account 

 

• Nature of the data:  Apply the quantitative measures of the nature 
of the data to gain an idea of which type of function may be most 
appropriate.  See Table 1.10. 

 
 Notice that the data are increasing, as is the rate; therefore, we need a 
function that is increasing at an increasing rate: a Case 1 exponential function.  
Let’s graph the data to verify our conjecture.  See Figure 1.28. 

 
 

Year Amount AVG RoC 
0 $1,000.00  
1 $1,051.27 51.27 
2 $1,105.17 53.90 
3 $1,161.83 56.66 
4 $1,221.40 59.57 
5 $1,284.03 62.62 
6 $1,349.86 65.83 
7 $1,419.07 69.21 
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Figure 1.28:  Scatterplot of Table 1.10 Data. 
 
 

 The data in Figure 1.28 seem to exhibit a linear pattern. Our quantitative 
measure of the nature of the data and our visual measure seem to conflict.  We 
will explore the two models that explain what appears to be going on in the data 
set:  the linear model (visual inspection) and exponential model (nature of the 
data).  We know that we will have to find the model that fits through the data 
best. 

• Assumptions 
o No money is withdrawn from the account 
o No additional deposits are made into the account 
o The data accurately represent what will happen to the 

population in the coming years. 
 

Our plan is to use the model development and evaluation techniques that 
we have used to this point in the course to find the best model to determine how 
much money we will have after any given year in the future. 

 
 Step 2.  Solve the problem using appropriate solution techniques.  To 

solve, we will develop a linear model and an exponential model, then compare the 
two to decide which is best.   

 

• Linear model development.  First, we’ll try the linear model.  In 
general, our linear model will be: 

 
dyearayearAmount += )()(  

 
Linear Model Parameter Estimation:  Using modeling skills developed 
to date, we need to estimate the parameters (a and d) for a linear 
model.   Let’s use the first and last data point to form two equations 
we can solve for the two unknown parameters.  The two equations 
follow:  

 

da
da
+=

+=
)7(1419.07

)0(1000
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 We see by inspection that the d parameter (y-intercept) is 1000.  We can use 
that information to solve for a. 
 

87.59
7

07.419
707.419

1000)7(1419.07

≈=

=
+=

a

a
a

 

 
The estimated model is: 

 

07.14191000|{:
}70|{:

1000)(87.59)(

≤≤
≤≤

+=

AmountAmountRange
yearyearDomain

yearyearAmount
 

 
 Overlaid with our data, the model is graphed in Figure 1.29. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.29: Investment Data Overlaid with Linear Model. 
 

 
Using the eyeball test to evaluate Figure 1.29, we see that the estimated 

linear model seems to be a pretty good fit to the data.  
 
 
Question 4  Calculate the Sum of Squared Error and the coefficient of 
determination for the linear model shown in Figure 1.29.  Use the two tests to 
determine the model’s “goodness of fit.” 
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• Exponential model development.  Now that we’ve developed a 
power model, it is time to develop our generalized exponential 
model, of the form: 

 

dabyearAmount x +=)(  
 

As we saw earlier in the example, each of the points seems 
representative.  It make sense to solve for all three parameters if we 
can, so we’ll use the first, last, and middle points to form three 
equations in three unknowns and let Mathematica do the work for 
us.  The three equations are:   
 

dab
dab
dab

+=

+=

+=

7

4

1

07.1419
40.1221
27.1051

 

 

 
 

Figure 1.30:  Using Mathematica to Solve for Three Parameters 
 

Using the solution to the systems of equations in Figure 1.30, yields the 
final model: 

          281732.0)05128.1(719.999)( += xyearAmount  
 

 
 

 
What if we encounter an example (there are many) where Mathematica 

cannot solve for three parameters simultaneously? 
  

Let’s assume a value for the b parameter to make the function intrinsically 
linear (in the form ax+d) and then solve for a and d.  For this example, we see 
that the rate at which the function is increasing is not significant, so we could 
assume a value for b  that is close to 1.  Let’s assume b = 1.01.  
 
 
 
 
 
 
 
 
  
 

A function is said to be intrinsically linear when it can be written in 
the form f(x) = ax+d.  (Notice the form of the exponential 
function, after a ‘b’ parameter is estimated and values substituted 
in for representative points) 
 

daxxfdada +=→+=→+= )()01.1(27.1051)01.1(27.1051 1  

07.14191000|{:
}70|{:

≤≤
≤≤
AmountAmountRange

yearyearDomain
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Use the second and last data points to form two equations to solve for the 
two unknown parameters: 
 

da
da

+=

+=
7

1

)01.1(07.1419
)01.1(27.1051

 

   
    

 
 
 
 

Figure 1.31:  Solving for Two Parameters in Mathematica 

  
Using the solution to the systems of equations in Figure 1.31, yields the 

final model: 
 

    26.4927)01.1(34.5919)( −= xyearAmount  
 

 
 
 

Let’s plot our exponential models, Figure 1.32, to see how well it appears 
to fit the data and how well it compares to the linear model we already plotted.   
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Figure 1.32: Investment Data Overlaid with Linear and Exponential Models 
 
 

Step 3.  Interpret the results of the solution.  All models appear to fit the 
data relatively well, but which is best?  Using the eyeball test, the exponential 
model1 seems to fit the data better than the estimated exponential model2 or 
the linear model.  Because of the scale of the graph, we cannot be precisely 
sure that the eyeball test, a qualitative (subjective) measure is accurate 

07.14191000|{:
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enough in this case.  We will verify our conjecture using each model’s sum of 
squared error and coefficient of determination.  See the results in Figure 1.33. 

 
 

Figure 1.33:  Computation of Linear and Exponential SSE and r2 

 
 

As expected, the exponential models have a lower SSE and a higher r2, 
and are therefore, a better fit to the data than the linear model.  Exponential 
model1 is better than the exponential model2 which is also to be expected since 
we estimated the parameter b  in the set-up of exponential model2. 

 
 

Question 5 Complete the reflect step of the modeling process for Example 1.  
Does the model you chose to have the best fit make sense based upon the number 
of parameters and your knowledge of the nature of investment data? 
 
 
Question 6 Complete a sensitivity analysis of the two estimated models.  Do 
your findings change significantly? 

Year Amount Linear Model
Mean 
Error

Squared 
Mean Error

Model 
Error

Squared 
Model Error

0 1000.00 1000.00 -209.55 43909.11 0.00 0.00 Linear
1 1051.27 1059.87 -158.28 25050.98 -8.60 73.96 a 59.87
2 1105.17 1119.74 -104.38 10894.14 -14.57 212.28 b
3 1161.83 1179.61 -47.71 2276.72 -17.78 316.13 c
4 1221.40 1239.48 11.86 140.54 -18.08 326.89 d 1000
5 1284.03 1299.35 74.49 5548.02 -15.32 234.70
6 1349.96 1359.22 140.42 19716.37 -9.26 85.75
7 1419.07 1419.09 209.53 43900.73 -0.02 0.00

Mean: 1209.55 SST: 151436.60 SSE: 1249.71
r^2: 0.99174763

Exponential 
Model1
1000.00 -199.06 39625.61 0.00 0.00 Expo1
1051.27 -147.79 21842.43 0.00 0.00 a 999.719
1105.16 -93.89 8815.68 0.01 0.00 b 1.05128
1161.82 -37.23 1386.21 0.01 0.00 c
1221.38 22.34 498.99 0.02 0.00 d 0.281732
1284.00 84.97 7219.59 0.03 0.00
1349.83 150.90 22770.26 0.13 0.02
1419.03 220.01 48403.59 0.04 0.00

Mean: 1199.06 SST: 150562.36 SSE: 0.02
r^2: 0.99999987

Exponential 
Model2
992.08 -203.45 41392.98 7.92 62.73 Expo2

1051.27 -152.18 23159.56 0.00 0.00 a 5919.34
1111.06 -98.28 9659.48 -5.89 34.68 b 1.01
1171.44 -41.62 1732.44 -9.61 92.39 c
1232.43 17.95 322.11 -11.03 121.64 d -4927.26
1294.03 80.58 6492.71 -10.00 99.92
1356.24 146.51 21464.40 -6.28 39.42
1419.07 215.62 46490.84 0.00 0.00

Mean: 1203.45 SST: 150714.53 SSE: 450.77
r^2: 0.99700912
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Example 2  Modeling Prozac in the Bloodstream 
Let’s now analyze decay functions by considering one of the most widely 

taken drugs to treat depression, Prozac.  If a person takes a certain single dose, it 
will eventually be eliminated from the bloodstream by the kidneys.  We can 
assume that during a given fixed time period, the kidneys will remove a certain 
percentage of the drug from the bloodstream.  In fact, it has been found that the 
kidneys remove one-fourth of the drug during any 24-hour period so that 75% of 
the drug will still remain.   

 
It is unhealthy for two different antidepressants to work in the body at the 

same time.  In fact, a person can have no more than 10mg of Prozac in their 
blood to safely begin another drug regimen.  Let’s assume that a person must 
change the prescription they are on from Prozac to another drug.  The 
pharmacist tested the patient to determine how much Prozac is currently in the 
blood.  The test revealed an amount of 60mg.  Given this initial amount of 
Prozac in the blood, it is your job to advise the pharmacist when to safely 
prescribe the new drug.   

 
Step 1:  Transform the problem.  We are given the rate at which Prozac is 

removed from the bloodstream (75% eliminated per day).  Therefore, we know 
that our b parameter is b = .75…a decaying exponential function.  We are 
also given the start point; at day zero, there is 60mg of Prozac in the blood. 

 

• Define the variables: 
o Independent variable (input):  time (days) 
o Dependent variable (output):  amount of Prozac in the 

blood 
 

• Assume:  For this example, we will assume that the parameter d = 
0 because after an infinite time period, the level of the drug in the 
blood will tend toward zero (i.e., there is a horizontal asymptote at 
y = 0 – recall earlier we mentioned that the d  parameter equates 
to the horizontal asymptote).  Therefore, our new exponential 
function becomes: 

0)( += tabtdruglevel      (4) 

 The goal of this problem is to find how many days it will take the Prozac 
to reach a safe level to administer the new drug, a level of 10mg.  Our plan will 
be to develop a model for Prozac being eliminated from the blood stream.  We 
can then iterate the function to see when the function drops below 10mg of 
Prozac in the bloodstream.   

 
Step 2.  Solve the problem using appropriate techniques.  Given that 

the initial dose is 60mg, and our horizontal asymptote is at t=0, we are 
able to solve for the a parameter as follows: 
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0

( )

(0) 60
60 (1)
60 .

tdruglevel t ab

druglevel ab
a
a

=

= =

=

=

 

And in general, the following function models the amount of Prozac in the 
bloodstream after t days, 

( ) 60(.75)tdruglevel t =      (5) 

 

 

Domain : { | 0 50} [0,50] (after 50days amount of drug is negligible)
Range : { | 0 60} [0,60].

t t
druglevel druglevel

≤ ≤ =

≤ ≤ =
 

Therefore, the drug after each 24-hour time period can be determined by 

1

2

(1) 60(.75)

(2) 60(.75) 60(.75)(.75)
...

druglevel

druglevel
etc

=

= =  

 

*Question 7  Using Equation (5), modeling the drug level in the bloodstream, 
determine how much remains at time=3, 4, and 5 days.  Determine how many 
milligrams of Prozac your body metabolizes between each successive day for days 
0 to 5.  What do you notice about the differences between the previous and 
successive drug levels?  

 

*Question 8  Utilizing the function above that models the amount of Prozac in 
the bloodstream, complete the following: 

a. Find the amount of Prozac in the bloodstream after one week.   
b. Estimate the half-life (the amount of time required to decrease the 

original amount by one half) of Prozac in the bloodstream. 
c. Estimate how long it takes until the level drops to 10mg. 

 

*Question 9 Equation (5) provided a function that yields drug level as a 
function of time.  You were able to iterate to find the answer to Question 7.  
What other technique could we use to determine the day at which Prozac level 
reached 10mg?  What answer did you get? 
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Question 10 Under ideal conditions, bacteria flourish in a given cadet’s sink.  
However, it is Tuesday afternoon and you are preparing for WAMI.  There are 
currently 1000 bacteria in your sink.  Your friend from another regiment 
measured how bacteria remained in his sink after he sprayed it at 2400 hours the 
night before his last WAMI.  Below is the table that he made. 
 
 
 
 
 
 
 
 
 
  a. How many bacteria would be left after 8 hours? 
 
  b. Given an inspection that starts at 0630, when would you have to spray 
to ensure there were no living bacteria in your sink at the beginning of 
inspection? 
 
  c. Your squad leader is a Chemistry major.  He begins to inspect your 
room and sees that there are 5 bacteria remaining in your sink.  When did you 
spray? 
 
 
Question 11  Go to the web or any other reference and find the population data 
of your favorite country (other than the US).  Plot the data, and predict the 
population for the years 2010, 2020 and 3000.  What type of model did you use?  
What assumptions did you make?  Discuss how good you think your predictions 
are and why?  
 
 
Question 12  The cost of a US first-class postage stamp was 29 cents in 1990 and 
was 39 cents in 2006; predict when the cost of this stamp will be $1 using an 
exponential model.  **HINT** You may want to scale the years so you are not 
raising a number to the 1990 power. 
 
 
Question 13   The population in Orange County, New York in 1990 was 307,647 
and increased to 341,367 in 2000.  Using this information and assuming an 
exponential model, what do you predict the population will be in 2010? 

Hour Bacteria
0 1000
1 500
2 250
3 125
4 62.5
5 31.25




