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1.7  Linear and Exponential Data Fitting 
 

1.7.1  The Nature of the Data 
 
When information or data is collected, it frequently contains some amount of 

error.  Therefore, data with an inherently linear relationship may not appear to 
fit this relationship perfectly.  This can also be said of data which truly have 
attributes lending them to the use of an exponential model.  In other words, 
although we have found the correct underlying relationship, sometimes our 
models may not appear to fit the data perfectly.  Other times, we may select a 
model which appears to fit the data well but it isn’t the best choice for 
prediction.  This lesson will challenge you to think about the data so we can 
begin choosing the best type of model, based upon the nature of the data.   
 

We’ve discussed the nature of the data previously in class.  Our intuition 
regarding the nature of the data is that it would be what the data would look 
like if there was no randomness associated with the collection, as if we lived in a 
“perfect world.”  However, we know that there is some degree of randomness in 
almost everything that happens in the world.  For example, a person may think 
that firing a bullet from a rifle exactly the same way will result in hitting the 
same spot on the target.  But, how many times do two bullets go through the 
same hole?  Not often.  Even if we take the human completely out of the loop 
and fire the rifle from mounts on the ground, the bullets won’t go through the 
same hole.  Why?  The answer is in the randomness that exists in the world, 
possibly:  wind resistance, tiny abnormalities in the bullet affecting trajectory, 
wear on the rifle barrel, percentage of powder igniting, and many more. 

 
The result is that the data we see most likely cannot be perfectly modeled 

with any reasonable model.  But, we know that we can model the trajectory of 
the bullet, determining where it will strike, with a parabolic function (thanks to 
Sir Isaac Newton), because we understand that the nature of the data is a 
parabolic trend.  

 
 
In addition to examining our knowledge of the nature of the data, we can 

apply quantitative tests to determine what we may expect the nature of the data 
to be. 

 

• Is the rate of change of the data constant (or near constant)? 
o If yes, try a linear model.   
 

• If not, then try an exponential model, unless the data follow a cycle, 
which we will address in later lessons. 

 

The nature of the data consists of the underlying attributes of the data 
which describe the pattern it will take both within and outside of the 
collected region. 
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1.7.2  Data Fitting 
 
In section 1.7.1, we discussed using the nature of the data to determine what 

type of model we will use to model data we are given.  It is now time to fully 
develop the model that we selected.  Finally, we will plot our models against the 
data and apply the “eyeball,” SSE, and r2 tests to determine if a particular model 
is good or not.   
  
 
Example 1  In doing some research on Mexico, we come across the data in Table 
1.11 regarding Mexico’s population.  We are interested in modeling the 
population as a function of time but need to determine which function will best 
fit the data.1 
 

Year 
Population 
(millions) 

2000 100 
2001 102 
2002 104.04 
2003 106.12 
2004 108.24 
2005 110.41 

Table 1.11: Population of Mexico 
 

Step 1:  Transform the problem.  We are given a table of data, we must 
examine the table. 

 

• Define the variables: 
o Independent variable (input):  year 
o Dependent variable (output):  population 

 

• Nature of the data:  Apply the quantitative measures of the nature 
of the data to gain an idea of which type of function may be most 
appropriate.  See Table 1.12. 

 
 

 
 
 
 
 
 
 
 
 

Table 1.12:  Quantitative Measure of the Nature of the Data 

                                                 
1 Problem adapted from Functions Modeling Change: a Preparation for Calculus, 3rd Edition. Connally, 
Hughes-Hallett, Gleason, et al., 2007. p. 23. 

Year Population 
(Millions)

Rate of 
Change

2000 100
2001 102 2
2002 104.04 2.04
2003 106.12 2.08
2004 108.24 2.12
2005 110.41 2.17

Mexico Population
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Notice that the data are increasing, as is the rate; therefore, we need a 
function that is increasing at an increasing rate, modeled by an exponential 
function.  Let’s graph the data to verify our conjecture.  See Figure 1.34. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.34:  Scatterplot of Table 1.11 Data. 

 
 
The data in Figure 1.34 seems to exhibit a linear pattern. But our 

quantitative measure of the nature of the data and our visual measure seem to 
conflict.  We know we will have to find the model that fits through the data best. 

 

• Assumptions 
o Based on the scatterplot in Figure 1.34, we will assume the 

plot of the data appears to increase at a constant rate.  
We’ll assume a linear model might be a good choice. 

o Since the data do not increase in a perfectly linear manner 
(or, the rate of change would be constant), we’ll also 
assume a generalized exponential model might model the 
data.  We select this because we can develop a model that 
incorporates a bend in the data and a vertical shift. 

o The data accurately represent what will happen to the 
population in the coming years. 

 
Our plan is to use the model development and evaluation techniques that we 

have used to this point in the course to find the best model to determine Mexican 
population in the future. 

 
 Step 2.  Solve the problem using appropriate solution techniques.  To 

solve, we will develop a linear and an exponential model, then evaluate the 
two to decide which is best.   
 

• Linear model development.  First, we’ll try the linear model.  In 
general, our linear model will be: 

 
dyearayearPopulation += )()(  
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• Linear Model Parameter Estimation:  Using modeling skills 
developed to date, we need to estimate the parameters (a and d) 
for a linear model.   To estimate two parameters, we need two 
data points that represent the data well.  

 
 
   
 

 

 
 

 
 
 

 

Figure 1.35: Determining Representative Data Points for Parameter Estimation 
 

 

• The apparent linear trend of the data, seen in Figure 1.35, 
indicates that any of the data will represent it well; therefore, we’ll 
select the first and last data points to estimate our parameters.  

 

• Now, as we have many times in the past, we’ll create two linear 
equations using the data points to estimate our parameter values.  
Our two equations are:   

 

da
da
+=

+=
)2005(41.110

)2000(100
 

  

 
 

Figure 1.36: Using Mathematica to Solve Two Simultaneous Linear Equations 

 
 

Using the solution from Figure 1.36 yields the final model: 
 

4064)(082.2)( −= yearyearPopulation  

41.110100|{:
}20052000|{:

≤≤
≤≤

populationpopulationRange
yearyearDomain
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The model is plotted in Figure 1.37; by visual inspection, it fits the data well.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.37: Mexican Population Data Overlaid with Linear Model 
 
 

• Exponential model development.  Now that we’ve developed a 
linear model, it is time to develop our generalized exponential 
model, of the form: 

 

dbayearPopulation year += )()(  
 

• As we saw earlier in the example, each of the points seems 
representative.  It make sense to solve for all three parameters if 
we can, so we’ll use the second, fourth, and sixth points to form 
three equations in three unknowns and let Mathematica do the 
work for us.  See Figure 1.38 for the results.   

 

• **NOTE**  The independent variable in the equation (year) is 
scaled by subtracting 2000 from each actual year value.  It is 
common practice to scale the independent variable when working 
with exponential functions because raising a number to the 2000th 
power is very often problematic. 

 

Figure 1.38:  Using Mathematica to Solve for Three Parameters 
 

• Since the b  parameter needs to be greater than 1 (to ensure an 
increasing exponential function), we choose the second solution 
returned by Mathematica: 851.97=a , 02042.1=b , and 

15059.2=d . 
Using the second solution from Figure 1.38, yields the final model: 
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Amount Linear Model

In[1]:= SolveA9102 a∗ b1 + d, 106.12 a∗ b3 +d, 110.41 a∗ b5 + d=, 8a, b, d<E

Out[1]= 88d → 2.15059, a → −97.851, b → −1.02042<, 8d → 2.15059, a → 97.851, b → 1.02042<<
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15059.2)02042.1(851.97)( += yearyearPopulation  

 
41.110100|{:

}50|{:
≤≤

≤≤
populationpopulationRange

yearyearDomain
 

 
The exponential model is plotted in Figure 1.39, to see how well it appears to 

fit the data.   
 

Figure 1.39: Mexican Population Data Overlaid with Exponential Model 
 
 

Step 3.  Interpret the results of the solution.  The estimated linear model 
certainly seems to fit the data as well as the estimated exponential model.  
Overall, the linear model seems to be our best model – it fits almost as well as 
the exponential and has one fewer parameter (it’s simpler).  Though it may 
not seem necessary to compute sum of squared error and r2 in this case, we do 
it anyway for two reasons.   
 

• Quantitative, objective justifications are useful to back-up 
qualitative, subjective observations.   

• Valuable practice in the computation of SSE is useful for cases 
that are not so clear cut. 

 
Recall from Section 1.5 that we compute SSE by using the following formula: 

2 2

1 1

ˆ( )
n n

i i i
i i

y y e
= =

− =∑ ∑ . 

 
Derive the error at each point by subtracting the predicted value from your 

model from the actual value of the data.  Square each of these values, summing 
these squared provides SSE.  See the results in Figure 1.40. 
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Figure 1.40:  Computation of Linear and Power Sum of Squared Error 

 
 

As anticipated through visual inspection, the linear and exponential models 

have similar SSE and 
2r .  In fact, the linear model accounts for nearly 99.94% of 

the variation in the data whereas the exponential model accounts for greater than 
99.99%. 

 
The nature of the data would appear to support an exponential model, but 

when we use the other tests at our disposal; we realize that we can use a simpler, 
two-parameter linear model instead of the more complicated three-parameter 
exponential model.  So, it seems both of our models are very good.  So, which do 
we use?  Good question!  Let’s see if we can determine what to do as we reflect. 
 

We have determined the following: The linear model would probably prove 
useful in extrapolating for a short time period either prior to 2000 or after 2005 
but wouldn’t be useful for the long-term, because it does not fit the nature of the 
data.  The problem is identifying an appropriate domain for our model.  How far 
out can we consider the linear model useful?   

 
This question is an important question that highlights the fact that modeling 

has components that are “science,” as in the development and evaluation of the 
models, and “art,” as in the interpretation of the models and their relevance over 
certain domains.  In fact, our final model may be a piecewise function that 
enables us to choose different functions over different ranges of the domain. 
 
 
Question 1 In Example 1, over what domain would a linear function be most 
appropriate?  An exponential function? 
 
 

Year Population Linear 
Model

Squared 
Mean Error SST Model Error Squared 

Model Error SSE

2000 100 100 26.368225 75.83 0.00000000 0.00000000 0.04572000 a 2.082
2001 102 102.082 9.828225 0.08200000 0.00672400 b
2002 104.04 104.164 1.199025 0.12400000 0.01537600 R-Sq c
2003 106.12 106.246 0.970225 0.12600000 0.01587600 0.99939709 d -4064
2004 108.24 108.328 9.641025 0.08800000 0.00774400
2005 110.41 110.41 27.825625 0.00000000 0.00000000

Mean: 105.14

Year Population Exponential 
Model

Squared 
Mean Error SST Model Error Squared 

Model Error SSE

0 100 100.00159 26.368225 75.83 0.00159000 0.00000253 0.00001203 a 97.851
1 102 101.9997074 9.828225 -0.00029258 0.00000009 b 1.02042
2 104.04 104.0386264 1.199025 -0.00137360 0.00000189 R-Sq c
3 106.12 106.1191801 0.970225 -0.00081990 0.00000067 0.99999984 d 2.15059
4 108.24 108.2422187 9.641025 0.00221871 0.00000492
5 110.41 110.4086098 27.825625 -0.00139023 0.00000193

Mean: 105.14
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Question 2  The following table contains data on the population of two countries 
in millions.  One of the countries experiences relatively constant growth between 
1950 and 2000 while the other does not.2 
 

a. Develop two models (one linear and one generalized exponential model) 
to predict each country’s population over time.  Outline your problem 
solving process ensuring you include your assumptions and parameter 
estimation process.  Discuss the fit of your models.   

 
b. Which of the two countries exhibits non-constant growth? 

 
c. Using the model you believe to be best for each country, estimate the 

populations in 1993.   
 

Year 1950 1960 1970 1980 1990 2000 
Country A 8.2 9.8 12.4 15.1 14.7 23.9 
Country B 7.5 9.9 12.5 14.9 17.2 19.2 

Population Data for Countries A and B 

 

Question 3 Go back to one of the models that you have worked with in class, 
the one you found most interesting.  Estimate the parameters of the model to 
achieve a better fit.  Communicate your results in terms of the steps you took to 
develop the model, evaluate the model, and conduct a sensitivity analysis. 

 

                                                 
2 Problem adapted from Functions Modeling Change: a Preparation for Calculus, 3rd Edition. Connally, 
Hughes-Hallett, Gleason, et al., 2007, p. 25. 
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Challenge Question.   
 

In Section 1.4, we considered data pertaining to the launch of the Space 
Shuttle Challenger.  This data, on the percent expansion of an o-ring, appeared 
to indicate a linear relationship between the surrounding temperature and the 
percent expansion.  Unfortunately, our attempts to model this data failed to 
identify that the space shuttle should not have launched.   
 

Now, let’s consider the nature of this data.  O-rings are made of rubber 
(picture an o-ring as a rubber band).  When heated, rubber expands allowing it 
to stretch beyond the expansion it would be capable of at room temperature but 
with a limitation - eventually, the rubber will break.  When cooled, rubber 
becomes brittle and is capable of very little expansion before breaking.  
Therefore, if we were to describe an o-ring’s expansion based on the temperature 
of its surroundings, we would realize that at low temperatures, the o-ring would 
not be capable of much expansion.  As the temperature increased, the o-ring 
would expand quickly but, over the long term, the o-ring would reach its 
maximum expansion and would eventually break.  Graphically, o-ring expansion 
would resemble something like the graph shown in Figure 1.41.  

 
 

 

Figure 1.41: Nature of the Data: O-ring Expansion 
 
 

Develop,  fully evaluate, and communicate a model that would effectively 
represent the nature of the data illustrated in Figure 1.41 and predict the 
explosion of the Challenger. 
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