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1.8 Generalized Power Function 
 
 
Power functions can be extremely useful models that describe many 

interesting phenomena in our world.  Shortly after the apple fell on his head, Sir 
Isaac Newton discovered that gravity could be represented and modeled using a 
power function, namely a quadratic function of the form y=x2. 

 
Recall our discussions of rates of change in sections 1.3 and 1.6.  Up until 

now, if the nature of the data we were presented with demonstrated a constant 
rate of change, we could use a two-parameter linear model.  If the data have 
curves in them (non-constant rate of change), we could use a three-parameter 
exponential function to model the data.  In this section, you will learn about 
another model that is useful in modeling data with curves – the four-parameter 
power function. 

 
 In the linear case, we saw that the rate of change was constant and its 
sign determined if the line was increasing or decreasing.  We will see many 
examples of power functions that increase or decrease and their rates of change 
that also increase or decrease.  Figure 1.42 catalogs the four possibilities of 
power functions and their corresponding changing rates.  Each of the pieces of 
the black circle represents a piece of a function.  The adjacent box explains the 
behavior that is graphically depicted by the corresponding segment, i.e., how 
the function and its rate of change are changing.  Use this diagram as a tool to 
help analyze new functions throughout this text.  **NOTE**  This is the same 
figure as Figure 1.26 in Section 1.6 on exponential functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.42: Graphs and rates of change. 
 

1.8.1 Three Cases of Power Functions 
 

We will consider three different cases of the power function  
 
              (1) 

. 
where x is the independent variable and b is a parameter that determines the 
shape of the power function.  Notice there is a distinct difference between the 
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shapes of the graphs when b is even or odd.  We will show each of these two 
standard functions in each of the three cases.  There are many forms of the 
power function other than the three that we will discuss, but all power functions 
are characterized by the independent variable being raised to a constant power. 
 

Case 1 ,b n=  where n is a positive integer 
 

The parabola 
2( )f x x=  

 
is a power function.  As characterized above, our independent variable is 
raised to a constant power (in this case, the power is 2).    

 
 

 

 

 

 

 

Figure 1.43: Plot of Power Function 2x  

 
Another example of Case 1 is the cubic function 
 

3)( xxf =  

which has parameter .3=b  
 

 

 

 

 

 

 

Figure 1.44: Plot of Power Function 3x  

 
Note that if b = 1 we have the function f(x) = x, which is linear.  Therefore, 

the linear function is a particular type of power function. 
 
Question 1   Plot x4 by hand.  How do the plots of x2, x3, and x4 compare to 
each other? What can you conclude about the effect of the b parameter on 
Equation 1?  
 
Question 2   What are the domain and range of functions that fall into Case 
1? 

-2 -1 1 2
x

1

2

3

4
x2

-2 -1 1 2
x

-5

5

x3



CHAPTER 1.  MATHEMATICAL MODELING        76 
 

Question 3   What can you say about the rates of change of the functions in 
Case 1 ? 
 
Question 4 The kinetic energy (KE) from a moving billiard or pool ball can be 
measured by the relationship: 

KE = 21
2

mv  

 
a. Given a constant mass, what does doubling the velocity (v) do to 

the amount of kinetic energy?   
 

b. How could you describe the rate of change of this function?   
 
 

An example of a function in Case 1 is the relationship for the area of a circle 

with radius r, .2rA π=   This relationship is an example of a power function 
where b=2, the radius, r, is the independent variable, and A or A(r) is the 
dependent variable. 
 

Thus far, we’ve considered the case where our exponent is a positive integer.  
We will discuss the two other cases that may prove useful in modeling.  
  

Case 2 1/ ,b n=  where n is a positive integer (e.g., 1/ 2( )f x x x= = ) 
 
This type of power function is frequently referred to as a root function.  

Root functions involve taking a root of the independent variable and exhibit one 
of the two general shapes shown in Figures 1.45 and 1.46.  

 
 
 
 
 
 
 
 
 
 

 

Figure 1.45: Plot of Power Function 2
1

xx =  
 
 
Power functions whose n values are even numbers like 2, 4, and 6 are called 

even root functions.  The domains of even root functions are limited to [0, )∞ .   
 

Question 5   How do the plots of 64 ,, xandxx  compare to each other? 
What are your conclusions with respect to their rates of change? 
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Figure 1.46: Plot of Power Function 3
1

3 xx =  
 
 
Power functions whose n values are odd numbers like 3, 5, and 7 are called 

odd root functions.  The domains of odd root functions consist of all real 
numbers.   

 

Question 6   How do the plots of 753 ,, xandxx compare to each other? 
What are your conclusions with respect to their rate of change? 
 
Case 3 ,b n=  where n is a negative integer 

This is known as a reciprocal function.  Its characteristic shape is a 
hyperbola as shown in Figures 1.47 and 1.48.  

 

-10 -5 5 10
x

-1.0

-0.5

0.5

1.0

1

x

    -10 -5 5 10
x

0.2

0.4

0.6

0.8

1

x2

 

Figure 1.47: Plot of Power Function 
11 −= x

x
 Figure 1.48: Plot of Power Function 
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Each of these two graphs have horizontal and vertical asymptotes that 

separate it from the previous cases.  The vertical asymptote is the y-axis or the 
line 0=x . 
 

The horizontal asymptote for each of these functions is the x-axis or .0=y  
 
Question 7 What are the domains and ranges of Case 3 power functions? 
 

Question 8 How do the plots of 53
1,1,1
x

and
xx

compare to each other?  What 

can you say about the rates of change of these functions on the different 
intervals in their domains? 
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Question 9 How do the plots of 642
1,1,1
x

and
xx

compare to each other?  What 

can you say about the rates of change of these functions on the different 
intervals in their domains? 
 
 

This function below is often used with a limited domain to describe real 
world phenomena.  It is Boyle’s Law from chemistry and physics which states 
that for a constant temperature, C, the volume of gas, V, is inversely 
proportional to the pressure, P.  

1( )
C

V P C P
P

−= =
o

o

 
 
 
Question 10 Using Figure 1.42, the circle diagram, give an example of a power 
or polynomial function and its domain that satisfies each of the four cases. 
 

1.6.3 The Generalized Power Function 
 

 Regardless of the type of function we’re working with (our readings have 
covered the linear, exponential, and power families), functions contain 
parameters or constant values that influence the shape and location of their 
graphs.  Experimentation with graphing in Mathematica should have resulted in 
some generalities regarding the b parameter for power functions.  However, 
most data that follows a power function trend does not go through the origin, so 
we find modeling with the form in equation (1) to be too restrictive.  We use 
the more general form 

( ) ( )bf x a x c d= + +  
 

where a, b, c, and d are parameters that can assist us in modeling data that 
follows a power trend.  We call this function the generalized power function. 
 

Question 11 Begin with the function 2)( axxf = .  Select a positive and negative 
whole number and decimal value for the a parameter.  What effect can you 
conclude that this parameter has upon the generalized power function? 
 

Question 12  Begin with the function 2)()( cxxf += .  Select a positive and 
negative whole number for the c parameter.  What effect can you conclude that 
this parameter has upon the generalized power function? 
 

Question 13 Begin with the function dxxf += 2)( .  Select a positive and 
negative whole number for the d parameter.  What effect can you conclude that 
this parameter has upon the generalized power function? 
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When b is a non-negative integer (Case 1), then the power 
function )(xf is also called a polynomial.  A polynomial function is a linear 
combination of power functions with non-negative integer powers.  They can all 
be written in the form: 

1 2
1 2 1 0( ) ...b b

b bf x a x a x a x a x a−
−= + + + + +  

 
where b is a non-negative integer.  The coefficients or numbers appearing before 
each term, a0, a1, a2,…, ab, are constants within the polynomial.   
 
For example,  

6443245434)6(3)( 233 −+−=+−= xxxxxf  
 
after expanding the polynomial.  So, the coefficients of the polynomial are 

,324,54,3 123 =−== aaa and .6440 −=a   However, not all polynomials can be 
written in the generalized power function form.  For example,  
 

1)( 23 +++= xxxxf  
 

cannot be written in the form ( ) ( )bf x a x c d= + + .  There are many applications 
that can be modeled using polynomials, but we will restrict our work to this 
generalized power function for polynomials.  We do this because the general 
polynomial  
 

1 2
1 2 1 0( ) ...b b

b bf x a x a x a x a x a−
−= + + + + +  

 
has b+1 parameters and would require b+1 points to find each parameter.  
Solving for so many parameters is time consuming and often leads to low 
predictive power (recall our discussion in section 1.5).   
 
 
1.8.4  The Role of Parameters 
 

Understanding the role each parameter plays in our families of functions 
contributes to our ability to create useable mathematical models.  Initially, 
understanding function parameters assists in the selection of an appropriate 
function family.   Next, knowledge of parameters enables us to improve our 
mathematical model which ultimately results in a model that can be used for 
prediction.    
 

When modeling using a power function, the first step is to choose an 
appropriate b value based on the general shape of the curve.  After estimating 
or assuming b, it is important to estimate the other parameters.  First, consider 
the role of the d parameter.  For linear functions, it describes the y-intercept.  If 

we assume that 0=x in the generalized power function, we get dacy b += , so d 
is not the y-intercept for a generalized power function (unless a or c is also 0).  
Look at the graphs in Figures 1.49 through 1.51 to see how the d parameter 
changes them. 
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Figure 1.49: Plot of Power Function 

x
1      Figure 1.50:  Plot of 31

+
x

     Figure 1.51: Plot of 21
−

x
 

 
Generalization 1.  We can shift any graph of a function upward or downward by 
adding a parameter to the function: 
 

( )y f x d= +  
 

If d is positive, we will shift or translate the function’s graph upward.  If d is 
negative, we will shift or translate the function’s graph downward.  **NOTE**  
This is also the same first generalization we made for the linear and exponential 
functions. 

 
Next, consider the c parameter.  In Figures 1.52-1.54, we see that this 

parameter creates a horizontal shift as opposed to the vertical shift of the d 

parameter.  In these figures, .3)3(,2)2(,)( −=−+=+= xxfxxfxxf   You 
may expect that a positive value of c will move the function to the right and a 
negative to the left.  Notice that the actual shift is opposite:  positive c values 
shift the function left and negative c values shift the function right.  
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Figure 1.52: Plot of x    Figure 1.53: Plot of 2+x      Figure 1.54: Plot of 3−x  
 

 
Generalization 2.  We can shift any graph of a function to the right or left by 
adding a parameter to the function as: 

( )y f x c= +  
 

If c is positive, we will shift or translate the function’s graph to the left.  
If c is negative, we will shift or translate the function’s graph to the right.  
 

 Estimating the a  parameter in dcxaxf ++= 2)()(  is not as easy as the 

other three parameters.  We often estimate the b parameter based on shape (s-
curve versus u-shaped, …), then estimate the c  and d  parameters using 
horizontal and vertical shifts, respectively (often using the coordinates of the 
first data point).  We can then solve for a using a representative point from the 
data that is different from the first data point. 
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Question 14 What happens if you change the ‘a’ parameter?  Like in the above 
examples, experiment with different values using Mathematica.  
 
 
Example 1 Case 1 of the Power Function.  Suppose a paratrooper jumps from 
a helicopter at a height of 1000 meters.  During his descent, he radios you and 
reports altitude.  Five seconds into his descent, he is at an altitude of 878 
meters.   

 
Sir Isaac Newton described freefall motion by a quadratic (raised to the 

second power) power function.  Using the data provided by the paratrooper, 
determine the specific power function that describes the paratrooper’s descent.   

 
REAL WORLD PROBLEM:  Model the paratrooper’s descent using a 

generalized power function. 
 
 Step 1.  Transform problem into a mathematical model.   
 

  a.  Given:  Generalized power function:  dctatAlt b ++= )()( , 2=b  

         The points )1000,0( and ).878,5(  

      Variable declaration:  )(tAlt is the altitude of the 
paratrooper after t seconds. 

 
  b.  Find:  Parameters a, b (given), c, d: the final model of Alt (t). 
 

c.  Solution Plan:  Use parameter estimation techniques to find b, 
c, and d and then use a representative point to find a. 

 
 Step 2.  Solve using appropriate solution techniques (algebraic 
manipulation). 
 
A good estimation for the c and d parameters are the x and y coordinates of the 
first data point, respectively.  Therefore, assume c = 0 and assume d = 1000.  
Our new function looks like 
 

.10001000)0()( 22 +=++= attatAlt  
 
To solve for a, we use another representative data point.  Let’s use the second 
point ).878,5(    

100088.4)(

88.4

8781000)5()5(

2

2

2

+−=

−=

=+=

ttAlt
s
ma

mmsaAlt

 

 
The domain of this model has a time restriction.  Because it doesn’t make 

sense to model earlier than our first recording, we will limit the lower bound of 
the independent value to zero seconds.  Furthermore, we need to limit the upper 
bound on our domain value because eventually the jumper will hit the ground.  
Once this happens, time will continue but our model will no longer make 
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reasonable predictions.  To see this, let’s try it.  What if we wanted to see what 
our model predicts 60 seconds into the paratroopers flight? 
 

2(60) 4.88(60) 1000 17568 1000 16568Alt m= − + = − + = −  
 

So, for what range of t should our model be valid?  It should work until the 
jumper hits the ground or has an altitude of zero.  Using this information, we 
can algebraically solve for the time when this happens.   

 
2

2

2

0 4.88( ) 1000

4.88 1000

204.82
14.315sec

t

t

t
t

= − +

=

=

= ±

 

 
Where does this leave us?  We previously established that the lower bound 

of our domain is zero, eliminating the -14.315 seconds.  Therefore, our domain 
consists of all times between 0 and 14.315 seconds and our range consists of 
values between 0 meters and 1000 meters. 
 
 Step 3.  Communicate and reflect upon results. 
 The paratrooper fell 1000 meters in 14.315 seconds according to our 
model.  This means that the paratrooper fell at nearly 70 meters per second on 
average or about 157 miles per hour.  This may seem fast, but this is close to 
the falling speed due to gravity.   
 
 
Question 15 What luck!  It turns out the paratrooper’s altimeter is digital and 
it recorded his jump.  The collected data are in Table 1.13 and are linked on the 
course website.  Using two new data points develop another function modeling 
the paratrooper’s decent.  How does your new model compare to your old?  
Which is better?  Why? 
 

 
Table 1.13: Altimeter Data on Paratrooper Jump 

 

Time 
(sec) 0 1 2 3 4 5 6 7 8 9 10 
Altitude 
(m) 1000 995.01 978.57 953.6 917.3 873.96 810.77 741.92 660.8 576.5 456 
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Example 2  Case 2 of the Power Function. Data have been collected on 
weightlifters’ body weights and their corresponding squatting, benching and 
dead-lifting strengths. We’d like to model weightlifter benching strength as a 
function of body weight. The data is provided in Table 1.14 and are linked on 
the course website.  
 
 

 

 

 

 

 

 

 

Table 1.14: Weightlifting Data 
  

 
REAL WORLD PROBLEM:  Model Weightlifting data 

 
 Step 1.  Transform problem into a mathematical model.   
 

a. Given:   Data on weightlifters ranging in weight from 
114 to 275 pounds.  A plot of the data in Figure 1.55 suggests the shape 
of an inverted parabola or perhaps a root function. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.55: Graph of Weightlifting Data 

 

  b. Find:  We are trying to model how much a weightlifter can 
bench given his or her body weight.  In essence, we would like to use our 
independent variable, Weight, to predict our dependent variable, Benching 
Strength.     
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 c.  Assume:  
 

Question 16 What must we assume to solve this problem? 
 
d. Solution Plan:  Since we are trying to model Benching 

Strength as a function of Body Weight, Body Weight is the independent 
variable and Benching Weight is the dependent variable.  In general, 
because our data exhibit a curve that increases at a decreasing rate, our 
model will be: 

dcWeightaWeightStrength n ++=
1

)()(  
 

Next, we’ll need to estimate values for the parameters (a, 1/b n=  
c, and d) of our root-function power model.   We can use three 
representative points to find the a, c, and d parameters after making an 
assumption about the b parameter.  Because we know the b parameter 

must be between zero and one, let’s assume .
2
1

=b  

 
 Step 2.  Solve using appropriate solution techniques (algebraic 
manipulation). 

 We assumed that ,
2
1

=b  now we need three representative data points to 

estimate the a, c and d parameters.  Using the second, fifth and eighth data 
points yield the following three equations: 
 

dca

dca

dca

++=

++=

++=

2
1

2
1

2
1

)220(510

)165(390

)123(245

 

 
Thus, after using Mathematica to solve for a, c and d, our model is  
 

9702.89)702.107(6363.39)( 2
1
+−= weightweightStrength . 

 
Its domain and range are: 
 

]359.785,180[}359.785180|{:
]400,114[}400114|{:

=≤≤
=≤≤

strengthstrengthRange
weightweightDomain

 

 
Certainly, these numbers are not exact but we are trying to identify that our 

model has limitations.  Here, we are saying that we believe our model is valid 
for individuals weighing between 114 and 400 lbs since those weighing less or 
more are unlikely to be lifters.  Also, we are saying there are limits on the 
amount a person can bench which depend on our domain constraints.  Perhaps 
you feel this upper value is high and would like to see it be lower.  That’s ok.  
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Sometimes models don’t have exact bounds on their domains and ranges or in 
the course of study you realize revision to your initial estimates is necessary.     
 

 Step 3.  Communicate and reflect upon results. 
Our calculations show that our model predicts our second, fifth and eighth 

data points.  This should be the case since these are the three data points we 
used to solve for the parameters.  Notice that the model goes through these 
points in Figure 1.56. 
 

Now that we have developed a model, we can use it to verify weightlifting 
strength within our data set; recall that we referred to this as interpolation.  
Often, a model which predicts well within the data is also useful outside of the 
collected range of data; recall that we referred to this as extrapolation.  
Therefore, we should use our model to predict a data point within the data and 
also one outside of the data to test how useable our model appears to be.   
 

946.7069702.89)702.107350(39.6363 )350(

999.3899702.89)702.107165(39.6363 )165(

2
1

2
1

=+−=

=+−=

Strength

Strength
 

 
Our model appears to predict fairly well for the given data but appears too 

high for prediction outside of the range of our data.  Figure 1.56 is a plot of our 
data with our model overlaid on the same axes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.56: Weightlifting Problem – Plot of Model and Data 
 

 
Question 17 Based on your weight, what does this model expect you to bench? 
 
 
Question 18 Based on the amount you can bench, what does this model predict 
you should weigh? 
 

Question 19 Do a sensitivity analysis on our assumption that 
2
1

=b to see how 

this affected our model.  Is the new b value a better representation of the data? 
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