
CHAPTER 1.  MATHEMATICAL MODELING   86 

1.9  Exponential and Power Function Data Fitting 
 
 
This section will further explore the methodology behind modeling a data set 

with exponential and power functions.  We will explore cases where we have no 
insight into the data as well as cases where the problem statements allow us to 
gain some predictive knowledge as to which model may fit the problem best. 
 
Example 1  Assume that you are a data analyst for a research company.  Your 
company receives contracts from numerous outside agencies that require an 
unbiased evaluation of data sets that they have collected.  In order to remain 
completely unbiased, you specify that you want to see their raw data – and only 
their raw data.  You are totally unaware of what agency you are working with, 
unaware of the experiment that the data was collected from, and unaware of any 
preconceived ideas of the model with which the contracted agency would like the 
data modeled.  The data you receive is represented in Table 1.15.  
 

x f(x) 
-2 0.02 
-1 0.08 
0 1.7 
1 2.9 
2 4.2 
3 7.4 
4 12.5 
5 21.4 
6 39.0 
7 57.2 
8 88.1 

Table 1.15: Example 1 (Raw Data) 
 

Step 1:  Transform the problem.  We are given a table of data, we must 
examine the table. 

 

• Define the variables: 
o Independent variable (input):  x 
o Dependent variable (output):  f(x) 

 

• Nature of the data:  Apply the quantitative measures of the nature 
of the data to gain an idea of which type of function may be most 
appropriate.  See Table 1.16. 
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x f(x) 
AVG 
RoC 

-2 0.02  
-1 0.08 0.06 
0 1.7 1.62 
1 2.9 1.2 
2 4.2 1.3 
3 7.4 3.2 
4 12.5 5.1 
5 21.4 8.9 
6 39.0 17.6 
7 57.2 18.2 
8 88.1 30.9 

 
Table 1.16:  Quantitative Measure of the Nature of the Data 

 
 Notice that the data are increasing, as is the rate.  Therefore, we need a 

function that is increasing at an increasing rate.  We may model these data by 
either an exponential or a power function.  Let’s graph the data to verify our 
conjecture.  See Figure 1.57. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.57:  Scatterplot of Table 1.12 Data. 

 
 

 The data in Figure 1.57 seems to exhibit a pattern consistent with either 
an exponential or a power function.  We know that we will have to find the 
model that fits through the data best.  Because we have no knowledge as to what 
the data may do outside of the domain of the data in the given table, it would be 
wise to find a “good” exponential model AND a “good” power model. By 
completing both models, we can recommend to the agency that contracted our 
services which model fits the experiment from which the data came. 
 
 
 

Example 1, Raw Data 
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• Assumptions 

o Using an exponential function model of the form dabxf x +=)( , 

we can assume that the parameter 0=d because there appears 
to be a horizontal asymptote at 0)( =xf . 

 
o Based on a power function model of the form 

dcxaxf b ++= )()( , a reasonable assumption seems to be that 
the vertex is at the first data point.  Because the first data point 
is left of the origin by two units we will assume 2=c .  Since the 
function value at the first data point is 0.02, we will assume 
that 02.0=d . 

 
Our plan is to use the model development and evaluation techniques that we 
have used up to this point in the course to find the best models (exponential and 
power) for the data in Table 1.16. 

 
 Step 2.  Solve the problem using appropriate solution techniques.  To 
solve, we will develop a “good” exponential and a “good” power model.  We 
will provide both options to our client. 
 

• Exponential model development.   
 

xabxModel =)(  
 

• Exponential Model Parameter Estimation:  Using modeling skills 
developed to date, we need to estimate the parameters (a and b) 
for an exponential model.   To estimate two parameters, we need 
two data points that represent the data well.  Let’s try the fourth 
and tenth points: )9.2,1( and )2.57,7( . 

 

• Using Mathematica to solve for a and b yields, 
 

 
 
 
 
 

 

• To ensure exponential growth, we need to choose a and b to be 
positive.  Therefore, our initial exponential model becomes: 

 
xxModel )643.1(764.1)( =  

    
)}(0|)({:

}|{:
xModelxModelRange

xxDomain
≤

ℜ∈
 

 
Figure 1.58 is a plot of the model, to see how well it appears to fit the data.   
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Figure 1.58: Table 1.16 Data Overlaid with Exponential Model 
 
 

• Power model development. 
 

2.0)2()(2 ++= bxaxModel  
 
 

• Power Model Parameter Estimation:  Using modeling skills 
developed to date, we need to estimate the parameters (a and b) 
for a power model.   To estimate two parameters, we need two 
data points that represent the data well.  Let’s try the same points 
that we used for the exponential model: )9.2,1( and )2.57,7( . 

 

• Using Mathematica to solve for a and b yields, 
 

 
 
 
 
 
 
 
 
 
 
 

• Note that this solution still shows parameter a in terms of 
parameter b, meaning we still must make an assumption for the b 
parameter.     

Example 1, Raw Data & Exponential Model
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• In this form, it is difficult to intuitively make a good estimation of 
what value b should take on.  However, if we consider the basic 
power function cases, we can make a solid estimation for b.  We see 
that the data increases more steeply than we would expect in a 
quadratic function.  The bottom of the “cup” is also more flat than 
we would expect in a quadratic, both characteristics of a function 
with a higher power.  Let’s assume that the parameter b = 3.  
Using the tenth point and b = 3 yields: 

 

0784.
9

)02.02.57(
02.0)27(2.57

3

3

≈
−

=

++=

a

a
 

• Therefore, our initial exponential model becomes: 
 

 02.0)2(0784.)(2 3 ++= xxModel  

  
)}(0|)({:

}|{:
xModelxModelRange

xxDomain
≤

ℜ∈
 

 
Let’s plot our models, Figure 1.59, to see how well they appear to fit the data.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.59: Table 1.12 Data Overlaid with Exponential & Power Models 
 
Step 3.  Interpret the results of the solution.  Both models fit the trend of the 
data.  The SSE for the exponential model is approximately 51.6 whereas the SSE 
for the power model is approximately 153.5.  Currently, the exponential model 
seems to be the better model.  Let’s refine each model as best we can to provide 
the client with the best possible model for each type of function.   
 
 By manually adjusting the parameters for the exponential and power models, 
both SSEs can be reduced.  With the exponential model, it seems that little can 
be done to lower SSE.  In fact, we can only make minor adjustments to the a and 
b parameters to make the model less steep.  The refined model is: 

Example 1, Raw Data and Models
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xxModel )635.1(76.1)( = . 

 
The power model also can be transformed only by a little.  If we make the 

curve steeper, it appears that it will fit the data a little better.  To do this, we 
can change the exponent from a 3 to a 4.  After doing that, we must decrease the 
a parameter because simply changing the b makes the curve too steep.  
Remember, refining models is an iterative process.  The refined power model is:   
 

02.0)2(00888.)(2 4 ++= xxModel . 
 

You can see that, especially with power and exponential models, if good 
estimations are made at the beginning of the modeling process, then small 
parameter adjustments may be all that are necessary to improve models. 

  
The refined exponential and power models have SSEs of approximately 50.04 

and 23.46, respectively.  The plot of both models follows. 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.60:  Comparison of Power and Exponential Models 
 

We have determined the following: both models fit the trend of the data for 
the domain within the data set and both models increase at an increasing rate as 
the domain values increase past the values in the data set.  The biggest difference 
in the models is for domain values that are less than -2.  The exponential model 
will continue to decrease toward 0 as the domain values become more negative 
whereas the power model will start to “turn up” as the domain values become 
more negative.  For domain values less than -2, the power model will become the 
reflection of the values greater than -2 about the line 2−=x . Does this 
consideration affect your decision on which model to recommend?  If you know 
where the data came from it might; if there were possibly negative values less 
than two then you would have to consider if the corresponding y values increased 
or decreased. 

 
The two models that we developed appear to be good models, but are they 

the best possible models?  Do they have the minimum possible SSE?  The next 
subsection will help us to answer that very question! 

Example 1, Raw Data and Models
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The data for the following question is also linked on the course website. 
 
Question 1 Estimate your best possible exponential and power models for the 
following average salary data for professional basketball players in the years 
1984-2004.  Which model better represents the nature of the data?  Is either 
model better for extrapolating outside of the domain of the data?  Explain your 
conclusions. 
 

Year AVG Salary 
1984-85 $330,000 
1985-86 $382,000 
1986-87 $431,000 
1987-88 $502,000 
1988-89 $575,000 
1989-90 $717,000 
1990-91 $927,000 
1991-92 $1,100,000 
1992-93 $1,300,000 
1993-94 $1,500,000 
1994-95 $1,800,000 
1995-96 $2,000,000 
1996-97 $2,300,000 
1997-98 $2,600,000 
1998-99 $3,000,000 
1999-2000 $3,600,000 
2000-01 $4,200,000 
2001-02 $4,500,000 
2002-03 $4,546,000 
2003-04 $4,917,000 

Table 1.17:  NBA Salary Data 

 

1.9.1 Minimizing Sum of Squared Error 
   
We have discovered a measure to quantify how far your model deviates from 

the actual data, the Sum of Squared Error.  Since can quantify a model’s 
“goodness,” it is natural to want to develop the best possible model.  Let’s use 
technology to help us find better models, more quickly than we could find 
through trial and error.   
 

Previously, we were intent on finding a model that predicted the value of the 
dependent variable of a situation, given the value of the independent variable.  
The models we have been exploring in this section resulted in the fitting of a data 
set with the following two models: 

 
   

 
 
 02.0)2(00888.)(2:

)635.1(76.1)(:
4 ++=

=

xxModelPowerModel
xModellModelExponentia

x
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Using the techniques mentioned earlier in this section, we determined the SSE 

of the exponential model to be about 50.04 and the power model to be about 
23.46 (feel free to calculate this yourself, for additional practice).  Since SSE is a 
relative measure, we also know that the power model we estimated appears to be 
a better model than the exponential; it certainly fits the data better over the 
domain of the data set.  Are we done?  Is this good enough?  Can we do better?   

 
You could probably continue to adjust the parameter values parameters to 

get smaller and smaller SSE values, but this would be tedious and we would not 
know if we truly had the best combination of parameter values to call it the 
“BEST” model.   As it turns out, we have a powerful ally in our quest to find a 
low SSE in Excel.  This ally is a tools add-in called Solver.  What does Solver do 
you ask?  Well… it solves!  (If you dig deep into the help files of Excel, you find 
that it uses something called the Simplex method to solve/optimize linear 
equations and a reduced gradient algorithm to solve/optimize non-linear 
equations – but that is a touch beyond the scope of this course).     
 

Before we begin to use Solver, we must first load it onto your laptop.  To load 
Solver, you must first open up Excel.  In your Tools pull down menu, select Add-
Ins.  Another screen will appear with several options as to which Add-In you 
wish to install.  You must select the Solver Add-In as shown in Figure 1.61.  
Ensure you also select the first Add-in, the Analysis ToolPak. 
 

 
Figure 1.61: Add-In Dialog Box 

 
Once we have Solver loaded, we can work on the problem at hand, that is, 

finding the “BEST” or minimum SSE.   
 

In the Tools menu, you now have an option to run Solver.  When you select 
this application, you get the Solver dialog box, shown in Figure 1.62.   
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Figure 1.62: Solver Dialog Box 
 

When you were adjusting the parameter values, what was your goal?  To 
minimize the SSE, right?  Solver’s first input is to set the target cell.  The target 
cell is the cell that you want to minimize, maximize, or go to a specific value.  In 
this case, we wish to minimize the cell that contains the SSE.  As a matter of 
practice, do not have Solver attempt to achieve a value of 0, this is most likely 
an unachievable goal. 
 

When you were adjusting the parameter values to get a low SSE, you were 
changing specific cells to help you achieve that goal.  In order for Solver to find a 
“best” solution, we must tell it which cells on the spreadsheet it can change in 
order to find the minimum SSE.  In this case, we want to allow Solver to change 
the parameter values.  Now we just need to tell it to Solve.  You may notice that 
in Figure 1.64, there is a $ before each reference in the Solver parameter box.  
Take some time to look up absolute referencing in the Excel help files to Figure 
out what this means.  Your use of absolute referencing is vitally important to 
your modeling efforts. 
 

Solver will usually find its best solution quite quickly.  Before Solver writes 
the solution it obtained onto your spreadsheet, you will be asked if you want to 
change to the new solution that was just obtained, or restore the original values 
with which you started. For this example, we will accept the Solver values.  See 
Figure 1.63 for the better exponential solution.  Our eyeball test shows that that 
the final model appears to be a closer fit to the data.  Note that the already small 
SSE was cut by more than two-thirds.  Both of our model evaluation tests agree:  
the final model fits the data better than the estimated model. 
 

Allows Solver to
change parameters

Allows Solver to
change parameters
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Figure 1.63: Model Post-Solver 
 

After using Solver, the exponential model of best fit is:  
 

 
 
 
        

 
 

Are we done?  Can we do better with our model?  Run Solver again to see if 
it results in an even more refined answer.  Occasionally, with models that are a 
little more complex, Solver will not always find an optimal solution.  It is best to 
give Solver a couple of chances to see if it “converges” to an answer within its 
specified tolerance.  Another important point is that often, Solver needs initial 
parameter values that are reasonable before it can optimize.  
 

Since starting with different parameter values may result in different SSEs for 
complex models, care should be taken in selecting the initial start or “guess” 
values.  You should select start values that allow a reasonably good fit between 
your model and the data which is why the parameter estimation techniques 
you’ve been taught thus far are of vital importance.  In other words, if you put 
“garbage” in, you get “garbage” out. 

 
The data for all of the following problems are linked on the course website. 

 

}1.880|{:
}82|{:
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yyRange
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xModel x
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Question 2   Develop a best fit model for the power function modeled in 
Example 1.  **HINT**  Do not allow Solver to optimize the b parameter, the 
exponent.  The result will be a decimal (root) function which will provide 
undefined answers for negative values of (x+c).  You may manually change the 
exponent, say, from a 3 to a 4.  Is the power model or exponential better?  Why? 
 
Question 3 The following table represents the average life expectancy for 
females in the United States1 since 1900.  Model the data with an exponential 
and power model.  Which model best reflects the trend of the data for the 20th 
century?  Which model is better for extrapolating female life expectancies into 
the 21st century?  Explain. 
 

Year 1900 1909 1919 1929 1939 1949 1959 1969 1979 1989 2002
Life Expectancy 
(US Females) 50.7 53.2 57.4 60.9 65.9 71 73.2 74.6 77.6 78.8 79.9

 
 

*Question 4  LoggerPro, a computer-based data collection tool used by the 
Mathematics Department at USMA, collected the following potential 
measurements within a capacitor.  If you are interested in what a capacitor is 
and how it works, check out http://electronics.howstuffworks.com/capacitor.htm.  

Model the data with an exponential and power model.  Which model best fits 
the data within the specified domain?  Which model do you think would be best 
to extrapolate data for domain values that are greater than those provided?  
Explain. 

Time (s) Potential (V) Time (s) Potential (V) Time (s) Potential (V) 

0 1.5995 30 0.2271 60 0.0464 

2 1.4286 32 0.2027 62 0.0415 

4 1.2527 34 0.1783 64 0.0317 

6 1.0867 36 0.1587 66 0.0317 

8 0.9499 38 0.1441 68 0.0269 

10 0.8327 40 0.1197 70 0.0269 

12 0.7350 42 0.1148 72 0.0366 

14 0.6374 44 0.1001 74 0.0220 

16 0.5592 46 0.0904 76 0.0220 

18 0.4957 48 0.0855 78 0.0317 

20 0.4322 50 0.0708 80 0.0269 

22 0.3785 52 0.0659 82 0.0269 

24 0.3346 54 0.0562 84 0.0171 

26 0.2906 56 0.0611 86 0.0269 

28 0.2662 

 

58 0.0513 

 

88 0.0220 

 

 

                                                 
1 Source: <http://www.ncseonline.org/nle/crsreports/05mar/RL32792.pdf> 




