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MEMORANDUM FOR MA103 Students, Department of Mathematics, USMA 
 
SUBJECT:  MA 103 Program Director’s Memorandum 
  
 
1. MA103 is a 4.0 credit hour course and therefore, does not follow the Day 1 / Day 2 schedule of a 3.0 
credit hour course.  The course calendar can be found by navigating through the Course Admin link on 
the MA103 website (http://www.dean.usma.edu/math/courses/MA103/index.htm).  In this course, you 
have an opportunity to learn what mathematical modeling is and how powerful the mathematical 
modeling you learn can be.  You may or may not become a mathematician or an engineer.  But your 
studies in this course will enhance your ability to think critically, a skill that can and will help you in any 
field or profession.  The material that you will study in MA103 is organized into five blocks: 

a. Problems solving and modeling with continuous functions (Block I)  
b. Modeling with Discrete Dynamical Systems (Block II) 
c. Matrix operations and solutions to systems of equations (Block III) 
d. Modeling with systems of Discrete Dynamical Systems (Block IV)    
e. Continuous change (Block V)   

 
2. Through hard work in each of the blocks above, you will become more successful students and 
learners in the following five areas: 
 

a. Base of knowledge.  You will learn several problem solving techniques in order to formulate and 
structure powerful mathematical models that can help you do many things.  In particular, the experience 
gained in developing mathematical models in this course will help you answer many interesting questions 
like what savings plan do I need to begin in order to become a millionaire by a desired age, and how can I 
manipulate an image on my computer like those in many high tech movies.  
 

b. Technology.  You will have numerous opportunities to use powerful software programs to 
enhance your capability to investigate possible solutions of the mathematical models that you develop in 
the course.  Specifically, you will become competent in the basic commands of a computer algebra 
system (Mathematica) and of a computer spreadsheet (Excel) in order to make important predictions 
about things in every day life that you are concerned about. 

 
c. Communication.  Being a good communicator is one of the most important characteristics of 

being a great leader.  The fundamentals in successfully conveying how you want the troops under your 
command to perform an essential task and in describing your thought process in solving a mathematics 
problem are the same.  All leaders must be able to clearly articulate their thoughts. You will have many 
opportunities to improve your communication skills both verbally and in writing.  These opportunities 
include board presentations, various writing assignments, and the preparation of a technical report. 
 

d. Confident and competent problems solvers.  You will develop modeling and problem  
solving abilities through in-class experiences, homework exercises, and a group project.  These events 
will require you to analyze real world problems, make critical assumptions, model the problem, solve the 
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model, and then interpret your results.  Being able to do these things will help you in becoming more 
confident and competent solvers of all types of problems. 

 
e. Develop habits of mind.  Some key components of habits of mind that you will become better at 

are: creativity, work ethic, thinking interdependently, critical thinking, lifelong learning, and curiosity.  
You can certainly reach a higher potential if all of the elements are incorporated and pursued 
simultaneously.  Strategies will be implemented in this course that promote and develop each of these for 
you.  Ultimately, you will be introduced to the importance of life long learning and will be encouraged to 
learn how you best learn and to develop good study habits.   
 
3.   You must take responsibility for your own learning and participate as an active learner.  To realize the 
goals above, you must do several things:   
 

 • Success in this course depends heavily on your daily preparation.  Dedicate the time required for 
success – we have designed this course so that the average student can succeed with between 1-2 hours 
of daily preparation. If you habitually prepare less than this, your understanding and performance may 
measurably suffer. 

 • Come prepared for class with worked or attempted problems, understanding, and questions.  Come 
to class knowing what you don’t know so that you can ask questions.  Unless otherwise directed by 
your instructor, you are responsible for the assigned readings and problems prior to coming to class. 

  • Participate in the instruction and discussion – this is your education; take charge! 

  • Seek assistance when needed – from the text, your classmates, or your instructor.  We have some of 
the most professional and caring instructors teaching our course.  Although they want you to succeed, 
they cannot learn for you.  

 
4.  Course Evaluation Plan:  Your performance in this course will be evaluated both in and out of class.  
Out of class efforts consist of homework assignments and projects.  In-class assessments consist of 
written exercises, presentations, Written Partial Reviews (WPRs), and a comprehensive final 
examination.  To evaluate your progress in reaching the goals in paragraph 3 (and to provide you with 
feedback on your learning), we will have the following assessments: 

 
Event         Points  Percentage 

     2 Written Partial Reviews (WPR)     500   25.0 % 
     2 Course Wide Quizzes        250   12.5% 
     1 Term End Examination (TEE)*       500   25.0 % 

1 Fundamental Concepts Exam         100   5.0 % 
     1 Project           200   10.0 % 
     1 Course wide homework       100   5.0 % 
    Instructor Points               350   17.5 %            
    Total Points          2000  100 % 
 
 
*A score of less than 50% on the TEE (regardless of final course average) could result in course failure. 
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8.  I think you will find this course interesting, very applicable, and enjoyable.  On behalf of all the 
instructors that teach this course, welcome to MA103, your first course in the Department of 
Mathematical Sciences.  Good luck this semester! 

 
 
 

//original signed// 
                      GERALD C. KOBYLSKI 
                      LTC, EN 
                      Program Director 
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Course Introduction 
 
The purpose of the USMA Department of Mathematical Sciences core program is to provide 
each cadet a broad mathematical education emphasizing intellectual discipline, mastery of 
reasoning, practical applications, and the role of mathematics in society. 
Our goal is a mathematics program that develops habits of mind for effective problem solving 
by applying mathematical knowledge to formulate and validate while leveraging the power of 
technology to calculate and investigate. The course you are enrolled in presents a variety of 
mathematical tools to help you critically evaluate a problem to come to a logical conclusion. 
Specifically, the goals of the course are focused in five areas; you will revisit each of these five 
areas in all four math course you take at USMA. 
 

• Base of knowledge.  You will learn several problem solving techniques in order to 
formulate and structure powerful mathematical models that can help you do many 
things.  In particular, the experience gained in developing mathematical models in this 
course will help you answer many interesting questions like what savings plan do I need 
to begin in order to become a millionaire by a desired age, and how can I manipulate an 
image on my computer like those in many high tech movies.  

 

• Technology.  You will have numerous opportunities to use powerful software programs 
to enhance your capability to investigate possible solutions of the mathematical models 
that you develop in the course.  Specifically, you will become competent in the basic 
commands of a computer algebra system (Mathematica) and of a computer spreadsheet 
(Excel) in order to make important predictions about things in every day life that you 
are concerned about. 

 

• Communication.  Being a good communicator is one of the most important 
characteristics of being a great leader.  The fundamentals in successfully conveying how 
you want the troops under your command to perform an essential task and in describing 
your thought process in solving a mathematics problem are the same.  All leaders must 
be able to clearly articulate their thoughts. You will have many opportunities to improve 
your communication skills both verbally and in writing.  These opportunities include 
board presentations, various writing assignments, and the preparation of a technical 
report. 

 

• Confident and competent problems solvers.  You will develop modeling and problem 
solving abilities through in-class experiences, homework exercises, and a group project.  
These events will require you to analyze real world problems, make critical assumptions, 
model the problem, solve the model, and then interpret your results.  Being able to do 
these things will help you in becoming more confident and competent solvers of all types 
of problems. 

 

• Develop habits of mind.  Some key components of habits of mind that you will become 
better at are: creativity, work ethic, thinking interdependently, critical thinking, lifelong 
learning, and curiosity.  You can certainly reach a higher potential if all of the elements 
are incorporated and pursued simultaneously.  Strategies will be implemented in this 
course that promote and develop each of these for you.  Ultimately, you will be 
introduced to the importance of life long learning and will be encouraged to learn how 
you best learn and to develop good study habits.   

 
You must take responsibility for your own learning and participate as an active learner.  To 

realize the goals above, you must do several things:   
 

 • Success in this course depends heavily on your daily preparation.  Dedicate the time 
required for success – we have designed this course so that the average student can succeed 
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with between 1-2 hours of daily preparation. If you habitually prepare less than this, your 
understanding and performance may measurably suffer. 

 • Come prepared for class with worked or attempted problems, understanding, and 
questions.  Come to class knowing what you don’t know so that you can ask questions.  
Unless otherwise directed by your instructor, you are responsible for the assigned readings and 
problems prior to coming to class. 

  • Participate in the instruction and discussion – this is your education; take charge! 

  • Seek assistance when needed – from the text, your classmates, or your instructor.  We have 
some of the most professional and caring instructors teaching our course.  Although they want 
you to succeed, they cannot learn for you.  

 
 Since the material covered in this course spans many topics from data fitting to the 
beginnings of Calculus, no single text is currently available to comprehensively cover the 
material. Professors in the USMA Department of Mathematical Sciences have written this 
reference designed specifically for this course. This text is also posted by lesson on the MA103 
website at http://www.dean.usma.edu/math/courses/MA103/index.htm.  You will want to use 
the online text frequently in order to access the many interactive websites we have developed for 
you. One of our goals in writing this text is to motivate you to read and understand the 
material in the textbook. With this in mind, this text is written in a very casual tone that we 
hope you will enjoy and appreciate. 
 

The following professors have contributed to the development of this text: 
 

Amanda Beecher     Peter Charbonneau 
Amy H. Erickson      Andrew Glen 
Alex Heidenberg      Michelle Isenhour 
Heather Jackson      Gerald Kobylski 
Joseph Lindquist      Shawn McMurran 
Kerry Moores       Jack Picciuto 
Jonathan Roginski     Don Small 
Frank Wattenberg 

 
You have also received the text Calculus Early Transcendentals by James Stewart.  You will 
use this text during the course both as a primary and secondary reference in order to make 
connections to Calculus throughout the course. This text will be the primary reference in 
MA104 Differential Calculus and MA205 Integral Calculus, your next two courses in the math 
sequence at USMA. 

 
 
 



A mathematical model is a construct (e.g., a function or equation) that is 
designed to predict the behavior of a system. 

Chapter 1 
 

0BMathematical Modeling 
 

1.1 1BIntroduction 
 

1.1.1 2BA Mathematical Model 
This course and book focus on the use of the power of mathematics to solve real 

world problems that are important and often urgent.  The central concept of this book 
is mathematical modeling.  A discussion of mathematical modeling would be incomplete 
without first defining what a mathematical model is.  A mathematical model is a 
construct (e.g., a function or equation) that is designed to predict the behavior of a 
system.  Because assumptions usually must be made, a model usually is an idealization 
of the actual system it represents.  Certainly, all models have limitations.  In fact, Dr. 
George Box, one of the most prominent statisticians of the 20th century, is credited with 
having said “all models are wrong – but some are useful.”F

1  
 
 
 
 

 
 

Mathematical models can be used to solve problems in many different kinds of 
situations.  For example, they can be used to predict how a population may grow, 
estimate life expectancy, or determine how much a manufacturer should charge for a 
product.   

 
It is possible to use mathematical models to represent physical phenomena.  For 

example, many people enjoy playing video games, such as Super Swing Golf, available 
for the Nintendo WiiTM gaming system.  The game’s software detects your movements 
and uses a mathematical model that may consider such factors as the speed of your 
swing, your hand-eye coordination, the composition of the ball and club you selected, 
the density of the air, wind speed, the Coriolis Effect, and many other factors to 
represent the movement in your living room on the game’s console.    

 
Models are not only good for games; they are used in the military and business 

worlds to increase safety and save both time and money.  Aircraft 
designers use mathematical models to predict how design 
modifications may affect handling and aerodynamic properties.  The 
use of these models limits the amount of money the manufacturer 
has to spend on damaged aircraft and pilot flight hours.  More 
importantly, pilot and crew exposure to dangerous situations is decreased.   
 

                                                 
1Box, George. E. P. Robustness in the Strategy of Scientific Model Building. In R. L. Launer, and G. N. 
Wilkinson, (eds.) Robustness in Statistics. New York: Academic Press 
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1.1.2 Problem Solving Processes 
As problem solvers, we all have our own different levels of expertise and experience. 

Many problems appear complex or unsolvable at first glance – and perhaps some are.  
We can, however, always gain greater insight about a problem. But how? What are the 
steps?  Where is the template that you can apply?  There are many well-known 
methods or processes to solve problems. Perhaps you recall some type of process that 
you used in high school to solve problems. Maybe you have been using a method to 
tackle a problem, but didn’t call it a process.  Our minds often break up a problem into 
manageable steps to help us arrive at a logical conclusion. A problem solving process 
can help structure our thoughts as we solve the problem. Using a process can help 
ensure that we do not leave out crucial information and that we do consider all 
alternatives. 
 

A problem solving process often used in the military is known as the Military 
Decision Making Process (MDMP). You will see more of it in your USMA military 
science courses as well as many future military courses during your career. The MDMP 
(Figure 1.1) illustrates the way military officers go from receiving a mission from a 
higher authority to execution of the mission at their level.   
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You will encounter another problem solving process next year in physics, shown in 
Table 1.1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

The problem solving process that we will highlight combines the process developed 
by Dr. George Polya in his book, UHow to Solve it,U and the process developed by the 
USMA Chemistry Department, known as UGUiven, UFUind, UPUlan, USUolve (GFPS).  This 
process is described below. 
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1. Given.  Understanding what is given in the problem is the first step in solving the 
problem. 

• What is known? 
• What is unknown? 
• Define the variables of interest.   
• What assumptions must be made about the unknowns to solve the problem?  

Remember:  all assumptions must be valid and necessary. 
 Valid:  The assumption is accurate (e.g., assuming that a parabola would 

be an appropriate model to describe the path of a punted football).  
 Necessary:  The assumption is required for the problem (e.g., not “the golf 

ball is orange” if we are determining how far Tiger Woods can drive a 
ball). 

• Visualize the situation and draw a picture, if possible. 
• Identify the units to be used throughout the problem. 

 
2. Find. 

• What do we need to find to solve the problem? 
 
3. Plan.  Develop an idea of what solution techniques will be most appropriate in the 
problem and how you will apply them. 

• Have you worked this problem or a similar problem before?  Your previous 
solution process may help this time, too. 

• If necessary, break the problem into smaller parts. 
• Ensure you account for all the important information in the problem – do not 

disregard important data or an important condition. 
• Identify the fundamental concepts and tools needed to solve the problem. 
• Identify the steps you will follow to solve the problem. 
• Determine the role of technology in your solution process. 
• Write down an estimated answer. 

 
4. Solve. 

• Carry out the solution plan.  Check each step! 
 
5. Reflect. 

• Examine the solution obtained.  Does it make sense?  Is it close to your estimate?  
If not, why? 

• Ensure the units are correct. 
• Ensure the answer has an appropriate number of significant digits. 
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1.1.3 4BMathematical Modeling  

 In section 1.1.1 we defined what a mathematical model is.  Mathematical modeling 
then is the art of creating mathematical models.  It is more than just creating a function 
or a model.  Mathematical modeling incorporates all of the key elements of problems 
solving and is iterative in nature.  Figure 1.2 shows the incorporation of the problem 
solving elements above into the iterative modeling process that we will use throughout 
this course.   
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1.2:  The Mathematical Modeling Triangle 

  
Step 1 (Transforming the Real World Problem).  Before developing the model, a 

thorough understanding of the problem at hand must be gained.  Understand the root of 
the actual problem, not the symptoms of the problem.  Know what is given and what 
you need to find.  When this understanding is achieved, transform the problem into a 
mathematical model that can be solved using quantitative techniques.  It is in the 
transformation of the problem into a mathematical model that you begin to develop the 
“plan of attack” to solve the problem.  A model developed for one situation may not 
work in another.  Beginning to think about the plan during the transformation step may 
save time later. 

 
Step 2 (Solve).  When the model is complete, finish the solution plan.  After 

formulating the model, apply the most appropriate solution techniques to provide the 
desired answer.  As with model selection, you will see in this course that choice of 
solution technique can be the difference between attaining an answer to a problem and 
not finishing. 
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Step 3 (Interpret the Solution).  After the solution is attained, an important step in 
the modeling process is interpreting the answer, determining what the answer means in 
the context of the problem and putting it back into the simple, non-mathematical 
language for the decision maker.  After communicating the solution, reflect on the 
results.  Did the solution that you attained solve the problem posed?  Did it reveal 
another problem that must be solved?  If another problem is revealed, proceed around 
the modeling triangle as often as needed to develop an adequate solution or solutions. 
 

We can demonstrate this process with a simple problem shown below. 
 
Example 1  John was born three years before his sister Joan and is now twice as old as 
she is.  How old are John and Joan? 
 

• Step 1:  Transforming the Real World Problem.  What is given?  We see the 
relationship between the ages of John and Joan.  What do we need to find?  
John’s and Joan’s ages.  Variable definitions:  the letters x and y denote the age 
of John and Joan, respectively.  Next, we must transform the information that 
we know into a mathematical model that we can solve quantitatively. 

o John was born three years before his sister, therefore his age is three 
greater than his sister, 3+= yx . 

o John is twice as old as his sister, therefore his age is twice that of his 
sister, yx 2= . 

o Our plan of attack looks to be the solution of a system of equations. 

• Step 2:  Solve the problem using the most appropriate techniques.  We have two 
equations and two variables (unknowns) for which to solve.  Our plan is to use 
substitution, let’s implement the plan. 

o If yx 2= , we can use that relationship to put the equation 3+= yx  in 
terms of one variable and solve:  32 += yy .  Subtracting y from both sides 
results in 3=y . 

o Since we know that yx 2= , we can calculate x by substituting in 3=y :  
.6)3(2 ==x  

• Step 3:  Interpret the solution.  We have now solved for our variables of interest, 
it is now time to interpret the results in a manner that it easily understood.  
Since x represented John’s age and y represented Joan’s age, we answer the 
original question posed by stating “John is 6 years old; Joan is 3 years old.”  As 
we reflect on the answer, we see that it satisfies all of the conditions stated in the 
problem, so we are done.  No more trips around the modeling triangle are 
necessary. 

 

The following set of word problems is intended to provide practice using the 
modeling triangle to solve familiar kinds of problems.  The modeling triangle is 
powerful; our goal in this course is to use it for solving actual, more complicated 
problems than those posed here.  However, it is useful to begin slowly and increase the 
level difficulty of the problems, rather than starting with more complicated problems 
and floundering. 
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Question 1  You are working with an aerial photograph taken by an unmanned aerial 
vehicle (UAV) of a meeting between an unknown enemy operative and a known enemy 
operative.  The meeting was outside in bright sunlight.  The known operative’s height is 
5 feet, 8 inches and the length of his shadow on the ground is three feet.  The length of 
the unknown operative’s shadow is 3 feet, 6 inches.  You would like to know his height 
to help identify him at a later time.  Solve this problem using the three steps of the 
mathematical modeling triangle. 

• Understand the problem and transform it into a mathematical model 

• Use appropriate solution techniques to attain a solution to the problem 

• Communicate the solution in easily understandable terms 

For this problem, it is helpful to draw a sketch showing the situation.  Note the two 
triangles in Figure 1.3 are similar because the shadows caused by the light rays from the 
sun are parallel.  The lengths in this figure are expressed in inches. 

 

 

 

 

 

 
 

Figure 1.3:  A Meeting Between Two Enemy Operatives 

 

Question 2  You are building a recreation center whose water supply will come from a 
well that is 150 feet east and 200 feet north of the recreation center.  You will need to 
order pipe to connect the well to the recreation center.  The pipe comes in 25 foot 
lengths.  How many lengths do you need to order.  Assume that there are no obstacles 
to burying the pipes and that they may be laid in a straight line from the well to the 
recreation center. 

 
Question 3  Suppose that you want to make your squad leader’s birthday special. Your 
squad mates and you have decided that to make it REALLY special, you will need to 
fill his room with balloons. Now, we aren’t just talking about a couple of balloons that 
say Happy Birthday in bright pink letters – you want the balloons to fill all available 
space in his room. Would a couple of hundred balloons do it? Maybe a thousand 
balloons? How long will it take to do this and how much will it cost?  
 
Question 4  How could you make your estimate of the total number of balloons required 
better? Describe your method and figure out the total number of balloons required using 
your improved method. 
 
Question 5  How many doctors are there in the city of Boston? 
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Notice these problems, like most of the problems you will encounter in this book, are 
located in the middle of the section, rather than at the end.  Learning mathematical 
modeling is not a spectator sport.  You will get the most out of this text by doing the 
problems as they are posed in the text.  These problems are strategically placed to 
reinforce the concepts that immediately precede them.  You will read about a concept to 
gain familiarity, and then do the problems to reinforce your conceptual understanding 
before moving on to the next concept.   

 

1.1.4 5BAn “Average” Model 

 Suppose you are playing a game in which you are guessing the heights of students 
that walk into the classroom.  The good news is that you get to collect data to help you 
guess.  The data you gather is below. 
 

CDT 1 CDT 2 CDT 3 CDT 4 CDT 5 CDT 6 CDT 7 CDT 8 CDT 9 CDT 10 
60” 72” 68” 62” 66” 78” 70” 72” 67” 61” 

  
 Recall from the first page of the text that a model “is a construct (e.g., a function or 
equation) that is designed to predict the behavior of a system.”  Based upon that 
definition and the data above, how tall would you guess the next cadet entering the 
room would be?  There are several approaches to the question, but suppose that you 
were to earn 10 bonus points for guessing the answer exactly, nine for being off by an 
inch, 8 for two inches, etc.  In this case, picking an extreme height could be disastrous 
for you – causing you to earn no bonus points.   
 

How can we maximize the possible number of bonus points?  The answer lies in your 
first mathematical model for the year – the average, or mean of the data.  In our case, 
the model will be too high half the time and too low half the time, but we’re as safe as 
we can be against either an extremely tall or short cadet entering the room.   

 
Is it possible to make a model that is better than the average?  Of course it is!  In 

fact, in the next section we will begin learning about how to develop models that can be 
much more precise than simply taking the average.  We will also learn how to compare 
models to determine which is better – stay tuned! 
  
1.1.5 Why Mathematical Modeling is Important 
 

A goal of this book and the United States Military Academy core mathematics 
program is to leverage the power of mathematics to help gain insight into the solutions 
of important and often urgent problems.  In this course, students have developed 
mathematical models that have solved the following problems: 

 
• Will a bridge collapse when a truck with a certain weight drives over it? 

• What is the investment portfolio that will provide the most money in 
retirement, considering risk tolerance? 

• How soon will a lake poisoned by contaminant be clean enough to provide a 
village with water? 
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• Given a diagram of an oceanic shipping port, where should I put the most 
protection to keep the port safest against attack? 

• How does mathematics create image transformations seen in animated 
movies? 

• How much money can I expect to earn if I play roulette at a casino? 

• What is a viable schedule for a diabetic to follow to guide eating and insulin 
usage to maintain blood sugar in a healthy range? 

 
Question 6  How much peanut butter does the Corps of Cadets eat in a year? 
 
Question 7 What does every problem solving process discussed in this reading have in 
common? 

 
Question 8  Compare and contrast the modeling process that we have explained here 
with the process described by Stewart in your Calculus text on page 24. 
 
Question 9  Given the following real-valued functions, identify the independent and 
dependent variables, domain, and range.  
 

  

)sin(5)(.

4)(.

4)(.

43)(.

2
1

ttjd

exhc

xxgb

xxfa

x

=

=

=

+=
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The domain is the set of all input values for a function, its independent variable.  
The range is the set of all output values for a function, its dependent variable. 

A function is a rule that relates each input (domain value) to exactly one output 
(range value). 

1.2 Properties of Functions 
 
In the previous section we discussed problem solving and mathematical modeling.  

As mentioned, these are the central concepts for this course.  The models that are used 
in this course will most often take the form of a function.  What is a function?  Here is 
one acceptable definition (there are many others): 

 
The fact that a function relates each input to exactly one output is important.  How 

useful would a function be if for every input there was more than one result?  How 
would you know which to use? Certainly having more than one output would 
complicate things as there would no longer be one solution at the end of your analysis.  
Each function, therefore, yields one unique output for each input.   

 

 

Example 1  Given the real-valued equation xy = , what are the independent and 
dependent variables of the equation? What is the domain and range of the equation? 
 

From the preceding discussion we see that y depends on whatever value we choose 
for x. This makes y our dependent variable and x our independent variable. Since the 
domain is the set of all possible input values, we look at the possible values that x can 
take on. As long as x is greater than or equal to zero, the equation produces results that 
are real numbers (not imaginary numbers, like 2− ); therefore, the domain of this 
equation is all real numbers greater than or equal to zero. 
 

To determine the range, we substitute the domain values into the equation and see 
what we obtain as outputs. If x was zero (the smallest value in the domain), then y 
would be zero. If x was 4, then y would be 2. If x was 100, then y would be 10. We 
notice that as x gets large, so does y. In fact, as long as x is growing, so is y. This would 
make the range all real numbers greater than or equal to zero.  Written in proper 
mathematical notation, the domain and range are: 
 

),0[}0|{:
),0[}0|{:

∞=∞≤≤
∞=∞≤≤

yyRange
xxDomain

 

 
This notation should be read, the domain is the set of all x such that x is greater 

than or equal to zero and less than infinity. The range is defined similarly.  
 
Is the equation in Example 1 a function?  Go back and reread the definition of a 

function. For every x value we get precisely one y value. So, we have a function. How 
can we test any equation to determine if it is indeed a function? This question is 
answered by the vertical line test.   
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The Vertical Line Test:  A curve, when plotted, is the graph of a function  if 
and only if no vertical line intersects the curve more than once. 

 
 

Let’s look at a couple of examples.  Figure 1.4 represents two equations. The 
question of interest is, “Are these functions?”  We notice that on the graph to the left 
we can put a vertical line anywhere on the graph and never intersect the curve more 
than once. That makes this a function! The graph on the right however is not. We 
notice that when we draw a vertical line on a portion of the graph, we can intersect our 
curve more than once. 

 
 
 
 
 
 
 
 
 
 

Figure 1.4:  Example of the Vertical Line Test 
 

Example 2  Is the equation xy =2  a function of x? 
 

We first realize that this equation is written a bit differently than we normally see x-
y equations. Usually we think of y as being the dependent variable, so we might want to 
start by solving this function for y in terms of x. 
 

xy

xy

xy

±=

±=

=
2

2

 

 
What does this say? Well, it says that if we input any value for x (in the domain) – 
except for zero – we will get two values for y. We recall that for our equation to be a 
function, we must have one and only one output for every input. Therefore, this 
equation is NOT a function. What would this equation look like if we wanted to graph 
it? Let’s see in Figure 1.5. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5: Plot of xy =2  with Vertical Line Test 
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As demonstrated by the vertical line, for at least some inputs, there are multiple 
outputs.  

 
What else is there to say about functions?  First, there is more than one way to 

express a function.   A function can be represented in equation form, for example the 
equation 53)( −= ttf , which may model a vehicle’s velocity with respect to time.  We 
can illustrate our functions graphically, as in Figures 1.4 and 1.5.  Suppose we were 
interested in values of the equation 53)( −= ttf  at certain key domain values – we may 
use a table such as Table 1.2.  In relating the functions to our client, we would discuss 
the functions in words.  For example, “we have determined that the velocity of the 
vehicle is proportional to time.” 

 
t f(t) 
0 -5 
1 -2 
2 1 
3 4 
4 7 

 
Table 1.2:  Tabular Representation of a Function 

 
 
Question 1  Which of the below relationships below are functions?  Explain why or why 
not. 
 

a. The number of miles driven in your car versus the number of gallons of gasoline 
used. 
 

b. The number of touchdowns a National Football League football player has at the 
end of a season. 
 

c. The amount of snowfall that falls in Buffalo, NY (real snowy place) on any 
particular day of a given year. 
 
 
 

Let’s consider a situation in which we work in the West Point tailor shop and are 
preparing to put New Cadets in uniforms after R-Day.  The tailor shop could provide 
uniforms that fit perfectly right now.  Or, the tailor shop could provide uniforms that fit 
perfectly after the Beast Barracks summer.  During R-Day, each cadet’s height and 
weight are measured; however, if we wanted to know what the cadet’s weight would be 
after the summer, we would need to use a function that related the cadet’s height to his 
weight.  **Note, in this scenario, we will assume the cadets measured are all male; we 
expect female measurements to be different.  Table 1.3 shows heights and weights of 
Cadets just received into the Corps, after their first summer. 
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Table 1.3:  Post-Beast Heights and Weights 
 
 As mentioned before…functions can be represented in four ways:  in words, as 
graphs, in tables, and as equations.  Here, we will focus on the last three, graphical, 
tabular and equation forms.  Figure 1.6 shows the graphical representation of a function 
that best fits the data presented in Table 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 1.6:  Heights and Weights of Plebes After Beast Barracks 
 
 
The equation that represents the linear model shown above is:  
 

3.341)(2.7)( −= HeightHeightWeight  
 

Given the equation, 3.341)(2.7)( −= HeightHeightWeight , we can determine the 
weight of a post-Beast Barracks cadet, based upon his height.  In fact, using this model, 
if a cadet was 70 inches tall, we would expect him to weigh 

1633.341)70(2.7)70( ≈−=Weight  pounds.   
 
What if we knew the cadet’s weight, and wanted to determine the height?  We 

would need to change the entire perspective of the problem and “flip-flop” the dependent 
and independent variables!  We could certainly analyze the problem from the opposite 
or inverse perspective: 

 

Height Vs. Weight of Post-Beast Plebes
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Piecewise Functions are functions that are defined by different formulas in 
different parts of their domains. 

HeightWeight
HeightWeight

HeightWeight

=
+

=+
−=

2.7
3.341

)(2.73.341
3.341)(2.7

 

 
Let’s substitute in some know numbers to verify.  We found that if a cadet was 70 

inches tall, we would expect him to weigh about 163 pounds.  What if we knew the 
cadet weighed 163 pounds?  Could we find his height? 

 

Height

Height

HeightWeight

≈

=
+

=
+

70
2.7

3.341163
2.7

3.341

 

 
We have just found that we can look at a relationship between variables in different 

ways:  the way established in the equation, the table, the graph, or the sentences…or, 
we could look at it the opposite way.  We can analyze height as a function of weight or 
weight as a function of height.  In this case, we see a function, and its inverse.  The 
inverse has the effect of “undoing” the original function, or looking at it in the opposite 
way. 

 
We have seen that the function relating a cadet’s height to his weight has an inverse 

function that relates his weight to his height.  Let’s consider a scenario.  Suppose we are 

using a function that represents height (in feet) of a ball at time (t):  tttf 8)( 2 +−= .  
 

 
Question 2  Is the relation described in the equation above a function?  Why or why 
not?  Does it have an inverse function?  Why or why not?  

 
Question 3  Find the domain and range of the following functions: 
 

a.  
13

1)(
−

=
x

xf  

 

 b. 29)( xxf −=  
 
 c. ( )3ln)( += xxf  
 
 

What if we are trying to model something that has ONE behavior for a certain part 
of the domain and ANOTHER behavior for the rest of the domain? In this case, one 
function (rule) will not suffice. We need two functions (rules) to make it happen. In 
mathematics, we call these functions piecewise functions. 
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Example 3  A function f is defined by: 
 

⎩
⎨
⎧

>

≤
=

2
2

)(
2 xifx

xifx
xf  

 
Evaluate )4();2();0( fff and sketch the graph. 
 
 

First, remember that a function is nothing more than a rule.  For our given function, 
we have two rules that are defined on different portions of the domain. When we are 
working with inputs that are less than or equal to 2, we use the first rule.  When we are 
working with inputs that are greater than 2, we use the second rule.  Therefore: 
 

16)4(;2)2(;0)0( === fff . 
 

If we want to graph this, it would look like the graph in Figure 1.7. 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 1.7:  Plot of a Piecewise Function 

 
 
Notice the open circle on the graph. This means the function is defined by the upper 

curve for every number greater than two, but not at x=2. Piecewise functions are handy 
when you have different behaviors occurring at different points of the 
domain…something you will see in the next section, as we discuss supply and demand. 
An example might be if you were to model your speed as you walk from your barracks 
room to math class. Perhaps you walk at a brisk pace for a while, but then you stop to 
open up a door. Two or more behaviors are happening that cannot be modeled by a 
single function. 

 
We will be investigating many of the more common types of functions in this course. 
You need to get a feel for what these functions look like graphically. I am sure you 
realize what a line looks like and could pick one out of a line-up (pun intended) nine 
times out of ten. But, do you know what a logarithmic or exponential function looks 
like? As we review these functions, you will also need to become familiar with the effects 
of changing the parameters within functions. We will discuss parameters more in Lesson 
4; you will see that as we change the parameters of a function, shape, orientation, and 
location of the function changes. The ability to visualize the shape of these functions 
will pay great dividends throughout the core math program as well as other coursework. 
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*Question 4  Each day you make your way to Thayer Hall from your barracks. Sketch 
a graph of your distance from your math classroom as a function of time. Pay close 
attention to the labels of your axes. 
 

a. What type of function would best represent your graph? 
 

b. What is the domain and range of your graph? 
 
Question 5  Graphically depict an increasing function; then, a decreasing function.  
Explain why the function is increasing or decreasing. 
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1.3 Properties of Linear Functions 
 
We have discussed problem solving and the use of functions as tools to solve 

problems.  We will now begin developing our skills in using models to solve problems.  
We typically begin the modeling process with simple models and build progressively 
better and more complex models. In fact, we may make several trips around the 
modeling triangle, building complexity and realism with each trip.  Before we can build 
complexity, we must gain familiarity with the simplest of models, the linear model. 

 
To illustrate the use of linear functions in modeling, we will use a story that is 

constantly in the news:  the supply and demand that occurs as a result of the market 
price of oil per barrel.  In this subsection we will look at the suppliers and consumers of 
a particular product whose production requires oil. Thus, when the price of oil rises the 
production cost also rises. We will focus on four related quantities: 

 

• The unit cost of producing, transporting, and selling the product. As we build 
our model, we will use the letter c to denote this cost. We will analyze a situation 
in which the unit cost for the product in question is currently $10.00 but that 
due to an anticipated rise in the price of oil the unit cost will rise to $12.00. 
 

• The selling price of the product. We will use the letter p to denote the selling 
price of the product in dollars. 

 

• The demand for the product. This is the number of thousands of units of the 
product sold each week. It depends on the selling price. Consumers usually buy 
more when prices are low and buy less when prices are high. The relationship 
between the price and demand is called the demand function. We will denote this 
function D(p).  Companies often do a great deal of market research to determine 
the demand function because it helps them to set their price and to determine 
their production. In this subsection we will assume that prior analysis has helped 
determine the demand function to be:  
 

⎩
⎨
⎧ −

=
,0

,251000
)(

p
pD  

40
400

>
≤≤

p
p

. (1) 

 
Note that the price p is expressed in dollars and the demand D(p) is expressed in 
thousands of units per week. Figure 1.7 shows a graph of this function. Notice 
that as the price rises, as expected the demand goes down. 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.7:  The Demand Function )( pD  (thousands of units per week) 
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• The supply of the product. This is the number (in thousands of units) of the 
product that are made each week. It is described by a function S(p) because 
the supply depends on the price. Producers usually produce more when the 
price is high and less when the price is low. Products are produced and sold in 
many different kinds of marketplaces. For some products there are a small 
number of large producers.  For other products there are many smaller 
producers. Some products can be made easily and new producers can enter (or 
leave) the business easily. Other products are more difficult to make. For this 
example, we will assume that the product is easily made and is made by a 
large number of small producers who can enter or leave the market easily and 
who can easily increase or decrease their production. In this subsection we will 
assume that market analysis has helped determine the supply function to be a 
piecewise function, as defined in the previous section: 

 

⎩
⎨
⎧

≥−
<

=
10),10(40
10,0

)(
xp
x

pS .    (2) 

 
Figure 1.8 shows the supply function on the same set of axes as the demand 

function.   
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.8:  The Supply and Demand Functions (thousands of units per week) 

 
 
   Before going on, notice that we have just completed the first leg (transform) of the 

modeling triangle.  We have been given our supply and demand functions, based on 
previous analysis.  These functions provide us with more information about the system.  
In fact, $10.00 in the supply function, )10(40)( −= ppS , is the same number as the cost 
of producing, transporting, and selling our product. When the selling price is equal to 
this cost, the supply is zero because there is no point in producing a product if you can’t 
make a profit. Notice also that as the price increases, the supply increases as well. 
 

Now we are ready to do some mathematical analysis. Notice that when the price is 
low, the demand is above the supply, and when the price is high, the demand is below 
the supply. There is a point, marked by a dot in Figure 1.8 at which the supply and 
demand are equal. This point is called an equilibrium value because the producers will 
produce exactly enough units each week to fulfill the demand.  Customers will be able 
to purchase exactly the number they desire.  This is naturally the point we would like 
to find.  We will discuss more about this application of the modeling triangle after we go 
into more detail about linear functions. 
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The average rate of change of a function is the rate of change of a function, f(x), 
over an interval, I, where I = b – a, in which b is the right limit of the domain 
and a is the left limit. 
 

Average Rate of Change = 
ab

afbf
run
rise

I
f

−
−

=
Δ
Δ

=
Δ
Δ

=
)()(

t variableindependen
variabledependent in  change  

We say that the demand function depicted in Figure 1.7 and the supply function 
depicted in Figure 1.8 are “piecewise linear functions”; that is, the function is made up of 
more than one straight line, depending on the domain value. 

 
Functions which have the same average rate of change on every interval are defined 

as linear functions. 

 
The average rate of change of a function over an interval allows us to make a further 

classification of the function with which we’re working. A function is said to be an 
increasing function if the average rate of change of f(x) is positive on every interval.  
Conversely, a function is classified as a decreasing function if the average rate of change 
of f(x) is negative on every interval. If the function is not increasing (or decreasing) on 
every interval, then it cannot be classified as such. 

 
A linear function is a function that is in the form 
 

daxyxf +==)( ,    (3) 
 

where x is the independent variable and f(x) or y is the dependent variable; a is the 
average rate of change, or the slope, and d is the y-intercept.  In previous courses, you 
may have used the equation bmxy +=  to describe a line.  We will use equation (3) for 
the general form of the line for consistency with other functions throughout the course. 

 
A variable represents an unknown quantity, or a quantity that varies.  In equation 

(3) our x and y variables may take on many values because there is no restriction on the 
domain.  However, for a given model the a and d quantities will always remain the same 
(constant).  A fixed value within a function, like a or d in equation (3) is called a 
parameter. 

 
Take some time right now to navigate to the interactive website located below to 

answer the question that follows. 
 

http://www.dean.usma.edu/departments/math/MRCW/MA103/linear/live_graph.html 
 
 

Question 1  Select values for the slope of a line so that it is positive, negative, and zero.  
For which value is the function increasing?  Decreasing?  Neither? 
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 Parameters determine the shape and location of a function. 

You should have noted from the interactive website that the larger the value of d is, 
the higher the intercept will be on the y-axis. The smaller the value of d is, the lower 
the intercept will be on the y-axis.  We can conclude that the a and d parameters for 
the linear function determine its graph’s slope (or shape) and location above (or below) 
the y-axis, respectively. In general, the parameters of any function (linear, 
trigonometric, exponential, etc.) determine its shape and location. 

 

 
Since the parameter a in Equation 1 is constant, the graph of this function will 

always be a straight line. The sign of this parameter will determine if the line is 
increasing or decreasing. The magnitude of the parameter will determine how steep the 
line is. To demonstrate, let’s consider examples. 

 
Example 1  Suppose you have the three tables of information shown in Figure 1.9.  
Determine a function that describes the information in Table A.  Plot and label the 
function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.9:  Data for Example 1 
 

Step 1:  Transform the problem.  Let’s consider Table A.  We are given a table of 
data; the first step is to plot the data so we can see if it exhibits a pattern. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10:  Scatterplot of Table A Data. 
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 The data in Table A certainly exhibits a linear pattern, so we will continue the 
process of finding a line that fits through the data.  We see that our data contains 
the point (0, 0), the origin.  Because the data goes through the origin, the y-
intercept, or ‘d’ value in the linear equation, will be equal to zero.  Since the y-
intercept is zero, there is one parameter left to find:  our plan is to find the average 
rate of change, the slope of the line. 
 
 Step 2.  Solve the problem using appropriate solution techniques.  To solve, 
calculate the rate of change of the data at each point, using the formula on page 18.  

x
xf

run
riseSlope

Δ
Δ

=
Δ
Δ

=
)(
 .  So, we see that the slope between the first two data points 

is 5.1
1
5.1

)5(4
)5.7(6

==
−−−
−−−

.  The slope between the remaining points is calculated in the 

same manner and works out to be the same value, 1.5.   
 
 Step 3.  Interpret the Solution.  The linear function we have developed to model 
the data in Table A is xxforxxf 5.1)(,05.1)( =+= .  To reflect on the solution we 
have attained, it will be most helpful to draw a picture to make sure that our linear 
function goes through our data points.  See Figure 1.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.11:  Linear Model Plotted Against Table A Data 

 
 
 The linear function developed to model the data we were given seems to fit the 
data points very well; therefore, we are satisfied that xxf 5.1)( =  is indeed a 
reasonable function to model this data set.  The definition of a function is incomplete 
with knowing the domain and range that it is good for.  In the case of this specific 
function, the domain and range are as follows: 
 

)(,5.75.7|{:
}55|{:

xfywhereyyRange
xxDomain

=≤≤−
≤≤−

 

 
 

Question 2  What are the functions that would best model the data sets given in Tables 
B and C in Figure 1.9? 
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Now that we understand the properties of linear functions, let’s use linear functions we 
have seen already, the supply and demand relationships established in equations (1) and 
(2), along with the modeling triangle and problem solving process described in Section 
1.1, to solve a problem of interest.   
 
Example 2  A supplier of goods is interested in the maximum price possible to sell a 
commodity at which there will be no wasted product.  The price in a supply-demand 
system at which the supplier sells all possible product and consumers are able to buy as 
much as they want is the equilibrium price.  What is the equilibrium point of the 
system described at the beginning of section 1.3?   
 

REAL WORLD PROBLEM:  Find an equilibrium point for a given supply and  
demand system. 

 
 Step 1.  Transform problem into a mathematical model.   
 
  a. Given:  Relationship of demand to price:  ppD 251000)( −=  

       Relationship of supply to selling price:  
⎩
⎨
⎧

≥−
<

=
10),10(40
10,0

)(
xp
x

pS  

       Variable declaration:  D(p) = Demand (thousands of units) as a  
 function of selling price. 

            S(p) = Supply (thousands of units) as a  
 function of selling price 
 

       Definition of equilibrium price:  D(p) = S(p) 
 
  b. Find:  Equilibrium price as defined above. 
 
  c. Assume:  Selling price is greater than $10, so supply is greater than zero. 
 

d. Solution Plan:  Use algebraic manipulation to solve supply and demand  
 

equations:  
40040251000

)10(40)(251000)(
−=−

−==−=
pp

ppSppD
 

 
 Step 2.  Solve using appropriate solution techniques (algebraic manipulation). 
 

   

54.21
651400

40040251000

=
=

−=−

p
p

pp
 

 
  MATHEMATICAL SOLUTION:  Equilibrium price = $21.54 
 
 Step 3.  Communicate and reflect upon results. 
 
   The equilibrium selling price of $21.54 is a reasonable price; it seems to match  

closely with the intersection of the supply and demand equations plotted in  
Figure 1.8. 
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The slope-intercept form is:  daxxf +=)( , where a is the slope (rate of change) 
and d  is the y-intercept. 
 
The point-slope form of a line is:  )( 00 xxayy −=− , where a is the slope (rate of 

change) and ( ), 00 yx  is a point on the line. 
 
The general form of a line is :  Ax+By+C=0, where A, B, and C are constants. 

  
In this lesson, we have focused on the slope-intercept form of a line. There are two 

other forms, the point-slope form and the general form of a line. 

 
 
Question 3  Using the definition for average rate of change, your understanding of y-
intercept, and your knowledge of the slope-intercept form of a line, 
 

a. Determine an equation describing each of the following tables of data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Verify your equations for each table of data.  Then, graph and label each 

function. 
 

*Question 4  Thayer Hall has four floors and is approximately 70 feet tall. Taylor Hall 
has nine floors and is approximately 180 feet tall. Develop a model that predicts the 
height of a building based on the number of floors it has. (Don’t forget to include your 
model’s domain and range.) 
 
Question 5  Plot two lines that are parallel.  What is relationship of their slopes?  
Ensure you draw the lines to scale as much as possible (graph paper helps).   
 
Question 6  Plot two lines that are perpendicular.  What is relationship of their slopes?  
Ensure you draw the lines to scale as much as possible (graph paper helps). 
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1.4 Modeling With Technology 
 
In the previous section, we discussed the use of a linear model to solve a problem 

that we may see in economics:  finding the equilibrium point in a system governed by 
traditional rules of supply versus demand.  You were also given the functions that 
showed the supply and demand behaviors; these functions were both “determined by 
previous analysis.”  In this section, we will do the analysis to develop the supply and 
demand curves so we can find the equilibrium point of an economic system. 

 
Suppose we are analysts for a large oil company and we want to analyze the 

behavior of the American oil market to make more money.  The company has access to 
data collected through years of business.  We will conduct an analysis of the price of oil 
(U.S. dollars per barrel), the demand of oil (millions of barrels per day in the United 
States), and the supply of oil (same units as demand). 

 
First, we will develop a linear model that enables us to represent oil demand, given 

the price of oil.  See Table 1.4 for the data (data is fictional, also linked on the course 
website). 

 
 
 
 
 
 
 
 
 
 
 

Table 1.4:  Oil Demand vs. Price 
 
We now have a problem that we must solve:  develop a linear model for the data 

above, so it is possible to determine the equilibrium price of the system.  What must we 
do to solve the problem?  A process for solving the problem would certainly be in order! 

 
Step 1.  Transform the Problem.  Given in Table 1.4 is the data we will analyze.  

The independent variable is the price of oil because that determines the demand of oil 
(the dependent variable).  We must find a model that fits through the data so we can 
make predictions.  Our first step in finding the most appropriate model is to use the 
skills learned in our first problem solving lab to plot the data.  See Figure 1.12 for a plot 
of the data found in Table 1.4.   
 

Price ($ 
per Barrel) 

Demand (Millions 
of Barrels per Day) 

75 17.22 
80 16.58 
85 15.94 
90 15.05 
95 14.90 
100 13.72 
105 13.43 



CHAPTER 1.  MATHEMATICAL MODELING  27 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.12:  Plot of Oil Price vs. Demand 
 
 
It is easy to see that a straight line will not perfectly fit through the data.  That’s 

OK!  A model that you fit to actual data very rarely will fit perfectly through every 
data point – but we must do the best we can.  It seems that a line will be able to give 
us a model that is “good enough” to solve the problem at hand:  find the equilibrium 
point of our system.  The plan we will use will be to find values for the parameters 
associated with a line (the slope and y-intercept). 

 
Step 2.  Solve the Problem Using the Most Appropriate Techniques.  To finalize our 

solution plan, we should remind ourselves of the general form of the model we selected.  
The general form of a line is:  daxy += .  Notice that we have two parameters, ‘a’ and 

‘d.’  We have two variables, ‘x’ and ‘y.’  We can solve for our parameters if we select 
values for the variables, forming a system of equations.  Because we have two 
parameters we need to solve for, we will need two equations, selecting two data points.  
If the first and last data points are representative of the general trend of the data, it is 
common to select the first and last data points to estimate an initial model.  Let’s see 
what happens when we use these points:  (x, y) = (75, 17.22) and (105, 13.43).  The 
model we will have after solving for our two parameters should go through the two data 
points we used to develop the parameters – a useful fact when reflecting on our solution.  
Now that we have our two data points, let’s form our equations:  

  

da
da
+=
+=

10543.13
7522.17

 

 
 We could solve these equations using substitution.  Let’s use one of the technology 
tools we have at our disposal – Mathematica, which would be much faster than 
substitution!  In the problem solving lab, we learned how to solve two equations in two 
unknowns.  Let’s apply that knowledge here. 
 
 
 
 
 

Figure 1.13:  Solving Two Equations in Two Unknowns (Mathematica) 
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 The Government Accountability Office (GAO) defines sensitivity analysis as the 
determination of how sensitive outcomes are to changes in the assumptions. The 
assumptions that deserve the most attention should be those with the greatest amount 
of uncertainty and effect on the outcome.  

 The Mathematica output indicates that a line with a slope of about -0.1263 and y-
intercept of approximately 26.695 will run through the two data points we selected.  
The final equation is:  695.261263.0 +−= xy . 
 
 Step 3.  Interpret the Solution.  Perhaps the most important step in the modeling 
and problem solving process is interpreting the solution – communicating it in non-
mathematical terms and reflecting upon whether or not the solution we attain solves the 
problem posed.  To help interpret the solution, let’s plot a graph of the linear model we 
developed on the same axes as the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.14:  Illustration of Estimated Linear Model 
 

 The model we have developed, relating demand to price with the equation 
695.26Oil_Price1263.0Oil_Demand +−= seems do a nice job of describing the data 

provided in Table 1.4.  The model does seem to fit directly through the first and last 
data points, as expected.  The domain and range of the function follow: 
 

]22.17,43.13[:)(
]105,75[:)(

yRange
xDomain

 

 
People that do modeling for a living are curious people.  Our initial assumption was 

that the first and last data points were “good enough” from which to create an initial 
model.    What if we changed the assumption we used about which points to choose?  
Let’s try the third and sixth data points, (85, 15.94) and (100, 13.72).   

 
Again, using Mathematica to solve for our parameters, our slope and y-intercept are 

-0.148 and 28.52, respectively.  The slopes are different by about .02 (about a 15% 
difference) and the y-intercepts by less than 2.0 (7%).  It appears that the model’s y-
intercept is less sensitive to change than the model’s slope.  We complete a sensitivity 
analysis by testing how much change in an assumption will impact the final model.  
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In general, we prefer a model that is robust against change.  That means, when an 
assumption changes, the model remains essentially the same.  It is undesirable to have a 
model that fluctuates wildly with changes in the assumptions. 

 
We compared the two models, algebraically.  We can also compare them graphically 

by overlaying the second model over the first model and data.  As expected, the two 
developed models do not look much different (see Figure 1.15).  In the next section, we 
will discuss methods to determine which of the algebraic models is truly the best model.  
For now, we will choose the first model we developed, 695.261263.0 +−= xy . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15:  A Comparison of Linear Oil Demand Models 
 

 
This linear model will enable us to find the equilibrium point of the oil supply and 

demand system, after the supply curve is plotted. 
 
 

Question 1  Given the data in Table 1.5 (and on course website), develop an equation 
for the supply of oil, in millions of barrels per day, given the price of a barrel of oil. 

 
 
 
 
 
 
 
 
 
 

Table 1.5:  Oil Supply vs. Price 
 
 
 After determining the model for calculating oil supply as a function of selling 

price, we are now prepared to determine the equilibrium price of the system we are 
analyzing.  There are two possibilities for the equilibrium price:  it could occur inside 

Price ($ 
per Barrel) 

Supply (Millions of 
Barrels per Day) 

75 2.56 
80 3.42 
85 3.50 
90 3.85 
95 4.62 
100 4.90 
105 6.13 
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the current domain values of our functions, [75, 105].  It could also occur outside those 
values, meaning we must extend our models.   

 
If we predict a value inside the current domain of our function, it is said that we are 

interpolating.  For example, if the equilibrium point occurred at a selling price of $87, it 
would be a price inside our domain; therefore, we would interpolate. 

 
If we were to predict a value outside the current domain, meaning we must extend 

our model, it is said that we are extrapolating.  For example, if the equilibrium point 
occurred at a selling price of $115, it would be a price outside our domain.  We would 
have to extend our model (it may still be a good model); therefore, we would 
extrapolate. 

 
 
 

 
 
 
Question 2  Determine the equilibrium point of the oil supply and demand system 
described in this section.  Is the answer an interpolation or extrapolation of our model? 
 
 
Example 1  In 1986, the Space Shuttle Challenger experienced a catastrophic failure in 
its solid rocket booster.  The explosion, 73 seconds after liftoff, claimed both the crew 
and shuttle.  The cause of explosion was later determined to be an o-ring failure in the 
right solid rocket booster.  The final investigative report concluded that cold weather 
was a contributing factor.  
 

The o-rings in the solid rocket boosters on the space shuttle are designed to expand 
when heated to seal different chambers of the rocket so that solid rocket fuel is not 
ignited.  According to engineering specifications, the o-rings must expand by at least 5% 
in order to ensure a safe launch.  The temperature on the day of launch was 29 degrees 
F.  O-ring expansion data was collected on the previous nine launches and is shown in 
Table 1.6.  
 

Temp (degF) 93 88 87 81 73 72 68 64 55 
% Expansion 22.3 21.0 20.6 19.7 18.7 19.0 17.3 16.2 15.5 

Table 1.6: O-Ring Expansion Data for Space Shuttle Challenger Launches 

 
If you were given this data prior to launch, what would you have recommended?   

 
 

Step 1.  Transform the problem.  We must answer the question posed above:  should 
the shuttle launch.  We must identify what is given in the problem. 

 
o We have data from the previous nine launches.   
o We know that the temperature at time of launch was 29 degrees F. 
o We know that o-rings must expand by 5% to ensure a safe launch. 
o Can we draw a picture (graph)?  YES! (see Figure 1.16 on the next page) 

 
 What must we find in the problem?  We need a model to determine what the 

percent expansion of an o-ring will be if we have a launch temperature of 29OF.  

We define interpolation as the act of making predictions within the domain 
of known values or data.  Extrapolation is the act of predicting values 
outside of the domain of the data. 
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Because we need to find the expansion, that will be our dependent variable.  The 
variable is the “cause” of the o-ring expansion is the temperature, the independent 
variable. 

 
 In addition to identifying what is given and what we need to find, there is an 
important assumption to be made:  that o-rings react to temperature in a predictable 
manner at temperatures outside the domain of current launch temperatures (e.g., there 
is not a temperature at which the o-rings stop expanding). 
 
 Let’s use Mathematica to plot this graph, instead of Excel.  The following 

command will 
result in the plot of our data. 
 

 

Figure 1.16: Mathematica Graph of O-Ring Data 

 
 The ListPlot command plots the data points, while the PlotRange command tells 
Mathematica the “y” values to plot, rather than giving the standard plot starting at 
zero.  The AxesLabel command enable you to label the x and y axes.  From this point 
on, it will be your choice whether to use Excel or Mathematica to plot data. 
 

After graphing the data point, we can see that the data seem to follow a linear 
pattern; therefore, we should use our knowledge of linear models to develop a model 
that we can use to extrapolate whether or not the shuttle should launch at a 
temperature of 29OF.  Because we will use a linear model, the general form of the model 
is:  dTempaTempExpansion += )()( . 

 
Our plan will be to estimate values for the parameters (a and d) of our linear model.   

To estimate two parameters, we need two data points that represent the data well.   We 
see the data in Figure 1.16.  For this model we will assume that the first and last data 
points will lead us to reasonable estimates of our parameters.  Keep in mind that when 
choosing data points to estimate the parameters, the goal should be to minimize the 
deviation from the general trend of the data.   
 
 Step 2.  Solve Using the Most Appropriate Technique.  Our plan will be to use the 
first and the last point to formulate two equations with two unknowns (a and d).  We 
will then solve these two equations simultaneously and use the solutions to estimate the 
two parameters of the linear function.  Finally, we’ll need to determine our model’s 
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domain and range.  Using our first and last data points, we create two equations with 
two unknowns.  Our two equations are:  
 

da
da

+=
+=

)55(5.15
)93(3.22

 

  
Figure 1.17 highlights the use of our Mathematica skills to solve both equations 

simultaneously for a and d. We find our estimated slope is 0.18 and our y-intercept is 
5.66.  Our final model is:  66.5)(18.)( += TempTempExpansion . 

 

 
 

Figure 1.17: Using Mathematica to Solve Two Simultaneous Equations 

 
 
Thus, our model is:  ( ) 0.18 5.66Expansion Temp Temp= ⋅ + .  The data show our domain and 
range to be: 

 

}3.225.15|{:
}9355|{:

≤≤
≤≤

yyRange
xxDomain

 

 
 

 
Step 3.  Interpret the Solution.  The final step of the modeling and problem solving 

process is to communicate and reflect upon the solution that we have derived.  Through 
interpreting the model developed, we see that on the day of launch, the temperature 
was 29 degrees F; therefore, our model predicts:  ( )(29) 0.18 29 5.66 10.88Expansion = + =  
 

According to the model we created, the o-rings would have expanded nearly 11%.  
Our results indicate the o-ring expansion adheres to the engineering standards for a safe 
launch.   It is upon reflection that we realize that our model may very well be flawed.  
After all, the Space Shuttle exploded.  Was there something in the data that could have 
led us to that predict a dangerous launch? 
 

Let’s test an assumption to determine the sensitivity of our model.  We assumed 
that the first and last data points were representative of the trend in our data.  So, let’s 
make a minor change to our selection and see what happens.  Instead, we’ll choose the 
second and last data points and see how much of an affect this has on our solution.   

 
 
 
 

 

Figure 1.18: Using Technology to Test the Sensitivity of our Assumptions 
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Making this change slightly decreased our slope and increased our y-intercept 

(Figure 1.18).  This also causes our new prediction on the day of launch to be:  
(29) 0.17(29) 6.33 11.26Expansion = + =  

 
Our new model predicts an even greater expansion than the last (former model is 

solid line, latter, dashed).  Figure 1.19 shows the data versus the two possible models 
described in the text, and how the models are plotted.  

  
 

 
 

 

Figure 1.19:  O-Ring Sensitivity Analysis 
 
 
Our analysis concludes that the launch should have been safe; however, since we 

know this wasn’t the case, perhaps our assumptions were not valid.  Specifically, our 
assumption to select a linear model and our assumption that the data accurately 
represent what happens to o-rings at other temperatures may be invalid.  We will re-
visit this idea later in the course. 
 
 
Question 3  The data represented in Table 1.6 are posted on the course website.  Using 
this data and a linear model, would it have been possible to predict the Challenger’s 
explosion?   
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Question 4  Given the following height and weight data from R-Day of 10 male new 
cadets,  
 
Weight (pounds) Height (inches) 

150 68 
155 70 
140 67 
138 66 
170 71 
185 73 
195 74 
200 75 
175 72 
165 70 

 
answer the following questions. 
 

a. What type of model do you think would be appropriate to predict a male 
new cadet’s height given his weight?   

b. Predict the height of a male cadet that weighs 100, 160 and 300 pounds.   
c. Does your model have any limitations? What impact do these limitations 

have on the domain and range of your model? 
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*Question 5  The National Collegiate Athletic Association (NCAA) exists to promote a 
commitment to excellence in both the classroom and the “fields of friendly strife.”  Data 
is provided below that describes NCAA’s membership since 19501. 
   

Year 
Active 
Members 

1950 362 

1955 449 

1960 524 

1965 579 

1970 645 

1975 704 

1980 738 

1985 793 

1990 828 

1995 903 

2000 977 

2001 977 

2002 1005 

2003 1024 

2004 1028 

2005 1027 
 

a. Determine a model for NCAA membership as a function of time.  Be sure to give 
the domain and range of your model.   

 
In its 2004 Annual Report, the NCAA noted that it anticipated that its membership growth 
rate will slow in coming years.    
 

b. Based on the prediction in the Annual Report, what characteristics would best 
describe a model of NCAA membership in the future? 

 

                                                 
1 2004 NCAA Membership Report, Retrieved 26 January, 2006, from 
http://www.ncaa.org/library/membership/membership˙report/2004/2004˙ncaa˙membership˙report.pdf 
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1.5 Model Evaluation I (Fit of Functions) 
 
 
 We have used our knowledge of problem solving and properties of linear functions to 
develop models to help communicate solutions to several problems, like identifying the 
height of an enemy operative, determining the size of cadets for uniform issue, and 
calculating the equilibrium price of a supply and demand system.  Developing models is 
useful, but our models are limited if we do not know how good they are.  This section 
will focus, not on the development of models, but on their evaluation.  We will discuss 
how to determine a model’s “goodness,” thereby putting more credibility behind the 
predictions we make. 
 

1.5.1   Model Evaluation (Subjective) 
 

So far, we have informally used two tests to determine our model’s goodness:  the 
nature of the data test and the “eyeball” test.  We will now formally define these tests. 

 

• Nature of the Data:  The underlying structure of the data; i.e., how the data 
would appear if collected in a “perfect world.”  For example, we would expect 
projectile motion to follow a parabolic trend as gravity acts on the projectile. 

• Eyeball Test:  A qualitative measure that determines how closely a model 
appears to fit a given data set. 

 
We may consider a linear model to be “good” if we knew about the circumstances 

under which the data were collected and expected the modeled quantities to be 
proportional – a measure that the model matches the nature of the data.  If we graphed 
the model and the prediction looked like it closely represented the data (passes the 
eyeball test), then we may call it a “good” model, like the models presented in Figure 
1.20.  Today, we will develop a means to quantitatively evaluate just how good a model 
is.  How can we tell if one model is really better than another?  We will explore this 
question and more in this lesson.   
 
 Let’s consider the average demand, the model we discussed in Section 1.1, and the 
two demand models we developed in Section 1.4.   
 

52.28148.0:2
695.261263.0:1

21.15:_

+−=
+−=

=

xyModelLinearEstimated
xyModelLinearEstimated

yDemandAverage
 

 
It appears in Figure 1.20 that the average does not “fit” the data well.  In fact, the 

model underpredicts for the first half of the data and overpredicts for the second half of 
the data.  Both estimated linear models seem to be a reasonable fit of our data set.  
Which line is the better linear model most accurately predicting oil demand given the 
price of oil per barrel?  Both the solid and dashed lines seem to provide a good 
approximation, but they clearly are different lines (models).  So which model best fits 
the data?  We need to define a measure for best fit so that we can compare the models 
we developed. 
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Figure 1.20:  A Comparison of Linear Oil Demand Models 

 

1.5.2    Model Evaluation (Sum of Squared Error) 
 
One way to determine which model is “best” quantitatively is to measure the 

distance between the values predicted by the model, ŷ , and the actual data points, y.  
This distance is our error, e.  (This symbol, e, is not to be confused with the number, e 
≈ 2.72).   

 
Let’s look at the situation a bit closer.  If we look at a single data point from Figure 

1.20, say, (95 dollars, 14.72 million barrels) we see that both estimated linear models 
under-predict the actual amount of oil in demand.  This is because both models lie 
slightly below the point.  Does this mean that our models are wrong?  Absolutely not!  
The models still capture the general trend of the data; they just predict that consumers 
will demand less oil, given the oil’s selling price.  

 
So, how good or bad are our models?   

To quantify, or put a numerical value on 
how good or bad they are, we measure 
the distance between our predictions and 
the actual data points (see Figure 1.21).  
In this case, our demand for oil is 14.72 
million barrels our solid model predicts a 
demand of about 14.70 million barrels.  
 

What is the error of the solid model? 
Well, it’s demandpredicteddemandactual − , 

or in this case, it is  02.070.1472.14 ≈−  
million barrels.   

Figure 1.21: Closer Look at Our Errors
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This calculation shows that the model under-predicts the actual demand by 0.02 million 
barrels of oil.  What would have happened if we looked at the point just to the left, (90, 
14.88).  In this case, our model over-predicts; the error is 448.0328.1588.14 −=− million 
barrels.   
 

So, what do we do with this information?  How can we come up with a single 
number that quantifies how good or bad the entire model is?  Let’s look at a couple of 
possibilities.   
 

A-Not-So-Good-Idea:  If we sum the errors for each model, perhaps the model with 
the lowest sum would be the better of the two models.  Notationally, with n points in a 
given model, this is written:  

( )
1 1

ˆ
n n

i i i
i i

y y e
= =

− =∑ ∑
 

 
The above notation may be a little intimidating at first.  If we read it from the 

inside out, it may become a little easier to understand.  The quantity )( ii yy
∧

−  means 

“the actual data point minus the predicted value.”  The subscript i  helps us to keep 

track of which data point we are calculating.  For example, )( 11

∧

− yy  is the calculation of 

the error for the first data point, where )( 22

∧

− yy  is the second error calculation.  The 

symbol ∑
=

n

i 1
means “the sum from the first value to the nth (n is the final value).  So, 

putting it all together, ∑
=

∧

−
n

i
ii yy

1
)(  means “the sum of errors, from 1 to n.” 

 
There is one major problem with this technique.  If we assume a positive distance 

when the data point is above the line and a negative distance below the line, a value of 
zero may only mean that we overestimated and underestimated exactly the same 
amount.  A value of zero would occur because the positive and negative errors would 
cancel each other out.  We really want to measure the total deviation of the model from 
the data which this method does not capture.   
 
A-Bit-Better-Idea:  Perhaps we could take the absolute values of the distances.  
Notationally, with n points, this is written:   

1 1

ˆ
n n

i i i
i i

y y e
= =

− =∑ ∑  

 
Using absolute values may seem reasonable, but when absolute values are involved, 

trying to minimize the error between the model and the actual data using calculus 
techniques becomes quite difficult. 
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A-More-Acceptable-Idea:  A more common and acceptable method is to square the 
distances before we sum them.  Notationally, with n points, this is written:   
 

2 2

1 1

ˆ( )
n n

i i i
i i

y y e
= =

− =∑ ∑  

 
This accomplishes two purposes.  First, it eliminates any negative errors (that might 

cancel out positive errors), and second, it emphasizes those data points that are furthest 
from our model.  That is, we are severely penalized for data that are far from our model 
when the distance is squared.  The value of summing the square of the errors is called 
the Sum of Squared Errors (SSE).   If we compare two models using this method, the 
one with the smaller SSE indicates that the model “fits” the data better than the one 
with the larger SSE.  We will consider other model evaluation methods in future lessons. 
  

How can you calculate the SSE using MS Excel?  First, create two columns next to 
your data and model to track the error and squared error terms.  Figure 1.22 
demonstrates one way to set up an MS Excel spreadsheet. 

 

Figure 1.22: Sample MS Excel Spreadsheet 
 

Given a linear model with a slope of -0.148 and an intercept of 28.52, the model 
portrayed in Figure 1.22 displays an SSE value of about 2.1211.  Is this good?   What 
can we do with this value?  SSE is a relative number.  This means that it is only useful 
when we can compare it with the SSE values from other models.   

 
Think about it this way – suppose that we had a data set that had one million 

points.  By some stroke of genius, let’s say you found a model that was only 0.1 units 
off from each of the one million data points.  To the naked eye, the data and your 
model appear to be exactly the same. The error for each point is only 0.1 and the 
squared error for each of these points 0.01.  Yet the SSE for this model is:  
 

( )2 21, 000,000 0.1 10,000data points units units⋅ =  

 
What does this tell us?  Is this a large or small number?  Unfortunately, an SSE by 

itself does not tell us much.  Without comparing this SSE to the SSEs of other models, 
we cannot tell if the SSE above is high or low.   
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Question 1  Figure 1.22 shows the calculation of the SSE for the second estimated linear 
model, with parameters ‘a’=-0.148 and ‘d’=28.52.  Is it better than the first estimated 
linear model developed in Section 1.4, with parameters ‘a’=-.1263 and ‘d’=26.695? 

 
Question 2  Using the Space Shuttle Challenger data set from Section 1.4, create a 
spreadsheet like the one shown in Figure 1.22.  What is the SSE for the model estimated 
in Section 1.4?  If you change the values of the slope and intercept for this model, can 
you get a smaller SSE?   
 

1.5.3   Model Evaluation (Coefficient of Determination) 
 

Another quantitative measure commonly used in statistics is the coefficient of 

determination, or 
2r .  This value is bounded by zero and one (0 ≤ 2r  ≤ 1), and is a 

measure of the amount of variation of the data for which your model can account.  So, 

an 2r = 0.83 would mean that 83% of the variation of the data can be accounted for by 
your model, the remaining 17% of the variation must be the result of some other factors 
not covered in your model.   
 

 
 

Before we calculate 
2r , we must define a key term, the Sum of Squares Total, SST.  

Recall that the Sum of Squared Error was a measure of how the model you developed 
compared to the data for which it was developed.  SST is similar, but instead of 
calculating the error between the data and a model you estimated, SST calculates the 
error between the data and the mean – the simplest model in our toolkit. 

 
The mean is a simple model with just one parameter, so we expect it to be our least 

accurate model.  Because SST quantifies the error of the least accurate model, we can 
say that it is the measure of how the worst model, the mean, compares to the data for 
which it was developed.  SST is calculated in a similar manner to SSE, 

 

 ∑
=

−=
n

i
i yySST

1

_
)( ,        (2) 

 
where SST is the sum of squared deviations of the y-values of the data from the sample 

mean of the data.  The sample mean is the average of the given outputs denoted y .  

SST is the relative measure of how bad the mean is as a model, that’s why it’s called 
Sum of Squares Total – it’s the total amount of squared error using the worst model.   
 

If we divide SSE (the error between the data and the model you developed) by the 
SST we get the percentage of error in the data that our model does not explain.   

 

The coefficient of determination or r2 is a measure of the amount of 
variation of the data accounted for by the model and is bounded by zero 

and one (0 ≤ 
2r ≤ 1).     

SST
SSEr −=12     (1) 
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The best possible model would have zero error (SSE = 0), accounting for 100% of 
the variability in the data.  If we subtract the percentage of error that our model does 
not account for from 100% (or 1), we get a measure of error that the model does 

account for.  Therefore, 
SST
SSEr −= 12 . 

 
Example 1  In Section 1.4, you created a linear model for homework that predicted the 
height of an R-day cadet based on his or her weight.  Our best fit model is: 
 

( )( ) 0.135451 47.94905height weight weight= +  

Domain :{ | 90 300} (90,300)
Range :{ | 60.13 88.57} (60.13,88.57)

weight weight
height height

< < =

< < =
 

 

It has an SSE of approximately 1.95.  Now, we will turn our analysis to 
2r  to determine 

the accuracy of our model. Recall, we will need to calculate SST using Equation (2) on 
the previous page where SST is calculated by:          

 

∑
=

−=
n

i
i yySST

1

_
)(  

 
Since we determined the SSE of this model previously, we focus here on how to 

calculate the SST.   
 

• First, we must determine the sample mean which is the average of the data 
values; here it is the average height.  The average height  is 70.6 inches. 

• Next, we determine how far each of the data values is from this mean - that is, 
determine the deviations of the y-values of the data from the sample mean of 
the data.   

• Then, we square each of these values.  

• Finally, we sum them up.   
 
The SST for this example is 80.4.   

 

The final step in determining the 
2r  is to use Equation (1) inputting our SSE and 

SST where appropriate. 
 

2 1.94705456
1 0.975783

80.4
r = − =  

 
Here, our model accounts for 97.6% of the variation in our y-values.  This indicates 

that our model is very accurate for this data set.  
  

One attribute of 
2r  is that, unlike SSE, it is a standardized or normalized measure.  

In other words, 
2r  values do not need to be compared to substantiate the use of one 

model over another.  If your model has a high 
2r  it indicates it is accurate for the set of 

data you are modeling.   
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Caution!  A high 
2r  value does indicate the model is accurate for the data but does 

not necessarily indicate that it is appropriate for the situation being modeled.  Similarly, 

a low 2r  (say in the low 40s) does not necessarily mean the model is not useful.  For 
example, we can find polynomial models to fit every data set but not every data set 
should be modeled with a polynomial function. To ensure a model is both accurate and 
appropriate, employ more than one evaluation tool.   
 

1.5.4   Model Evaluation (Number of Parameters) 
 

An important consideration when modeling is the relationship between the number 

of parameters in a model and the measure of ‘goodness’ (often SSE or 
2r ).   Every time 

we add a new parameter to a model, the SSE will get smaller and 
2r  will always get 

larger, even though the added parameter may end up being of insignificant value.  The 
question for modelers is, “when are enough parameters enough?”  It’s often best to use 
this notion of Albert Einstein, “Keep things as simple as possible, but no simpler.”   
 

Let’s explore an example that will show use the effect of adding additional terms and 
parameters to a model.   
 
 
Example 2 In the following graph, Figure 1.23, we once again see the seven points of 
data that define the oil demand problem, this time with three models overlaid on the 
data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.23: Oil Demand Modeled with Three Models 
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Clearly, the relationship between the independent variable and the dependent 
variable is decreasing.  Let’s model the data with polynomials having one, two, and 
three parameters (mean, linear with non zero y-intercept, and quadratic).  NOTE:  To 
estimate the 3-parameter model, we chose three representative data points and used a 

polynomial of the form dcxaxf ++= 2)()( , which you’ll see again in section 1.8.  Table 
1.7 lists the model, minimum SSE, and corresponding parameter values for the data.   
   

parameters model Min SSE a c d 

1 d 7.52   15.21 

2 daxxf +=)(  0.49 -0.1263  26.695 

3 dcxaxf ++= 2)()(  0.51 -.0053 -81.99 16.611 

  Table 1.7: Polynomial Models 
 

From the graph and the table, we can note a few important things.  First, the 
minimum SSE for the one-parameter model is an order of magnitude higher – has a 
change of more than 10 times – than the two-parameter model (a linear model).  But, 
the improvement of going to a three-parameter model (a quadratic model) is only about 
4%.  Also, graphically the one-parameter model is clearly poor, while the other two are 
virtually indistinguishable from each other.  Finally, then the third parameter, a, is 
introduced, its value (a = -0.0053) is so close to zero when compared to the scale of the 
other parameters, that it is not a useful addition to the modeling process. 

 
Because the addition of the third parameter is not useful in this case, we would 

decide to use the simpler linear model.  However, we noticed that the SSE decreased 
when we added a parameter to model, a fact that will always hold true.  A larger 
number of terms will always result in lower SSE (and larger r2).  In fact, a polynomial of 
degree n – 1 will always fit n data points.  For example, a data set of two points can be 
fit perfectly by a degree 1 polynomial (a line).  Also, three points can be fit by a 2nd 
degree polynomial (a quadratic).  Each would have a SSE = 0.  A polynomial of degree 
n - 1  will always fit n data points.  But if a polynomial of degree n – 2 can closely fit 
the data points, why use a more complicated model?   
 

In Example 2, there were 7 data 
points.  A 6-degree polynomial can 
model these points “perfectly,” with 
an SSE of zero and r2 of 1.  A 6-
degree polynomial is a very “wiggly” 
function (see picture at right).  As 
you would expect, the function is 
also very complicated: 
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Notice that the model’s trend is opposite of the data, seeming to indicate that for 
prices higher than $105, demand will increase.  It doesn’t make sense that higher price 
would yield higher demand.  This model, though it fits every data point, is not going to 
be useful for prediction. 

 
As mentioned previously, in every case, as you add a parameter, SSE will decrease.  

But the important question is, “does the improvement in SSE justify the disadvantage 
of adding a parameter and increasing the complexity of the model?”  The nature of the 
disadvantage of having too many parameters lies in the strength of the estimates for 
those parameters.  Every parameter that needs to estimated essentially ‘takes away’ 
some of the information in the sample.  Estimating two parameters from seven data 
points will be fairly easy and will result in relatively accurate estimates for those two 
parameters.  On the other hand, estimating 6 parameters from 7 data points is far more 
complicated and will likely result in parameters of little consequence, such as a from 
Table 1.7.  Furthermore, once you have more parameters than data points, it is not 
possible to estimate any of the parameters.   
 

What’s a good rule of thumb in determining how many parameters to add to your 
model?  When adding an extra parameter doesn’t give noticeable graphical 
improvement or a noticeable improvement on SSE, then stop adding parameters.  What 
is noticeable?  This is a tough question and often depends on the situation…another 
example of why modeling has a “science” component and an “art” component.  
Remember:  for the model you develop to have meaning, you must be able to interpret 
its results to a decision maker.  If you are unable to communicate the effect of an 
additional parameter, it’s a good bet that you may not need that parameter!   
 
Question 3  You are working with a group of student interns for the National Center for 
Atmospheric Research (NCAR) in Boulder, Colorado, monitoring the global warming 
situation.  NCAR has access to data about 2CO  concentrations in the atmosphere 
(below and on course website).  Let x represent the number of years since 1995.   
 
years 0 1 2 3 4 5 6 7 8 9 
CO2 ppm 361.6 364.0 364.6 367.3 369.6 370.5 372.1 373.5 376.1 379.0 
 

a. Develop a linear model that fits these data.  Show all work in how you obtained 
your model and put a graph of your model on the same axes as the scatterplot. 

 
b. Select two different points to estimate a linear model. 
 
c. Thoroughly evaluate your model’s, meaning:  use the nature of the data test, the 

eyeball test, SSE, 
2r , and number of parameters.  Is your model a good fit for 

the data? 
 

d. These data were all observed in March of each year.  Based on your model what 
were the CO2 ppms in September 2001? 

 
e. Based on your model what is your prediction for the CO2 ppm in March 2100?   
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f. The equation used at NCAR to predict CO2 ppm was 6.36182.12 += xy .  Plot 
this equation with your model and the data on your scatter plot.  Which 
equation seems to be the “better” model?  Explain your reasoning. 

 
 
Question 4  Using the models developed in Example 1 of Section 1.4 (O-Ring Data), 

determine the 
2r  value for each model.  Which appears to be the better model?  Based 

on your understanding of the problem, interpret the meaning of your 
2r  values and 

explain what it indicates about the best model. Discuss your findings. 
 
*Question 5 You are working with a group of student interns for the park services at 
Yellowstone National Park in Wyoming.  Old Faithful is one of 400 geysers within the 
park.  It is named Old Faithful, because the time of next eruption can be predicted by 
the duration of Old Faithful’s eruption.  Since the original model was established, the 
intervals between eruptions have tended to increase.  The park service would like you to 
set up a model with current data and answer a few of their questions with the model. 
Below are some current data on Old Faithful’s eruptions.1 The data is also linked on the 
course website. 
 
 
 
 
 
1 These data were obtained from Yellowstone National Park. 
 

a. Based on the graph you develop, does it appear that interval is 
approximately a linear function of duration? 

 
b. What is the slope of the line that models this data?  Explain in practical 

terms (duration and interval) the meaning of this slope? 
 
c. What is the y-intercept for your model?  Does this intercept have any 

practical meaning?  If so, what is it? 
 
d. Thoroughly evaluate the model you developed, meaning:  apply the nature 

of the data test, the eyeball test, and r2. 
 
e. Suppose that you observe an eruption that lasts 2 minutes and 40 seconds.  

Based on your model, predict when to expect the next eruption. 
 
f. The equation used by the park service to predict the intervals between 

Old Faithful’s eruptions is 3014 += xy .  Compare this equation with your 

model.  Which equation seems to be the “better” model?  Explain your 
reasoning. 

 

x duration in minutes 1.8 1.98 2.37 3.78 4.3 4.53 1.82 2.03 2.82 3.83 4.30 4.55 1.88 2.05 

y interval in minutes 56 59 61 79 84 89 58 60 73 85 89 86 60 57 
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1.6 The Generalized Exponential Function 
 
Take a moment to conduct an internet search on the word “exponential.”  

When this chapter of the text was being written, Google returned over 7 million 
hits on sites or articles that somehow referenced “exponential.”  Below are just 
a few of the quotes you may find. 
 
“The death toll from the Indian Ocean tsunami is set to rise exponentially 
above current estimates of 150,000 as relief workers reach remote villages and 
survivors succumb to disease, UN officials warned today.”1  
 
“Scientists are finding that electromagnetic flux of unknown spectrum in action 
may be the root cause of the exponentially increasing number of earthquakes in 
the last eighteen months.”2  
 

Exponential growth or decay…you hear the term used by newscasters, 
political pundits, and people you talk with, but what precisely does it mean?   
 

You may have personal experience with exponential functions in a place that 
may be important to you in the future - an interest bearing savings account.  
Perhaps you have taken a class at some point in your life where you learned a 
function that allowed you to compute the value of an account that accrued 
interest continually.  You may have heard it referred to as PERT, or seen it 
presented as Equation (1); this equation is an exponential function.   
 

rtV Pe=      (1) 
where:  

V is the value of the account at the time that you are interested 
(dependent variable) 

P is the principal, or initial value invested (parameter) 
e is the base (parameter) 
r is the interest rate (parameter) 
t is the time that has passed (in the same units as the period referred to 

in rate) since the initial investment. (independent variable) 

What makes this function exponential is that there is a constant base raised 
to a variable power.  In this case, the base is e which is also approximately 
2.71828.  The most basic form of the exponential function is:  

( ) xf x b=      (2) 

where b is the constant base (parameter) raised to a variable power x, the 
independent variable.  Do not confuse this with the power function (learned 
later) where the independent variable is the base.  Remember: the exponential 
function has the independent variable in the exponent. 

                                                 
1 http://www.guardian.co.uk/tsunami/story/0,15671,1382973,00.html 

2 qd.typepad.com/19/2005/01/its_been_a_whol.html 
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1.6.1 Properties of Functions 
 
 Recall that a function is said to be an increasing function if the average rate 
of change of f(x) is positive on every interval.  Conversely, a function is 
classified as a decreasing function if the average rate of change of f(x) is 
negative on every interval.  Similarly, we say a function is increasing on an 
interval if the average rate of change of f(x) is positive on the interval.  Also, a 
function is decreasing on an interval if the average rate of change of f(x) is 
negative on every interval.  More precisely, 

 
If we trace a graph from left to right, we notice our hand will move up 

when the function is increasing and down when decreasing.  In Section 1.3, we 
saw that a linear function increases when it has a positive slope and decreases 
with a negative slope.  This extends to other functions – a positive rate of 
change indicates the function is increasing and negative, decreasing. 

 
 In the linear case, we saw that the rate of change was constant and its 

sign determined if the line was increasing or decreasing.  We will see many 
examples of exponential functions that increase or decrease and their rates of 
change that also increase or decrease.  The next subsection catalogs the three 
cases of exponential functions and their corresponding changing rates.   

1.6.2 Three Cases of the Basic Exponential Function, bx 
 
There are three cases of this basic exponential function; each case has a 

different value for b. 
 
Case 1: b >  1.  This function increases as the domain values increase.  
This can be seen in the first table of Figure 1.24a.   This case of the 
exponential function also increases at an increasing rate.  This can be 
seen by investigating the average rates of change which are also shown in 
Figure 1.24a.  Notice how these rates are increasing.  Thus the function 
is not only increasing but increasing at an increasing rate.   A graph of 
this type of function is shown in Figure 1.24b.  These functions are 
normally referred to as growth functions. 
 
Case 2: 0 >  b >  1.  This function decreases as the domain values 
increase. This can be seen in the second table of Figure 1.24a.   This case 
of the exponential function also decreases at an increasing rate.  This can 
be seen by investigating the average rates of change.  Notice in the 
second table of Figure 1.24a how these rates are increasing.  Thus the 
function is not only decreasing but decreasing at an increasing rate.  
These functions are normally referred to as decay functions. 
 

A function is decreasing on an interval if )()( 21 xfxf >  whenever 21 xx <   

and 21, xx are in the interval. 

A function is increasing on an interval if )()( 21 xfxf <  whenever 21 xx <   

and 21 , xx are in the interval. 
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Case 3: b = 1.  This function equals 1 everywhere.  The average rate of 
change of this function will always be zero (Figure 1.24a) regardless of 
whether or not the domain values increase or decrease.  Since this case 
results in a constant function (Figure 1.24), we will not investigate this 
case any further in this section. 
 

**NOTE** We only consider values for b that are greater than or equal to 
zero.  Why?  Well, what happens when you raise a negative real number to a 
power?  If the exponent is an even integer, then the answer is a positive real 
number.  If the exponent is an odd integer, then the answer is a negative real 
number.  If the exponent is any non-integer real number, then the answer is a 
complex number.  In this course, we will focus on real-valued functions.  That 
is, we will concentrate on functions whose domains and ranges are both subsets 
of the real numbers. 

 
b = 2 b = .5 b = 1 

x f(x)=bx AVG 
RoC 

x f(x)=bx AVG 
RoC 

x f(x)=bx AVG 
RoC 

-2 0.250  -2 4.000  -2 1  
-1.5 0.354 0.207 -1.5 2.828 -2.343 -1.5 1 0 
-1 0.500 0.293 -1 2.000 -1.657 -1 1 0 

-0.5 0.707 0.414 -0.5 1.414 -1.172 -0.5 1 0 
0 1.000 0.586 0 1.000 -0.828 0 1 0 

0.5 1.414 0.828 0.5 0.707 -0.586 0.5 1 0 
1 2.000 1.172 1 0.500 -0.414 1 1 0 

1.5 2.828 1.657 1.5 0.354 -0.293 1.5 1 0 
2 4.000 2.343 

 

2 0.250 -0.207 

 

2 1 0 

Figure 1.24a:  Average Rates of Change for Exponential Functions (Cases 1-3) 
on Domain -2 <  x <  2 

 

Figure 1.24b:  Graphs Depicting Basic Exponential Functions 

Case 1:  Increasing at 
an Increasing Rate 

Case 2:  Decreasing at 
an Increasing Rate 

Case 3:  Constant 
Function (Rate of 

Change = 0) 
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Question 1 Plot graphs of each of the three cases for exponential functions, 
different from those shown in Figure 1.24b.  Evaluate the functions over the 
domain [-3, 3] for each case.  For Case 1, assume  b = 1.5, for Case 2, assume b 
= .4, and for Case 3, assume b = 1.  Identify the domain and range of each of 
these functions. 
 
 
1.6.3 The Generalized Exponential Function 
 
 

The graphical and associated word descriptions of the behavior of exponential 
functions provided above will prove very useful in your modeling efforts.  
However, it is important to recognize other forms of the exponential function and 
their patterns of behavior as well.  In this course, we will investigate the more 
generalized exponential function listed below. 

 
         (3) 
 
 
The three cases of the basic exponential function shown in Figure 1.24 share the 

property that the parameter a = 1 and that the parameter d = 0.  The 
parameters for a generalized exponential function (in a similar manner to that for 
the linear function) control the shape and location of its graph. 

 
Generalization 1.  We can shift any graph of a function upward or downward by 
adding a parameter to the function: 
 

( )y f x d= +  
 

If d is positive, we will shift or translate the function’s graph upward.  If d is 
negative, we will shift or translate the function’s graph downward.   Unique to 
exponential functions is that the parameter d also indicates the location of a 
horizontal asymptote.   

 
  
 

Generalization 2.  By changing the a parameter, we can flip the function about 
the horizontal asymptote, or line y = d.  We can also stretch and shrink the  
function vertically.  Table 1.8 shows the vertical stretch and shrink of an 

exponential function, xexf =)( .   
 
 
 
 
 

dabxf x +=)(

A vertical asymptote of a curve is a line ax =  where the values of the 
function f(x) approaches infinity as x approaches the undefined point a. 

A horizontal asymptote of a curve is a line Ly =  that the function f(x) 
approaches as x approaches infinity. 
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x xexf =)(  

“Base” Function 

xexf 10)( =  
Vertical Stretch 

xexf 10.0)( =  
Vertical Shrink 

-2 .1353 1.353 .01353 
-1 .3679 3.679 .03679 
0 1 10 .1 
1 2.7182 27.182 .27182 
2 7.389 73.89 .7389 

 
Table 1.8:  Tabular Representation of Vertical Stretching and Shrinking 

 
Note that the first column is the base function, the second includes a vertical 

stretch.  The a parameter is increased, so for each value of the independent 
variable, the value of the vertically stretched function is larger than that of the 
base function.  In the third column, we implement a vertical shrink by decreasing 
the value of the a parameter.  For each value of the independent variable, the 
function value is smaller. 

 
We can see the effect of changes made on the a parameter graphically, as well 

as in a table.  The upper left picture in Figure 1.25 is xexf =)( .  The upper right 
function shows the result of negating the function.  In addition, we can vertically 
stretch or shrink the graph of any function by increasing or decreasing the a 
parameter.  The bottom left function illustrates the effect of decreasing the value 
of the a parameter; the bottom right shows the effect of increasing the a 
parameter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.25:  Illustrating the Effect of Changing the a Parameter in the 
Exponential Function 
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Generalization 3.  The parameter b determines the shape of the function.  Recall 
the three cases of the exponential function illustrated in Figure 1.24a and b.  
Another illustration of the impact of the b parameter is shown in Figure 1.26. 

 
 
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.26:  An Illustration of Generalizations 2 & 3. 
 

The first case, increasing at a decreasing rate, means that our finger will 
move up as we trace left to right on the upper left curve in Figure 1.26 
(increasing), but not as fast at the end as at the beginning.  Next, decreasing at a 
decreasing rate means when traced, our finger moves down, but we actually 
decrease faster at the end.  Let’s explain in terms of the average rate of change, a 
concept we discussed in the context of linear models.   

 
We see that the function in the upper right quadrant is decreasing; that is, 

the dependent variable is getting smaller as the independent variable increases.  
The next area to address is the rate at which the function is decreasing, an 
analysis of the rate of change.  In doing this, always move from left to right on 
the path of the function. 

 
First consider the ruler labeled “Step 1” in Figure 1.27, measuring the 

average rate of change between the points )5.7,1(  and )0.7,4( . 
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  Next, consider the ruler labeled “Step 2” in Figure 1.27, measuring the 

average rate of change between the points (4, 7.0) and (7, 4.5). 
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Notice that -.833 <  -.166, therefore the average rate of change (or the 

slope) is decreasing and the function is decreasing at a decreasing rate. 

Exponential Function
(Impact of a and b

parameters)

Decreasing at 
an Increasing 

Rate

Increasing at 
an Increasing 

Rate

Increasing at 
a Decreasing 

Rate

Decreasing at 
a Decreasing 

Rate

a<0, 0<b<1

a>0, 0<b<1 a>0, b>1

a<0, b>1

Exponential Function
(Impact of a and b

parameters)

Decreasing at 
an Increasing 

Rate

Decreasing at 
an Increasing 

Rate

Increasing at 
an Increasing 

Rate

Increasing at 
an Increasing 

Rate

Increasing at 
a Decreasing 

Rate

Increasing at 
a Decreasing 

Rate

Decreasing at 
a Decreasing 

Rate

Decreasing at 
a Decreasing 

Rate

a<0, 0<b<1

a>0, 0<b<1 a>0, b>1

a<0, b>1



CHAPTER 1.  MATHEMATICAL MODELING   52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.27: Illustration of Decreasing at a Decreasing Rate. 

 
 We will use Figures 1.26 and 1.27 to describe many standard functions in the 
upcoming lessons, including exponential functions in this section. 
 

The box below summarizes the exponential properties we have discussed so 
far.  You should have a good understanding of each of these.  
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Properties of Exponential Functions of the form dabxf x +=)( : 
 

o If 1>a , and 

• 1>b , the function will increase at an increasing rate as the independent 
variable increases. 

• 10 << b , the function will decrease at an increasing rate as the 
independent variable increases. 

• 1=b , the function will remain constant an equal to the sum of the 
parameters a and d as the independent variable increases. 

 

o If 1<a , and 

• 1>b , the function will decrease at a decreasing rate as the independent 
variable increases. 

• 10 << b , the function will increase at a decreasing rate as the 
independent variable increases. 

• 1=b , the function will remain constant an equal to the sum of the 
parameters a and d as the independent variable increases. 
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You should also have a good understanding of the Law of Exponents which is 
summarized in the following box. 
 

 
 
 
 
 

 
 
 
 
 

 
You may want to take some time right now to navigate to the interactive 

website located at:  
 
http://www.dean.usma.edu/departments/math/MRCW/MA103/exponential/live graph.html 
 
(You can also link to this website through the MA-103 course webpage).  Once 
there, adjust the parameters to see how the graph changes.  Intuitively, we see 
that if the equation had the values a=1, d=0, then we are back to our simplest 
type of exponential function described in Equation (2). 
 
Question 2  In your own words, describe how changes in the parameters of the 
generalized exponential function affect its shape. 
 
Question 3  In Table 1.9 there are three sets of data that represent three different 
functions.  Which data comes from an exponential function? Can you identify the 
other types of functions from the data?  Do you need more information for the 
first two data sets? 
 

x y x y x y 
0 20.0000 0 20.0000 0 20.0000 
1 21.0000 1 21.0000 1 21.0000 
2 22.1000 2 22.0500 2 22.0000 
3 23.2775 3 23.1525 3 23.0000 
4 24.6425 4 24.3101 4 24.0000 
5 26.2650 

 

5 25.5256 

 

5 25.0000 

Table 1.9: Values for Question 33 

 

                                                 
3 This problem is from Functioning in the Real World, A Precalculus Experience by Gordon, Gordon,  
Tucker, and Siegel, pg. 83 

Law of Exponents for Exponential Functions: 

1) x y x ya a a+ =  

2) 
x

x y
y

a
a

a
− =  

3) ( )x y xya a=  

4) ( )x x xab a b=  
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1.6.4 Applications of the Generalized Exponential Function 
 

Example 1  Modeling the Growth of an Investment.   
Let’s discuss the growth of money in a traditional savings account.  If money 

in the account grew in a linear manner, the changes in the account from year to 
year, as we learned in Lesson 4, would all be the same (there would be a constant 
average rate of change).  The second column of Table 1.11 illustrates how a 
$1000 investment might actually grow in a savings account.  You can see in the 
third column, the average rate of change between each successive year is NOT 
constant and thus, the growth is NOT linear.  In fact, the average rates of 
change are increasing because the more money that is in the account, the more 
money there is to make additional interest.  The balance of the account can be 
modeled with a Case 1 exponential function where parameter a > 0 and 
parameter b > 1.   

 
Suppose your parents put money into a bank account for you after you 

graduated the sixth grade.  You are not sure what the interest rate is, but based 
upon old annual statements, you can see the growth that has occurred.  You 
would like to know how much will be in that account when you retire from the 
military after 20 years of service (23 years from now, year 7).   

 
 
 
 
 
 

 

 

 

Table 1.10: Average Rate of Change of an Exponential Function 
 
 
Step 1:  Transform the problem.  We are given a table of data, we must 

examine the table. 
 

• Define the variables: 
o Independent variable (input):  year 
o Dependent variable (output):  amount of money in account 

 

• Nature of the data:  Apply the quantitative measures of the nature 
of the data to gain an idea of which type of function may be most 
appropriate.  See Table 1.10. 

 
 Notice that the data are increasing, as is the rate; therefore, we need a 
function that is increasing at an increasing rate: a Case 1 exponential function.  
Let’s graph the data to verify our conjecture.  See Figure 1.28. 

 
 

Year Amount AVG RoC 
0 $1,000.00  
1 $1,051.27 51.27 
2 $1,105.17 53.90 
3 $1,161.83 56.66 
4 $1,221.40 59.57 
5 $1,284.03 62.62 
6 $1,349.86 65.83 
7 $1,419.07 69.21 
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Figure 1.28:  Scatterplot of Table 1.10 Data. 
 
 

 The data in Figure 1.28 seem to exhibit a linear pattern. Our quantitative 
measure of the nature of the data and our visual measure seem to conflict.  We 
will explore the two models that explain what appears to be going on in the data 
set:  the linear model (visual inspection) and exponential model (nature of the 
data).  We know that we will have to find the model that fits through the data 
best. 

• Assumptions 
o No money is withdrawn from the account 
o No additional deposits are made into the account 
o The data accurately represent what will happen to the 

population in the coming years. 
 

Our plan is to use the model development and evaluation techniques that 
we have used to this point in the course to find the best model to determine how 
much money we will have after any given year in the future. 

 
 Step 2.  Solve the problem using appropriate solution techniques.  To 

solve, we will develop a linear model and an exponential model, then compare the 
two to decide which is best.   

 

• Linear model development.  First, we’ll try the linear model.  In 
general, our linear model will be: 

 
dyearayearAmount += )()(  

 
Linear Model Parameter Estimation:  Using modeling skills developed 
to date, we need to estimate the parameters (a and d) for a linear 
model.   Let’s use the first and last data point to form two equations 
we can solve for the two unknown parameters.  The two equations 
follow:  
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 We see by inspection that the d parameter (y-intercept) is 1000.  We can use 
that information to solve for a. 
 

87.59
7

07.419
707.419

1000)7(1419.07

≈=

=
+=

a

a
a

 

 
The estimated model is: 

 

07.14191000|{:
}70|{:

1000)(87.59)(

≤≤
≤≤

+=

AmountAmountRange
yearyearDomain

yearyearAmount
 

 
 Overlaid with our data, the model is graphed in Figure 1.29. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.29: Investment Data Overlaid with Linear Model. 
 

 
Using the eyeball test to evaluate Figure 1.29, we see that the estimated 

linear model seems to be a pretty good fit to the data.  
 
 
Question 4  Calculate the Sum of Squared Error and the coefficient of 
determination for the linear model shown in Figure 1.29.  Use the two tests to 
determine the model’s “goodness of fit.” 
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• Exponential model development.  Now that we’ve developed a 
power model, it is time to develop our generalized exponential 
model, of the form: 

 

dabyearAmount x +=)(  
 

As we saw earlier in the example, each of the points seems 
representative.  It make sense to solve for all three parameters if we 
can, so we’ll use the first, last, and middle points to form three 
equations in three unknowns and let Mathematica do the work for 
us.  The three equations are:   
 

dab
dab
dab

+=

+=

+=

7

4

1

07.1419
40.1221
27.1051

 

 

 
 

Figure 1.30:  Using Mathematica to Solve for Three Parameters 
 

Using the solution to the systems of equations in Figure 1.30, yields the 
final model: 

          281732.0)05128.1(719.999)( += xyearAmount  
 

 
 

 
What if we encounter an example (there are many) where Mathematica 

cannot solve for three parameters simultaneously? 
  

Let’s assume a value for the b parameter to make the function intrinsically 
linear (in the form ax+d) and then solve for a and d.  For this example, we see 
that the rate at which the function is increasing is not significant, so we could 
assume a value for b  that is close to 1.  Let’s assume b = 1.01.  
 
 
 
 
 
 
 
 
  
 

A function is said to be intrinsically linear when it can be written in 
the form f(x) = ax+d.  (Notice the form of the exponential 
function, after a ‘b’ parameter is estimated and values substituted 
in for representative points) 
 

daxxfdada +=→+=→+= )()01.1(27.1051)01.1(27.1051 1  
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Use the second and last data points to form two equations to solve for the 
two unknown parameters: 
 

da
da

+=

+=
7

1

)01.1(07.1419
)01.1(27.1051

 

   
    

 
 
 
 

Figure 1.31:  Solving for Two Parameters in Mathematica 

  
Using the solution to the systems of equations in Figure 1.31, yields the 

final model: 
 

    26.4927)01.1(34.5919)( −= xyearAmount  
 

 
 
 

Let’s plot our exponential models, Figure 1.32, to see how well it appears 
to fit the data and how well it compares to the linear model we already plotted.   
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Figure 1.32: Investment Data Overlaid with Linear and Exponential Models 
 
 

Step 3.  Interpret the results of the solution.  All models appear to fit the 
data relatively well, but which is best?  Using the eyeball test, the exponential 
model1 seems to fit the data better than the estimated exponential model2 or 
the linear model.  Because of the scale of the graph, we cannot be precisely 
sure that the eyeball test, a qualitative (subjective) measure is accurate 
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enough in this case.  We will verify our conjecture using each model’s sum of 
squared error and coefficient of determination.  See the results in Figure 1.33. 

 
 

Figure 1.33:  Computation of Linear and Exponential SSE and r2 

 
 

As expected, the exponential models have a lower SSE and a higher r2, 
and are therefore, a better fit to the data than the linear model.  Exponential 
model1 is better than the exponential model2 which is also to be expected since 
we estimated the parameter b  in the set-up of exponential model2. 

 
 

Question 5 Complete the reflect step of the modeling process for Example 1.  
Does the model you chose to have the best fit make sense based upon the number 
of parameters and your knowledge of the nature of investment data? 
 
 
Question 6 Complete a sensitivity analysis of the two estimated models.  Do 
your findings change significantly? 

Year Amount Linear Model
Mean 
Error

Squared 
Mean Error

Model 
Error

Squared 
Model Error

0 1000.00 1000.00 -209.55 43909.11 0.00 0.00 Linear
1 1051.27 1059.87 -158.28 25050.98 -8.60 73.96 a 59.87
2 1105.17 1119.74 -104.38 10894.14 -14.57 212.28 b
3 1161.83 1179.61 -47.71 2276.72 -17.78 316.13 c
4 1221.40 1239.48 11.86 140.54 -18.08 326.89 d 1000
5 1284.03 1299.35 74.49 5548.02 -15.32 234.70
6 1349.96 1359.22 140.42 19716.37 -9.26 85.75
7 1419.07 1419.09 209.53 43900.73 -0.02 0.00

Mean: 1209.55 SST: 151436.60 SSE: 1249.71
r^2: 0.99174763

Exponential 
Model1
1000.00 -199.06 39625.61 0.00 0.00 Expo1
1051.27 -147.79 21842.43 0.00 0.00 a 999.719
1105.16 -93.89 8815.68 0.01 0.00 b 1.05128
1161.82 -37.23 1386.21 0.01 0.00 c
1221.38 22.34 498.99 0.02 0.00 d 0.281732
1284.00 84.97 7219.59 0.03 0.00
1349.83 150.90 22770.26 0.13 0.02
1419.03 220.01 48403.59 0.04 0.00

Mean: 1199.06 SST: 150562.36 SSE: 0.02
r^2: 0.99999987

Exponential 
Model2
992.08 -203.45 41392.98 7.92 62.73 Expo2

1051.27 -152.18 23159.56 0.00 0.00 a 5919.34
1111.06 -98.28 9659.48 -5.89 34.68 b 1.01
1171.44 -41.62 1732.44 -9.61 92.39 c
1232.43 17.95 322.11 -11.03 121.64 d -4927.26
1294.03 80.58 6492.71 -10.00 99.92
1356.24 146.51 21464.40 -6.28 39.42
1419.07 215.62 46490.84 0.00 0.00

Mean: 1203.45 SST: 150714.53 SSE: 450.77
r^2: 0.99700912
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Example 2  Modeling Prozac in the Bloodstream 
Let’s now analyze decay functions by considering one of the most widely 

taken drugs to treat depression, Prozac.  If a person takes a certain single dose, it 
will eventually be eliminated from the bloodstream by the kidneys.  We can 
assume that during a given fixed time period, the kidneys will remove a certain 
percentage of the drug from the bloodstream.  In fact, it has been found that the 
kidneys remove one-fourth of the drug during any 24-hour period so that 75% of 
the drug will still remain.   

 
It is unhealthy for two different antidepressants to work in the body at the 

same time.  In fact, a person can have no more than 10mg of Prozac in their 
blood to safely begin another drug regimen.  Let’s assume that a person must 
change the prescription they are on from Prozac to another drug.  The 
pharmacist tested the patient to determine how much Prozac is currently in the 
blood.  The test revealed an amount of 60mg.  Given this initial amount of 
Prozac in the blood, it is your job to advise the pharmacist when to safely 
prescribe the new drug.   

 
Step 1:  Transform the problem.  We are given the rate at which Prozac is 

removed from the bloodstream (75% eliminated per day).  Therefore, we know 
that our b parameter is b = .75…a decaying exponential function.  We are 
also given the start point; at day zero, there is 60mg of Prozac in the blood. 

 

• Define the variables: 
o Independent variable (input):  time (days) 
o Dependent variable (output):  amount of Prozac in the 

blood 
 

• Assume:  For this example, we will assume that the parameter d = 
0 because after an infinite time period, the level of the drug in the 
blood will tend toward zero (i.e., there is a horizontal asymptote at 
y = 0 – recall earlier we mentioned that the d  parameter equates 
to the horizontal asymptote).  Therefore, our new exponential 
function becomes: 

0)( += tabtdruglevel      (4) 

 The goal of this problem is to find how many days it will take the Prozac 
to reach a safe level to administer the new drug, a level of 10mg.  Our plan will 
be to develop a model for Prozac being eliminated from the blood stream.  We 
can then iterate the function to see when the function drops below 10mg of 
Prozac in the bloodstream.   

 
Step 2.  Solve the problem using appropriate techniques.  Given that 

the initial dose is 60mg, and our horizontal asymptote is at t=0, we are 
able to solve for the a parameter as follows: 
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0

( )

(0) 60
60 (1)
60 .

tdruglevel t ab

druglevel ab
a
a

=

= =

=

=

 

And in general, the following function models the amount of Prozac in the 
bloodstream after t days, 

( ) 60(.75)tdruglevel t =      (5) 

 

 

Domain : { | 0 50} [0,50] (after 50days amount of drug is negligible)
Range : { | 0 60} [0,60].

t t
druglevel druglevel

≤ ≤ =

≤ ≤ =
 

Therefore, the drug after each 24-hour time period can be determined by 

1

2

(1) 60(.75)

(2) 60(.75) 60(.75)(.75)
...

druglevel

druglevel
etc

=

= =  

 

*Question 7  Using Equation (5), modeling the drug level in the bloodstream, 
determine how much remains at time=3, 4, and 5 days.  Determine how many 
milligrams of Prozac your body metabolizes between each successive day for days 
0 to 5.  What do you notice about the differences between the previous and 
successive drug levels?  

 

*Question 8  Utilizing the function above that models the amount of Prozac in 
the bloodstream, complete the following: 

a. Find the amount of Prozac in the bloodstream after one week.   
b. Estimate the half-life (the amount of time required to decrease the 

original amount by one half) of Prozac in the bloodstream. 
c. Estimate how long it takes until the level drops to 10mg. 

 

*Question 9 Equation (5) provided a function that yields drug level as a 
function of time.  You were able to iterate to find the answer to Question 7.  
What other technique could we use to determine the day at which Prozac level 
reached 10mg?  What answer did you get? 
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Question 10 Under ideal conditions, bacteria flourish in a given cadet’s sink.  
However, it is Tuesday afternoon and you are preparing for WAMI.  There are 
currently 1000 bacteria in your sink.  Your friend from another regiment 
measured how bacteria remained in his sink after he sprayed it at 2400 hours the 
night before his last WAMI.  Below is the table that he made. 
 
 
 
 
 
 
 
 
 
  a. How many bacteria would be left after 8 hours? 
 
  b. Given an inspection that starts at 0630, when would you have to spray 
to ensure there were no living bacteria in your sink at the beginning of 
inspection? 
 
  c. Your squad leader is a Chemistry major.  He begins to inspect your 
room and sees that there are 5 bacteria remaining in your sink.  When did you 
spray? 
 
 
Question 11  Go to the web or any other reference and find the population data 
of your favorite country (other than the US).  Plot the data, and predict the 
population for the years 2010, 2020 and 3000.  What type of model did you use?  
What assumptions did you make?  Discuss how good you think your predictions 
are and why?  
 
 
Question 12  The cost of a US first-class postage stamp was 29 cents in 1990 and 
was 39 cents in 2006; predict when the cost of this stamp will be $1 using an 
exponential model.  **HINT** You may want to scale the years so you are not 
raising a number to the 1990 power. 
 
 
Question 13   The population in Orange County, New York in 1990 was 307,647 
and increased to 341,367 in 2000.  Using this information and assuming an 
exponential model, what do you predict the population will be in 2010? 

Hour Bacteria
0 1000
1 500
2 250
3 125
4 62.5
5 31.25
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1.7  Linear and Exponential Data Fitting 
 

1.7.1  The Nature of the Data 
 
When information or data is collected, it frequently contains some amount of 

error.  Therefore, data with an inherently linear relationship may not appear to 
fit this relationship perfectly.  This can also be said of data which truly have 
attributes lending them to the use of an exponential model.  In other words, 
although we have found the correct underlying relationship, sometimes our 
models may not appear to fit the data perfectly.  Other times, we may select a 
model which appears to fit the data well but it isn’t the best choice for 
prediction.  This lesson will challenge you to think about the data so we can 
begin choosing the best type of model, based upon the nature of the data.   
 

We’ve discussed the nature of the data previously in class.  Our intuition 
regarding the nature of the data is that it would be what the data would look 
like if there was no randomness associated with the collection, as if we lived in a 
“perfect world.”  However, we know that there is some degree of randomness in 
almost everything that happens in the world.  For example, a person may think 
that firing a bullet from a rifle exactly the same way will result in hitting the 
same spot on the target.  But, how many times do two bullets go through the 
same hole?  Not often.  Even if we take the human completely out of the loop 
and fire the rifle from mounts on the ground, the bullets won’t go through the 
same hole.  Why?  The answer is in the randomness that exists in the world, 
possibly:  wind resistance, tiny abnormalities in the bullet affecting trajectory, 
wear on the rifle barrel, percentage of powder igniting, and many more. 

 
The result is that the data we see most likely cannot be perfectly modeled 

with any reasonable model.  But, we know that we can model the trajectory of 
the bullet, determining where it will strike, with a parabolic function (thanks to 
Sir Isaac Newton), because we understand that the nature of the data is a 
parabolic trend.  

 
 
In addition to examining our knowledge of the nature of the data, we can 

apply quantitative tests to determine what we may expect the nature of the data 
to be. 

 

• Is the rate of change of the data constant (or near constant)? 
o If yes, try a linear model.   
 

• If not, then try an exponential model, unless the data follow a cycle, 
which we will address in later lessons. 

 

The nature of the data consists of the underlying attributes of the data 
which describe the pattern it will take both within and outside of the 
collected region. 
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1.7.2  Data Fitting 
 
In section 1.7.1, we discussed using the nature of the data to determine what 

type of model we will use to model data we are given.  It is now time to fully 
develop the model that we selected.  Finally, we will plot our models against the 
data and apply the “eyeball,” SSE, and r2 tests to determine if a particular model 
is good or not.   
  
 
Example 1  In doing some research on Mexico, we come across the data in Table 
1.11 regarding Mexico’s population.  We are interested in modeling the 
population as a function of time but need to determine which function will best 
fit the data.1 
 

Year 
Population 
(millions) 

2000 100 
2001 102 
2002 104.04 
2003 106.12 
2004 108.24 
2005 110.41 

Table 1.11: Population of Mexico 
 

Step 1:  Transform the problem.  We are given a table of data, we must 
examine the table. 

 

• Define the variables: 
o Independent variable (input):  year 
o Dependent variable (output):  population 

 

• Nature of the data:  Apply the quantitative measures of the nature 
of the data to gain an idea of which type of function may be most 
appropriate.  See Table 1.12. 

 
 

 
 
 
 
 
 
 
 
 

Table 1.12:  Quantitative Measure of the Nature of the Data 

                                                 
1 Problem adapted from Functions Modeling Change: a Preparation for Calculus, 3rd Edition. Connally, 
Hughes-Hallett, Gleason, et al., 2007. p. 23. 

Year Population 
(Millions)

Rate of 
Change

2000 100
2001 102 2
2002 104.04 2.04
2003 106.12 2.08
2004 108.24 2.12
2005 110.41 2.17

Mexico Population
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Notice that the data are increasing, as is the rate; therefore, we need a 
function that is increasing at an increasing rate, modeled by an exponential 
function.  Let’s graph the data to verify our conjecture.  See Figure 1.34. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.34:  Scatterplot of Table 1.11 Data. 

 
 
The data in Figure 1.34 seems to exhibit a linear pattern. But our 

quantitative measure of the nature of the data and our visual measure seem to 
conflict.  We know we will have to find the model that fits through the data best. 

 

• Assumptions 
o Based on the scatterplot in Figure 1.34, we will assume the 

plot of the data appears to increase at a constant rate.  
We’ll assume a linear model might be a good choice. 

o Since the data do not increase in a perfectly linear manner 
(or, the rate of change would be constant), we’ll also 
assume a generalized exponential model might model the 
data.  We select this because we can develop a model that 
incorporates a bend in the data and a vertical shift. 

o The data accurately represent what will happen to the 
population in the coming years. 

 
Our plan is to use the model development and evaluation techniques that we 

have used to this point in the course to find the best model to determine Mexican 
population in the future. 

 
 Step 2.  Solve the problem using appropriate solution techniques.  To 

solve, we will develop a linear and an exponential model, then evaluate the 
two to decide which is best.   
 

• Linear model development.  First, we’ll try the linear model.  In 
general, our linear model will be: 

 
dyearayearPopulation += )()(  
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• Linear Model Parameter Estimation:  Using modeling skills 
developed to date, we need to estimate the parameters (a and d) 
for a linear model.   To estimate two parameters, we need two 
data points that represent the data well.  

 
 
   
 

 

 
 

 
 
 

 

Figure 1.35: Determining Representative Data Points for Parameter Estimation 
 

 

• The apparent linear trend of the data, seen in Figure 1.35, 
indicates that any of the data will represent it well; therefore, we’ll 
select the first and last data points to estimate our parameters.  

 

• Now, as we have many times in the past, we’ll create two linear 
equations using the data points to estimate our parameter values.  
Our two equations are:   

 

da
da
+=

+=
)2005(41.110

)2000(100
 

  

 
 

Figure 1.36: Using Mathematica to Solve Two Simultaneous Linear Equations 

 
 

Using the solution from Figure 1.36 yields the final model: 
 

4064)(082.2)( −= yearyearPopulation  
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The model is plotted in Figure 1.37; by visual inspection, it fits the data well.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.37: Mexican Population Data Overlaid with Linear Model 
 
 

• Exponential model development.  Now that we’ve developed a 
linear model, it is time to develop our generalized exponential 
model, of the form: 

 

dbayearPopulation year += )()(  
 

• As we saw earlier in the example, each of the points seems 
representative.  It make sense to solve for all three parameters if 
we can, so we’ll use the second, fourth, and sixth points to form 
three equations in three unknowns and let Mathematica do the 
work for us.  See Figure 1.38 for the results.   

 

• **NOTE**  The independent variable in the equation (year) is 
scaled by subtracting 2000 from each actual year value.  It is 
common practice to scale the independent variable when working 
with exponential functions because raising a number to the 2000th 
power is very often problematic. 

 

Figure 1.38:  Using Mathematica to Solve for Three Parameters 
 

• Since the b  parameter needs to be greater than 1 (to ensure an 
increasing exponential function), we choose the second solution 
returned by Mathematica: 851.97=a , 02042.1=b , and 

15059.2=d . 
Using the second solution from Figure 1.38, yields the final model: 
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Amount Linear Model

In[1]:= SolveA9102 m a∗ b1 + d, 106.12 m a∗ b3 +d, 110.41 m a∗ b5 + d=, 8a, b, d<E

Out[1]= 88d → 2.15059, a → −97.851, b → −1.02042<, 8d → 2.15059, a → 97.851, b → 1.02042<<
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15059.2)02042.1(851.97)( += yearyearPopulation  

 
41.110100|{:

}50|{:
≤≤

≤≤
populationpopulationRange

yearyearDomain
 

 
The exponential model is plotted in Figure 1.39, to see how well it appears to 

fit the data.   
 

Figure 1.39: Mexican Population Data Overlaid with Exponential Model 
 
 

Step 3.  Interpret the results of the solution.  The estimated linear model 
certainly seems to fit the data as well as the estimated exponential model.  
Overall, the linear model seems to be our best model – it fits almost as well as 
the exponential and has one fewer parameter (it’s simpler).  Though it may 
not seem necessary to compute sum of squared error and r2 in this case, we do 
it anyway for two reasons.   
 

• Quantitative, objective justifications are useful to back-up 
qualitative, subjective observations.   

• Valuable practice in the computation of SSE is useful for cases 
that are not so clear cut. 

 
Recall from Section 1.5 that we compute SSE by using the following formula: 

2 2

1 1

ˆ( )
n n

i i i
i i

y y e
= =

− =∑ ∑ . 

 
Derive the error at each point by subtracting the predicted value from your 

model from the actual value of the data.  Square each of these values, summing 
these squared provides SSE.  See the results in Figure 1.40. 
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Figure 1.40:  Computation of Linear and Power Sum of Squared Error 

 
 

As anticipated through visual inspection, the linear and exponential models 

have similar SSE and 
2r .  In fact, the linear model accounts for nearly 99.94% of 

the variation in the data whereas the exponential model accounts for greater than 
99.99%. 

 
The nature of the data would appear to support an exponential model, but 

when we use the other tests at our disposal; we realize that we can use a simpler, 
two-parameter linear model instead of the more complicated three-parameter 
exponential model.  So, it seems both of our models are very good.  So, which do 
we use?  Good question!  Let’s see if we can determine what to do as we reflect. 
 

We have determined the following: The linear model would probably prove 
useful in extrapolating for a short time period either prior to 2000 or after 2005 
but wouldn’t be useful for the long-term, because it does not fit the nature of the 
data.  The problem is identifying an appropriate domain for our model.  How far 
out can we consider the linear model useful?   

 
This question is an important question that highlights the fact that modeling 

has components that are “science,” as in the development and evaluation of the 
models, and “art,” as in the interpretation of the models and their relevance over 
certain domains.  In fact, our final model may be a piecewise function that 
enables us to choose different functions over different ranges of the domain. 
 
 
Question 1 In Example 1, over what domain would a linear function be most 
appropriate?  An exponential function? 
 
 

Year Population Linear 
Model

Squared 
Mean Error SST Model Error Squared 

Model Error SSE

2000 100 100 26.368225 75.83 0.00000000 0.00000000 0.04572000 a 2.082
2001 102 102.082 9.828225 0.08200000 0.00672400 b
2002 104.04 104.164 1.199025 0.12400000 0.01537600 R-Sq c
2003 106.12 106.246 0.970225 0.12600000 0.01587600 0.99939709 d -4064
2004 108.24 108.328 9.641025 0.08800000 0.00774400
2005 110.41 110.41 27.825625 0.00000000 0.00000000

Mean: 105.14

Year Population Exponential 
Model

Squared 
Mean Error SST Model Error Squared 

Model Error SSE

0 100 100.00159 26.368225 75.83 0.00159000 0.00000253 0.00001203 a 97.851
1 102 101.9997074 9.828225 -0.00029258 0.00000009 b 1.02042
2 104.04 104.0386264 1.199025 -0.00137360 0.00000189 R-Sq c
3 106.12 106.1191801 0.970225 -0.00081990 0.00000067 0.99999984 d 2.15059
4 108.24 108.2422187 9.641025 0.00221871 0.00000492
5 110.41 110.4086098 27.825625 -0.00139023 0.00000193

Mean: 105.14
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Question 2  The following table contains data on the population of two countries 
in millions.  One of the countries experiences relatively constant growth between 
1950 and 2000 while the other does not.2 
 

a. Develop two models (one linear and one generalized exponential model) 
to predict each country’s population over time.  Outline your problem 
solving process ensuring you include your assumptions and parameter 
estimation process.  Discuss the fit of your models.   

 
b. Which of the two countries exhibits non-constant growth? 

 
c. Using the model you believe to be best for each country, estimate the 

populations in 1993.   
 

Year 1950 1960 1970 1980 1990 2000 
Country A 8.2 9.8 12.4 15.1 14.7 23.9 
Country B 7.5 9.9 12.5 14.9 17.2 19.2 

Population Data for Countries A and B 

 

Question 3 Go back to one of the models that you have worked with in class, 
the one you found most interesting.  Estimate the parameters of the model to 
achieve a better fit.  Communicate your results in terms of the steps you took to 
develop the model, evaluate the model, and conduct a sensitivity analysis. 

 

                                                 
2 Problem adapted from Functions Modeling Change: a Preparation for Calculus, 3rd Edition. Connally, 
Hughes-Hallett, Gleason, et al., 2007, p. 25. 
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Challenge Question.   
 

In Section 1.4, we considered data pertaining to the launch of the Space 
Shuttle Challenger.  This data, on the percent expansion of an o-ring, appeared 
to indicate a linear relationship between the surrounding temperature and the 
percent expansion.  Unfortunately, our attempts to model this data failed to 
identify that the space shuttle should not have launched.   
 

Now, let’s consider the nature of this data.  O-rings are made of rubber 
(picture an o-ring as a rubber band).  When heated, rubber expands allowing it 
to stretch beyond the expansion it would be capable of at room temperature but 
with a limitation - eventually, the rubber will break.  When cooled, rubber 
becomes brittle and is capable of very little expansion before breaking.  
Therefore, if we were to describe an o-ring’s expansion based on the temperature 
of its surroundings, we would realize that at low temperatures, the o-ring would 
not be capable of much expansion.  As the temperature increased, the o-ring 
would expand quickly but, over the long term, the o-ring would reach its 
maximum expansion and would eventually break.  Graphically, o-ring expansion 
would resemble something like the graph shown in Figure 1.41.  

 
 

 

Figure 1.41: Nature of the Data: O-ring Expansion 
 
 

Develop,  fully evaluate, and communicate a model that would effectively 
represent the nature of the data illustrated in Figure 1.41 and predict the 
explosion of the Challenger. 
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1.8 Generalized Power Function 
 
 
Power functions can be extremely useful models that describe many 

interesting phenomena in our world.  Shortly after the apple fell on his head, Sir 
Isaac Newton discovered that gravity could be represented and modeled using a 
power function, namely a quadratic function of the form y=x2. 

 
Recall our discussions of rates of change in sections 1.3 and 1.6.  Up until 

now, if the nature of the data we were presented with demonstrated a constant 
rate of change, we could use a two-parameter linear model.  If the data have 
curves in them (non-constant rate of change), we could use a three-parameter 
exponential function to model the data.  In this section, you will learn about 
another model that is useful in modeling data with curves – the four-parameter 
power function. 

 
 In the linear case, we saw that the rate of change was constant and its 
sign determined if the line was increasing or decreasing.  We will see many 
examples of power functions that increase or decrease and their rates of change 
that also increase or decrease.  Figure 1.42 catalogs the four possibilities of 
power functions and their corresponding changing rates.  Each of the pieces of 
the black circle represents a piece of a function.  The adjacent box explains the 
behavior that is graphically depicted by the corresponding segment, i.e., how 
the function and its rate of change are changing.  Use this diagram as a tool to 
help analyze new functions throughout this text.  **NOTE**  This is the same 
figure as Figure 1.26 in Section 1.6 on exponential functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.42: Graphs and rates of change. 
 

1.8.1 Three Cases of Power Functions 
 

We will consider three different cases of the power function  
 
              (1) 

. 
where x is the independent variable and b is a parameter that determines the 
shape of the power function.  Notice there is a distinct difference between the 
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shapes of the graphs when b is even or odd.  We will show each of these two 
standard functions in each of the three cases.  There are many forms of the 
power function other than the three that we will discuss, but all power functions 
are characterized by the independent variable being raised to a constant power. 
 

Case 1 ,b n=  where n is a positive integer 
 

The parabola 
2( )f x x=  

 
is a power function.  As characterized above, our independent variable is 
raised to a constant power (in this case, the power is 2).    

 
 

 

 

 

 

 

Figure 1.43: Plot of Power Function 2x  

 
Another example of Case 1 is the cubic function 
 

3)( xxf =  

which has parameter .3=b  
 

 

 

 

 

 

 

Figure 1.44: Plot of Power Function 3x  

 
Note that if b = 1 we have the function f(x) = x, which is linear.  Therefore, 

the linear function is a particular type of power function. 
 
Question 1   Plot x4 by hand.  How do the plots of x2, x3, and x4 compare to 
each other? What can you conclude about the effect of the b parameter on 
Equation 1?  
 
Question 2   What are the domain and range of functions that fall into Case 
1? 
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Question 3   What can you say about the rates of change of the functions in 
Case 1 ? 
 
Question 4 The kinetic energy (KE) from a moving billiard or pool ball can be 
measured by the relationship: 

KE = 21
2

mv  

 
a. Given a constant mass, what does doubling the velocity (v) do to 

the amount of kinetic energy?   
 

b. How could you describe the rate of change of this function?   
 
 

An example of a function in Case 1 is the relationship for the area of a circle 

with radius r, .2rA π=   This relationship is an example of a power function 
where b=2, the radius, r, is the independent variable, and A or A(r) is the 
dependent variable. 
 

Thus far, we’ve considered the case where our exponent is a positive integer.  
We will discuss the two other cases that may prove useful in modeling.  
  

Case 2 1/ ,b n=  where n is a positive integer (e.g., 1/ 2( )f x x x= = ) 
 
This type of power function is frequently referred to as a root function.  

Root functions involve taking a root of the independent variable and exhibit one 
of the two general shapes shown in Figures 1.45 and 1.46.  

 
 
 
 
 
 
 
 
 
 

 

Figure 1.45: Plot of Power Function 2
1

xx =  
 
 
Power functions whose n values are even numbers like 2, 4, and 6 are called 

even root functions.  The domains of even root functions are limited to [0, )∞ .   
 

Question 5   How do the plots of 64 ,, xandxx  compare to each other? 
What are your conclusions with respect to their rates of change? 
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Figure 1.46: Plot of Power Function 3
1

3 xx =  
 
 
Power functions whose n values are odd numbers like 3, 5, and 7 are called 

odd root functions.  The domains of odd root functions consist of all real 
numbers.   

 

Question 6   How do the plots of 753 ,, xandxx compare to each other? 
What are your conclusions with respect to their rate of change? 
 
Case 3 ,b n=  where n is a negative integer 

This is known as a reciprocal function.  Its characteristic shape is a 
hyperbola as shown in Figures 1.47 and 1.48.  
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Figure 1.47: Plot of Power Function 
11 −= x

x
 Figure 1.48: Plot of Power Function 

2
2

1 −= x
x

 

 
Each of these two graphs have horizontal and vertical asymptotes that 

separate it from the previous cases.  The vertical asymptote is the y-axis or the 
line 0=x . 
 

The horizontal asymptote for each of these functions is the x-axis or .0=y  
 
Question 7 What are the domains and ranges of Case 3 power functions? 
 

Question 8 How do the plots of 53
1,1,1
x

and
xx

compare to each other?  What 

can you say about the rates of change of these functions on the different 
intervals in their domains? 
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Question 9 How do the plots of 642
1,1,1
x

and
xx

compare to each other?  What 

can you say about the rates of change of these functions on the different 
intervals in their domains? 
 
 

This function below is often used with a limited domain to describe real 
world phenomena.  It is Boyle’s Law from chemistry and physics which states 
that for a constant temperature, C, the volume of gas, V, is inversely 
proportional to the pressure, P.  

1( )
C

V P C P
P

−= =
o

o

 
 
 
Question 10 Using Figure 1.42, the circle diagram, give an example of a power 
or polynomial function and its domain that satisfies each of the four cases. 
 

1.6.3 The Generalized Power Function 
 

 Regardless of the type of function we’re working with (our readings have 
covered the linear, exponential, and power families), functions contain 
parameters or constant values that influence the shape and location of their 
graphs.  Experimentation with graphing in Mathematica should have resulted in 
some generalities regarding the b parameter for power functions.  However, 
most data that follows a power function trend does not go through the origin, so 
we find modeling with the form in equation (1) to be too restrictive.  We use 
the more general form 

( ) ( )bf x a x c d= + +  
 

where a, b, c, and d are parameters that can assist us in modeling data that 
follows a power trend.  We call this function the generalized power function. 
 

Question 11 Begin with the function 2)( axxf = .  Select a positive and negative 
whole number and decimal value for the a parameter.  What effect can you 
conclude that this parameter has upon the generalized power function? 
 

Question 12  Begin with the function 2)()( cxxf += .  Select a positive and 
negative whole number for the c parameter.  What effect can you conclude that 
this parameter has upon the generalized power function? 
 

Question 13 Begin with the function dxxf += 2)( .  Select a positive and 
negative whole number for the d parameter.  What effect can you conclude that 
this parameter has upon the generalized power function? 



CHAPTER 1.  MATHEMATICAL MODELING        79 
 

When b is a non-negative integer (Case 1), then the power 
function )(xf is also called a polynomial.  A polynomial function is a linear 
combination of power functions with non-negative integer powers.  They can all 
be written in the form: 

1 2
1 2 1 0( ) ...b b

b bf x a x a x a x a x a−
−= + + + + +  

 
where b is a non-negative integer.  The coefficients or numbers appearing before 
each term, a0, a1, a2,…, ab, are constants within the polynomial.   
 
For example,  

6443245434)6(3)( 233 −+−=+−= xxxxxf  
 
after expanding the polynomial.  So, the coefficients of the polynomial are 

,324,54,3 123 =−== aaa and .6440 −=a   However, not all polynomials can be 
written in the generalized power function form.  For example,  
 

1)( 23 +++= xxxxf  
 

cannot be written in the form ( ) ( )bf x a x c d= + + .  There are many applications 
that can be modeled using polynomials, but we will restrict our work to this 
generalized power function for polynomials.  We do this because the general 
polynomial  
 

1 2
1 2 1 0( ) ...b b

b bf x a x a x a x a x a−
−= + + + + +  

 
has b+1 parameters and would require b+1 points to find each parameter.  
Solving for so many parameters is time consuming and often leads to low 
predictive power (recall our discussion in section 1.5).   
 
 
1.8.4  The Role of Parameters 
 

Understanding the role each parameter plays in our families of functions 
contributes to our ability to create useable mathematical models.  Initially, 
understanding function parameters assists in the selection of an appropriate 
function family.   Next, knowledge of parameters enables us to improve our 
mathematical model which ultimately results in a model that can be used for 
prediction.    
 

When modeling using a power function, the first step is to choose an 
appropriate b value based on the general shape of the curve.  After estimating 
or assuming b, it is important to estimate the other parameters.  First, consider 
the role of the d parameter.  For linear functions, it describes the y-intercept.  If 

we assume that 0=x in the generalized power function, we get dacy b += , so d 
is not the y-intercept for a generalized power function (unless a or c is also 0).  
Look at the graphs in Figures 1.49 through 1.51 to see how the d parameter 
changes them. 
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Figure 1.49: Plot of Power Function 

x
1      Figure 1.50:  Plot of 31

+
x

     Figure 1.51: Plot of 21
−

x
 

 
Generalization 1.  We can shift any graph of a function upward or downward by 
adding a parameter to the function: 
 

( )y f x d= +  
 

If d is positive, we will shift or translate the function’s graph upward.  If d is 
negative, we will shift or translate the function’s graph downward.  **NOTE**  
This is also the same first generalization we made for the linear and exponential 
functions. 

 
Next, consider the c parameter.  In Figures 1.52-1.54, we see that this 

parameter creates a horizontal shift as opposed to the vertical shift of the d 

parameter.  In these figures, .3)3(,2)2(,)( −=−+=+= xxfxxfxxf   You 
may expect that a positive value of c will move the function to the right and a 
negative to the left.  Notice that the actual shift is opposite:  positive c values 
shift the function left and negative c values shift the function right.  
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Figure 1.52: Plot of x    Figure 1.53: Plot of 2+x      Figure 1.54: Plot of 3−x  
 

 
Generalization 2.  We can shift any graph of a function to the right or left by 
adding a parameter to the function as: 

( )y f x c= +  
 

If c is positive, we will shift or translate the function’s graph to the left.  
If c is negative, we will shift or translate the function’s graph to the right.  
 

 Estimating the a  parameter in dcxaxf ++= 2)()(  is not as easy as the 

other three parameters.  We often estimate the b parameter based on shape (s-
curve versus u-shaped, …), then estimate the c  and d  parameters using 
horizontal and vertical shifts, respectively (often using the coordinates of the 
first data point).  We can then solve for a using a representative point from the 
data that is different from the first data point. 
 



CHAPTER 1.  MATHEMATICAL MODELING        81 
 

Question 14 What happens if you change the ‘a’ parameter?  Like in the above 
examples, experiment with different values using Mathematica.  
 
 
Example 1 Case 1 of the Power Function.  Suppose a paratrooper jumps from 
a helicopter at a height of 1000 meters.  During his descent, he radios you and 
reports altitude.  Five seconds into his descent, he is at an altitude of 878 
meters.   

 
Sir Isaac Newton described freefall motion by a quadratic (raised to the 

second power) power function.  Using the data provided by the paratrooper, 
determine the specific power function that describes the paratrooper’s descent.   

 
REAL WORLD PROBLEM:  Model the paratrooper’s descent using a 

generalized power function. 
 
 Step 1.  Transform problem into a mathematical model.   
 

  a.  Given:  Generalized power function:  dctatAlt b ++= )()( , 2=b  

         The points )1000,0( and ).878,5(  

      Variable declaration:  )(tAlt is the altitude of the 
paratrooper after t seconds. 

 
  b.  Find:  Parameters a, b (given), c, d: the final model of Alt (t). 
 

c.  Solution Plan:  Use parameter estimation techniques to find b, 
c, and d and then use a representative point to find a. 

 
 Step 2.  Solve using appropriate solution techniques (algebraic 
manipulation). 
 
A good estimation for the c and d parameters are the x and y coordinates of the 
first data point, respectively.  Therefore, assume c = 0 and assume d = 1000.  
Our new function looks like 
 

.10001000)0()( 22 +=++= attatAlt  
 
To solve for a, we use another representative data point.  Let’s use the second 
point ).878,5(    

100088.4)(

88.4

8781000)5()5(

2

2

2

+−=

−=

=+=

ttAlt
s
ma

mmsaAlt

 

 
The domain of this model has a time restriction.  Because it doesn’t make 

sense to model earlier than our first recording, we will limit the lower bound of 
the independent value to zero seconds.  Furthermore, we need to limit the upper 
bound on our domain value because eventually the jumper will hit the ground.  
Once this happens, time will continue but our model will no longer make 
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reasonable predictions.  To see this, let’s try it.  What if we wanted to see what 
our model predicts 60 seconds into the paratroopers flight? 
 

2(60) 4.88(60) 1000 17568 1000 16568Alt m= − + = − + = −  
 

So, for what range of t should our model be valid?  It should work until the 
jumper hits the ground or has an altitude of zero.  Using this information, we 
can algebraically solve for the time when this happens.   

 
2

2

2

0 4.88( ) 1000

4.88 1000

204.82
14.315sec

t

t

t
t

= − +

=

=

= ±

 

 
Where does this leave us?  We previously established that the lower bound 

of our domain is zero, eliminating the -14.315 seconds.  Therefore, our domain 
consists of all times between 0 and 14.315 seconds and our range consists of 
values between 0 meters and 1000 meters. 
 
 Step 3.  Communicate and reflect upon results. 
 The paratrooper fell 1000 meters in 14.315 seconds according to our 
model.  This means that the paratrooper fell at nearly 70 meters per second on 
average or about 157 miles per hour.  This may seem fast, but this is close to 
the falling speed due to gravity.   
 
 
Question 15 What luck!  It turns out the paratrooper’s altimeter is digital and 
it recorded his jump.  The collected data are in Table 1.13 and are linked on the 
course website.  Using two new data points develop another function modeling 
the paratrooper’s decent.  How does your new model compare to your old?  
Which is better?  Why? 
 

 
Table 1.13: Altimeter Data on Paratrooper Jump 

 

Time 
(sec) 0 1 2 3 4 5 6 7 8 9 10 
Altitude 
(m) 1000 995.01 978.57 953.6 917.3 873.96 810.77 741.92 660.8 576.5 456 
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Example 2  Case 2 of the Power Function. Data have been collected on 
weightlifters’ body weights and their corresponding squatting, benching and 
dead-lifting strengths. We’d like to model weightlifter benching strength as a 
function of body weight. The data is provided in Table 1.14 and are linked on 
the course website.  
 
 

 

 

 

 

 

 

 

Table 1.14: Weightlifting Data 
  

 
REAL WORLD PROBLEM:  Model Weightlifting data 

 
 Step 1.  Transform problem into a mathematical model.   
 

a. Given:   Data on weightlifters ranging in weight from 
114 to 275 pounds.  A plot of the data in Figure 1.55 suggests the shape 
of an inverted parabola or perhaps a root function. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.55: Graph of Weightlifting Data 

 

  b. Find:  We are trying to model how much a weightlifter can 
bench given his or her body weight.  In essence, we would like to use our 
independent variable, Weight, to predict our dependent variable, Benching 
Strength.     
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 c.  Assume:  
 

Question 16 What must we assume to solve this problem? 
 
d. Solution Plan:  Since we are trying to model Benching 

Strength as a function of Body Weight, Body Weight is the independent 
variable and Benching Weight is the dependent variable.  In general, 
because our data exhibit a curve that increases at a decreasing rate, our 
model will be: 

dcWeightaWeightStrength n ++=
1

)()(  
 

Next, we’ll need to estimate values for the parameters (a, 1/b n=  
c, and d) of our root-function power model.   We can use three 
representative points to find the a, c, and d parameters after making an 
assumption about the b parameter.  Because we know the b parameter 

must be between zero and one, let’s assume .
2
1

=b  

 
 Step 2.  Solve using appropriate solution techniques (algebraic 
manipulation). 

 We assumed that ,
2
1

=b  now we need three representative data points to 

estimate the a, c and d parameters.  Using the second, fifth and eighth data 
points yield the following three equations: 
 

dca

dca

dca

++=

++=

++=

2
1

2
1

2
1

)220(510

)165(390

)123(245

 

 
Thus, after using Mathematica to solve for a, c and d, our model is  
 

9702.89)702.107(6363.39)( 2
1
+−= weightweightStrength . 

 
Its domain and range are: 
 

]359.785,180[}359.785180|{:
]400,114[}400114|{:

=≤≤
=≤≤

strengthstrengthRange
weightweightDomain

 

 
Certainly, these numbers are not exact but we are trying to identify that our 

model has limitations.  Here, we are saying that we believe our model is valid 
for individuals weighing between 114 and 400 lbs since those weighing less or 
more are unlikely to be lifters.  Also, we are saying there are limits on the 
amount a person can bench which depend on our domain constraints.  Perhaps 
you feel this upper value is high and would like to see it be lower.  That’s ok.  
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Sometimes models don’t have exact bounds on their domains and ranges or in 
the course of study you realize revision to your initial estimates is necessary.     
 

 Step 3.  Communicate and reflect upon results. 
Our calculations show that our model predicts our second, fifth and eighth 

data points.  This should be the case since these are the three data points we 
used to solve for the parameters.  Notice that the model goes through these 
points in Figure 1.56. 
 

Now that we have developed a model, we can use it to verify weightlifting 
strength within our data set; recall that we referred to this as interpolation.  
Often, a model which predicts well within the data is also useful outside of the 
collected range of data; recall that we referred to this as extrapolation.  
Therefore, we should use our model to predict a data point within the data and 
also one outside of the data to test how useable our model appears to be.   
 

946.7069702.89)702.107350(39.6363 )350(

999.3899702.89)702.107165(39.6363 )165(

2
1

2
1

=+−=

=+−=

Strength

Strength
 

 
Our model appears to predict fairly well for the given data but appears too 

high for prediction outside of the range of our data.  Figure 1.56 is a plot of our 
data with our model overlaid on the same axes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.56: Weightlifting Problem – Plot of Model and Data 
 

 
Question 17 Based on your weight, what does this model expect you to bench? 
 
 
Question 18 Based on the amount you can bench, what does this model predict 
you should weigh? 
 

Question 19 Do a sensitivity analysis on our assumption that 
2
1

=b to see how 

this affected our model.  Is the new b value a better representation of the data? 
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1.9  Exponential and Power Function Data Fitting 
 
 
This section will further explore the methodology behind modeling a data set 

with exponential and power functions.  We will explore cases where we have no 
insight into the data as well as cases where the problem statements allow us to 
gain some predictive knowledge as to which model may fit the problem best. 
 
Example 1  Assume that you are a data analyst for a research company.  Your 
company receives contracts from numerous outside agencies that require an 
unbiased evaluation of data sets that they have collected.  In order to remain 
completely unbiased, you specify that you want to see their raw data – and only 
their raw data.  You are totally unaware of what agency you are working with, 
unaware of the experiment that the data was collected from, and unaware of any 
preconceived ideas of the model with which the contracted agency would like the 
data modeled.  The data you receive is represented in Table 1.15.  
 

x f(x) 
-2 0.02 
-1 0.08 
0 1.7 
1 2.9 
2 4.2 
3 7.4 
4 12.5 
5 21.4 
6 39.0 
7 57.2 
8 88.1 

Table 1.15: Example 1 (Raw Data) 
 

Step 1:  Transform the problem.  We are given a table of data, we must 
examine the table. 

 

• Define the variables: 
o Independent variable (input):  x 
o Dependent variable (output):  f(x) 

 

• Nature of the data:  Apply the quantitative measures of the nature 
of the data to gain an idea of which type of function may be most 
appropriate.  See Table 1.16. 
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x f(x) 
AVG 
RoC 

-2 0.02  
-1 0.08 0.06 
0 1.7 1.62 
1 2.9 1.2 
2 4.2 1.3 
3 7.4 3.2 
4 12.5 5.1 
5 21.4 8.9 
6 39.0 17.6 
7 57.2 18.2 
8 88.1 30.9 

 
Table 1.16:  Quantitative Measure of the Nature of the Data 

 
 Notice that the data are increasing, as is the rate.  Therefore, we need a 

function that is increasing at an increasing rate.  We may model these data by 
either an exponential or a power function.  Let’s graph the data to verify our 
conjecture.  See Figure 1.57. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.57:  Scatterplot of Table 1.12 Data. 

 
 

 The data in Figure 1.57 seems to exhibit a pattern consistent with either 
an exponential or a power function.  We know that we will have to find the 
model that fits through the data best.  Because we have no knowledge as to what 
the data may do outside of the domain of the data in the given table, it would be 
wise to find a “good” exponential model AND a “good” power model. By 
completing both models, we can recommend to the agency that contracted our 
services which model fits the experiment from which the data came. 
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• Assumptions 

o Using an exponential function model of the form dabxf x +=)( , 

we can assume that the parameter 0=d because there appears 
to be a horizontal asymptote at 0)( =xf . 

 
o Based on a power function model of the form 

dcxaxf b ++= )()( , a reasonable assumption seems to be that 
the vertex is at the first data point.  Because the first data point 
is left of the origin by two units we will assume 2=c .  Since the 
function value at the first data point is 0.02, we will assume 
that 02.0=d . 

 
Our plan is to use the model development and evaluation techniques that we 
have used up to this point in the course to find the best models (exponential and 
power) for the data in Table 1.16. 

 
 Step 2.  Solve the problem using appropriate solution techniques.  To 
solve, we will develop a “good” exponential and a “good” power model.  We 
will provide both options to our client. 
 

• Exponential model development.   
 

xabxModel =)(  
 

• Exponential Model Parameter Estimation:  Using modeling skills 
developed to date, we need to estimate the parameters (a and b) 
for an exponential model.   To estimate two parameters, we need 
two data points that represent the data well.  Let’s try the fourth 
and tenth points: )9.2,1( and )2.57,7( . 

 

• Using Mathematica to solve for a and b yields, 
 

 
 
 
 
 

 

• To ensure exponential growth, we need to choose a and b to be 
positive.  Therefore, our initial exponential model becomes: 

 
xxModel )643.1(764.1)( =  

    
)}(0|)({:

}|{:
xModelxModelRange

xxDomain
≤

ℜ∈
 

 
Figure 1.58 is a plot of the model, to see how well it appears to fit the data.   
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Figure 1.58: Table 1.16 Data Overlaid with Exponential Model 
 
 

• Power model development. 
 

2.0)2()(2 ++= bxaxModel  
 
 

• Power Model Parameter Estimation:  Using modeling skills 
developed to date, we need to estimate the parameters (a and b) 
for a power model.   To estimate two parameters, we need two 
data points that represent the data well.  Let’s try the same points 
that we used for the exponential model: )9.2,1( and )2.57,7( . 

 

• Using Mathematica to solve for a and b yields, 
 

 
 
 
 
 
 
 
 
 
 
 

• Note that this solution still shows parameter a in terms of 
parameter b, meaning we still must make an assumption for the b 
parameter.     

Example 1, Raw Data & Exponential Model
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• In this form, it is difficult to intuitively make a good estimation of 
what value b should take on.  However, if we consider the basic 
power function cases, we can make a solid estimation for b.  We see 
that the data increases more steeply than we would expect in a 
quadratic function.  The bottom of the “cup” is also more flat than 
we would expect in a quadratic, both characteristics of a function 
with a higher power.  Let’s assume that the parameter b = 3.  
Using the tenth point and b = 3 yields: 

 

0784.
9

)02.02.57(
02.0)27(2.57

3

3

≈
−

=

++=

a

a
 

• Therefore, our initial exponential model becomes: 
 

 02.0)2(0784.)(2 3 ++= xxModel  

  
)}(0|)({:

}|{:
xModelxModelRange

xxDomain
≤

ℜ∈
 

 
Let’s plot our models, Figure 1.59, to see how well they appear to fit the data.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.59: Table 1.12 Data Overlaid with Exponential & Power Models 
 
Step 3.  Interpret the results of the solution.  Both models fit the trend of the 
data.  The SSE for the exponential model is approximately 51.6 whereas the SSE 
for the power model is approximately 153.5.  Currently, the exponential model 
seems to be the better model.  Let’s refine each model as best we can to provide 
the client with the best possible model for each type of function.   
 
 By manually adjusting the parameters for the exponential and power models, 
both SSEs can be reduced.  With the exponential model, it seems that little can 
be done to lower SSE.  In fact, we can only make minor adjustments to the a and 
b parameters to make the model less steep.  The refined model is: 
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xxModel )635.1(76.1)( = . 

 
The power model also can be transformed only by a little.  If we make the 

curve steeper, it appears that it will fit the data a little better.  To do this, we 
can change the exponent from a 3 to a 4.  After doing that, we must decrease the 
a parameter because simply changing the b makes the curve too steep.  
Remember, refining models is an iterative process.  The refined power model is:   
 

02.0)2(00888.)(2 4 ++= xxModel . 
 

You can see that, especially with power and exponential models, if good 
estimations are made at the beginning of the modeling process, then small 
parameter adjustments may be all that are necessary to improve models. 

  
The refined exponential and power models have SSEs of approximately 50.04 

and 23.46, respectively.  The plot of both models follows. 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.60:  Comparison of Power and Exponential Models 
 

We have determined the following: both models fit the trend of the data for 
the domain within the data set and both models increase at an increasing rate as 
the domain values increase past the values in the data set.  The biggest difference 
in the models is for domain values that are less than -2.  The exponential model 
will continue to decrease toward 0 as the domain values become more negative 
whereas the power model will start to “turn up” as the domain values become 
more negative.  For domain values less than -2, the power model will become the 
reflection of the values greater than -2 about the line 2−=x . Does this 
consideration affect your decision on which model to recommend?  If you know 
where the data came from it might; if there were possibly negative values less 
than two then you would have to consider if the corresponding y values increased 
or decreased. 

 
The two models that we developed appear to be good models, but are they 

the best possible models?  Do they have the minimum possible SSE?  The next 
subsection will help us to answer that very question! 
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The data for the following question is also linked on the course website. 
 
Question 1 Estimate your best possible exponential and power models for the 
following average salary data for professional basketball players in the years 
1984-2004.  Which model better represents the nature of the data?  Is either 
model better for extrapolating outside of the domain of the data?  Explain your 
conclusions. 
 

Year AVG Salary 
1984-85 $330,000 
1985-86 $382,000 
1986-87 $431,000 
1987-88 $502,000 
1988-89 $575,000 
1989-90 $717,000 
1990-91 $927,000 
1991-92 $1,100,000 
1992-93 $1,300,000 
1993-94 $1,500,000 
1994-95 $1,800,000 
1995-96 $2,000,000 
1996-97 $2,300,000 
1997-98 $2,600,000 
1998-99 $3,000,000 
1999-2000 $3,600,000 
2000-01 $4,200,000 
2001-02 $4,500,000 
2002-03 $4,546,000 
2003-04 $4,917,000 

Table 1.17:  NBA Salary Data 

 

1.9.1 Minimizing Sum of Squared Error 
   
We have discovered a measure to quantify how far your model deviates from 

the actual data, the Sum of Squared Error.  Since can quantify a model’s 
“goodness,” it is natural to want to develop the best possible model.  Let’s use 
technology to help us find better models, more quickly than we could find 
through trial and error.   
 

Previously, we were intent on finding a model that predicted the value of the 
dependent variable of a situation, given the value of the independent variable.  
The models we have been exploring in this section resulted in the fitting of a data 
set with the following two models: 

 
   

 
 
 02.0)2(00888.)(2:

)635.1(76.1)(:
4 ++=

=

xxModelPowerModel
xModellModelExponentia

x
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Using the techniques mentioned earlier in this section, we determined the SSE 

of the exponential model to be about 50.04 and the power model to be about 
23.46 (feel free to calculate this yourself, for additional practice).  Since SSE is a 
relative measure, we also know that the power model we estimated appears to be 
a better model than the exponential; it certainly fits the data better over the 
domain of the data set.  Are we done?  Is this good enough?  Can we do better?   

 
You could probably continue to adjust the parameter values parameters to 

get smaller and smaller SSE values, but this would be tedious and we would not 
know if we truly had the best combination of parameter values to call it the 
“BEST” model.   As it turns out, we have a powerful ally in our quest to find a 
low SSE in Excel.  This ally is a tools add-in called Solver.  What does Solver do 
you ask?  Well… it solves!  (If you dig deep into the help files of Excel, you find 
that it uses something called the Simplex method to solve/optimize linear 
equations and a reduced gradient algorithm to solve/optimize non-linear 
equations – but that is a touch beyond the scope of this course).     
 

Before we begin to use Solver, we must first load it onto your laptop.  To load 
Solver, you must first open up Excel.  In your Tools pull down menu, select Add-
Ins.  Another screen will appear with several options as to which Add-In you 
wish to install.  You must select the Solver Add-In as shown in Figure 1.61.  
Ensure you also select the first Add-in, the Analysis ToolPak. 
 

 
Figure 1.61: Add-In Dialog Box 

 
Once we have Solver loaded, we can work on the problem at hand, that is, 

finding the “BEST” or minimum SSE.   
 

In the Tools menu, you now have an option to run Solver.  When you select 
this application, you get the Solver dialog box, shown in Figure 1.62.   
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Figure 1.62: Solver Dialog Box 
 

When you were adjusting the parameter values, what was your goal?  To 
minimize the SSE, right?  Solver’s first input is to set the target cell.  The target 
cell is the cell that you want to minimize, maximize, or go to a specific value.  In 
this case, we wish to minimize the cell that contains the SSE.  As a matter of 
practice, do not have Solver attempt to achieve a value of 0, this is most likely 
an unachievable goal. 
 

When you were adjusting the parameter values to get a low SSE, you were 
changing specific cells to help you achieve that goal.  In order for Solver to find a 
“best” solution, we must tell it which cells on the spreadsheet it can change in 
order to find the minimum SSE.  In this case, we want to allow Solver to change 
the parameter values.  Now we just need to tell it to Solve.  You may notice that 
in Figure 1.64, there is a $ before each reference in the Solver parameter box.  
Take some time to look up absolute referencing in the Excel help files to Figure 
out what this means.  Your use of absolute referencing is vitally important to 
your modeling efforts. 
 

Solver will usually find its best solution quite quickly.  Before Solver writes 
the solution it obtained onto your spreadsheet, you will be asked if you want to 
change to the new solution that was just obtained, or restore the original values 
with which you started. For this example, we will accept the Solver values.  See 
Figure 1.63 for the better exponential solution.  Our eyeball test shows that that 
the final model appears to be a closer fit to the data.  Note that the already small 
SSE was cut by more than two-thirds.  Both of our model evaluation tests agree:  
the final model fits the data better than the estimated model. 
 

Allows Solver to
change parameters

Allows Solver to
change parameters
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Figure 1.63: Model Post-Solver 
 

After using Solver, the exponential model of best fit is:  
 

 
 
 
        

 
 

Are we done?  Can we do better with our model?  Run Solver again to see if 
it results in an even more refined answer.  Occasionally, with models that are a 
little more complex, Solver will not always find an optimal solution.  It is best to 
give Solver a couple of chances to see if it “converges” to an answer within its 
specified tolerance.  Another important point is that often, Solver needs initial 
parameter values that are reasonable before it can optimize.  
 

Since starting with different parameter values may result in different SSEs for 
complex models, care should be taken in selecting the initial start or “guess” 
values.  You should select start values that allow a reasonably good fit between 
your model and the data which is why the parameter estimation techniques 
you’ve been taught thus far are of vital importance.  In other words, if you put 
“garbage” in, you get “garbage” out. 

 
The data for all of the following problems are linked on the course website. 

 

}1.880|{:
}82|{:
874.1)544.1(806.2)(

≤≤
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yyRange
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Question 2   Develop a best fit model for the power function modeled in 
Example 1.  **HINT**  Do not allow Solver to optimize the b parameter, the 
exponent.  The result will be a decimal (root) function which will provide 
undefined answers for negative values of (x+c).  You may manually change the 
exponent, say, from a 3 to a 4.  Is the power model or exponential better?  Why? 
 
Question 3 The following table represents the average life expectancy for 
females in the United States1 since 1900.  Model the data with an exponential 
and power model.  Which model best reflects the trend of the data for the 20th 
century?  Which model is better for extrapolating female life expectancies into 
the 21st century?  Explain. 
 

Year 1900 1909 1919 1929 1939 1949 1959 1969 1979 1989 2002
Life Expectancy 
(US Females) 50.7 53.2 57.4 60.9 65.9 71 73.2 74.6 77.6 78.8 79.9

 
 

*Question 4  LoggerPro, a computer-based data collection tool used by the 
Mathematics Department at USMA, collected the following potential 
measurements within a capacitor.  If you are interested in what a capacitor is 
and how it works, check out http://electronics.howstuffworks.com/capacitor.htm.  

Model the data with an exponential and power model.  Which model best fits 
the data within the specified domain?  Which model do you think would be best 
to extrapolate data for domain values that are greater than those provided?  
Explain. 

Time (s) Potential (V) Time (s) Potential (V) Time (s) Potential (V) 

0 1.5995 30 0.2271 60 0.0464 

2 1.4286 32 0.2027 62 0.0415 

4 1.2527 34 0.1783 64 0.0317 

6 1.0867 36 0.1587 66 0.0317 

8 0.9499 38 0.1441 68 0.0269 

10 0.8327 40 0.1197 70 0.0269 

12 0.7350 42 0.1148 72 0.0366 

14 0.6374 44 0.1001 74 0.0220 

16 0.5592 46 0.0904 76 0.0220 

18 0.4957 48 0.0855 78 0.0317 

20 0.4322 50 0.0708 80 0.0269 

22 0.3785 52 0.0659 82 0.0269 

24 0.3346 54 0.0562 84 0.0171 

26 0.2906 56 0.0611 86 0.0269 

28 0.2662 

 

58 0.0513 

 

88 0.0220 

 

 

                                                 
1 Source: <http://www.ncseonline.org/nle/crsreports/05mar/RL32792.pdf> 
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1.10  Trigonometric Functions 
 

1.10.1  Properties of Trigonometric Functions 
 

We have discussed several different types of models so far in this course.  
We’ve discussed those that increase or decrease at a constant rate, linear 
models.  We’ve also discussed generalized exponential and power that may 
increase at an increasing or decreasing rate, or decrease and an increasing or 
decreasing rate.  However, in addition to phenomena that may be modeled with 
these types of functions, there are many phenomena that can be considered 
periodic.  In other words, the phenomena that you 
observe repeat themselves again and again.  For 
example, over the course of a year, you could 
record the sunrise and sunset times in your 
hometown to compare them to historical data.  
Ultimately, you would discover that, for every 
date, the sunrise and sunset time would be very 
similar, year after year.  (The sunrise time on 
January 1, 2006 is roughly equal to the sunrise time on January 1, 2007).   

 
 To model events in the world that are periodic, we need functions that are 

different than the others we’ve used: trigonometric functions.  
Trigonometric (or, trig) functions are often used in modeling 
real-world phenomena such as vibrations, waves, elastic motion, 
and other quantities that vary in a periodic manner.  Here is a 
simple example of trigonometric behavior with which you may 
be familiar.  Since our armed forces have a technological 
advantage over the majority of our adversaries, it is common for 
the U.S. Military to conduct its combat operations at night.  
Despite our advanced war fighting capabilities, even night vision 
technology relies on some ambient light to allow night 

operations.  Consider the graph in Figure 1.64.  This graph records the percent 
of visible moon (ambient light) between June 1, 2005 and July 11, 2005.1   
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Figure 1.64: Plot of Moon Phase Data from 1 June - 12 July 2005 

                                                 
1 The Moon’s Phase - http://imagiware.com/astro/moon.cgi Downloaded from the Web 2 June 2005.   
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What do you notice about how much of the moon is visible?  When would 
you recommend conducting night combat operations?   
 

We will limit our discussion of trigonometric functions and their properties to 
the sine and cosine functions. Let’s consider the basic sine function ( ) sin( )f x x= , 
which means the sine of the angle whose radian measure is x. 
 

Plot this function in Mathematica for values of x between 0 and 7 as shown in 
Figure 1.65.  Mathematica evaluates trigonometric functions in radians. 
 

In[1]:= Plot@Sin@xD, 8x, 0, 7<D

1 2 3 4 5 6 7

-1

-0.5

0.5

1

 
Figure 1.65: Mathematica Code to Plot Sin(x) Between 0 and 7 

 
 
Question 1   How long does it take the sine wave to complete one cycle-time 
it takes to move from peak to peak or from trough to trough?  How tall is the 
function (peak to valley)?  Where does ( ) sin( )f x x=  cross the y-axis, i.e., what 
is (0) ?f    
 
 

The general form of the sine function that allows us to adjust the amplitude, 
a; frequency, b; horizontal shift, c; and the vertical shift, d, is: 
 

( ) * ( ( ))f x a sin b x c d= + +            (1) 
 
 
Question 2   Plot the following functions by hand:  ( ) 5sin( )f x x=  and 

( ) sin( ) 5f x x= + .  What is the difference?  How do the parameters a and d affect 
the basic sine function?   
 
Question 3 Now that you have discovered the effects of the a and d 
parameters what affect do the b and c parameters in Equation (1) have on the 
function?  Determine the answer to this question by plotting  

).
2

sin()()2sin()( π
+== xxgandxxf  

 
 

After you have answered Question 3, go to the website below and adjust the 
parameters to test your hypotheses regarding the effects of changing each of the 
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parameters.  See if you can find the parameter values that make the function fit 
the illumination data best.   
 
http://www.dean.usma.edu/departments/math/MRCW/MA103/Trig/live˙graph.html 

 
You should have concluded that the parameters affect the function in four 

ways, four ways that are similar to generalizations 1 and 2 in section 1.8. 

• a parameter:  controls the extreme range values of the function, the 
values that the function oscillates between (a vertical stretch) 

• b parameter:  affects the distance along the independent variable axis 
that it takes to complete one cycle(the shape of the graph, a 
horizontal stretch) 

• c parameter: horizontal shift 

• d parameter: vertical shift  
 
We will discuss a mathematical way to calculate each of these so that you can 
accurately estimate the values from a dataset or a graph before minimizing your 
model’s error using Solver. 
 
Amplitude of a Trigonometric Function:  Consider again the graph of the moon 
phase data.  Between what values does the percentage of illumination oscillate?  
If we define the amplitude of a function as half the distance between the peak 
and trough of the function, what is the amplitude of the moon phase?   
 

 
 

We notice that the greatest value (according to the data) is 99.7% and the 
smallest value is 0.2%.  Half the distance between these two values is: 
 

  ( )1
99.7% 0.2% 49.75%

2
Amplitude = − = . 

 
This makes the amplitude, or the a parameter in our model, 49.75%.   
 
Frequency and Period of a Trigonometric Function:  Mathematicians call the 
parameter b in Equation 1 the frequency of the sine function.  Frequency tells 
us the number of complete cycles that occur between x = 0 and x = 2π  (One 
complete repetition of the pattern in the function is called a cycle).  You are 
probably most familiar with ( ) ( )f x sin x= where the frequency or b parameter is 
one.  As shown in Figure 1.66, for the basic sine function there is one cycle 
between x = 0 and x = 2π  (about 6.28).   
 

 
 

Often when attempting to model data with trigonometric functions, it is 
easier to model the data by considering the period instead of the frequency.   
 

The frequency of a function is the number of complete cycles that 
occur between x = 0 and x = 2 .π  

The amplitude of a function is half the distance between the peak 
and trough of the function. 
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The relationship between period and frequency is as follows: 
 

period
frequency π2

= . 

 
Thus, often you may see Equation (1) written as 

 
2

( ) sin( ( ))f x a x c d
period

π
= + + . 

 
Since the frequency of the basic sine function is one, this indicates its period 

is 2 .π   What is the period of the moon phase?   
 

Date % Illumination Date % Illumination Date % Illumination
1-Jun 20.8% 15-Jun 61.8% 29-Jun 33.5%
2-Jun 13.0% 16-Jun 71.5% 30-Jun 24.1%
3-Jun 6.9% 17-Jun 80.6% 1-Jul 16.0%
4-Jun 2.7% 18-Jun 88.6% 2-Jul 9.5%
5-Jun 0.5% 19-Jun 94.8% 3-Jul 4.6%
6-Jun 0.2% 20-Jun 98.7% 4-Jul 1.5%
7-Jun 1.9% 21-Jun 99.7% 5-Jul 0.2%
8-Jun 5.3% 22-Jun 97.8% 6-Jul 0.7%
9-Jun 10.3% 23-Jun 93.0% 7-Jul 3.0%
10-Jun 16.7% 24-Jun 85.6% 8-Jul 6.9%
11-Jun 24.3% 25-Jun 76.3% 9-Jul 12.3%
12-Jun 32.8% 26-Jun 65.8% 10-Jul 19.2%
13-Jun 42.1% 27-Jun 54.8% 11-Jul 27.2%
14-Jun 51.9% 28-Jun 43.8% 12-Jul 36.2%  

Table 1.18: Moon phase data from 1 June – 12 July 2005 
 

Notice in Table 1.18 that illumination is at its lowest value on 6 June and 
again on 5 July.  The moon phase completes its cycle in just about one month 
(30 days to be exact).  This makes the period 30 days. Now, we can determine 
the frequency of our data. 
 

2
30

frequency
π

=  

 
or around 0.2094 Cycles per 2π days.  Thus the b parameter in our model would 
be 0.2094. 
 
Horizontal Shift of a Trigonometric Function:  How do we model horizontal 
shift?  Hopefully you discovered from your experimentation earlier that the c 
parameter shifts our graph left and right depending on positive or negative 
values.  More specifically, if c is negative, the function shifts to the right by c 
units.  Similarly, if c is positive, the function shifts to the left by c units.   
 

The period of a function is defined as the time it takes to complete 
one cycle.   
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Question 4   Suppose that we define Day 0 as June 1, 2005.  Which direction 
do we need to move our model to match the data?  How much do we need to 
shift this model in that direction?    
 
 
Vertical Shift of a Trigonometric Function:  Mathematicians, by convention, use 
the x-axis as a baseline to refer to functions that are shifted vertically.  We 
notice the midline of the moon phase data is shifted upwards from the x-axis.  If 
we define the vertical shift of a function as: the distance that the midline of the 
function is shifted upwards or downwards from the x-axis, what is the vertical 
shift of the illumination data?   
 

 
 

We noted before that the amplitude of the function was 49.75%.  We use the 
amplitude to help us figure out the vertical shift of the function.  Since the 
amplitude is half the distance between the peaks and valleys of the data, we 
could consider this the “midline” of the data.  How much is this “midline” 
shifted upward from the x-axis?   
 

49.75% 0.2% 49.95%+ =  
 

This makes the vertical shift, or the d parameter, 49.95%.  See Figure 1.66 for a 
graphical interpretation of the vertical shift. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.66: Illumination Data Demonstrating Vertical Shift 
 
 
 

The vertical shift is the distance that the midline of the function is 
shifted upwards or downwards from the x-axis.   

The horizontal shift of a function is the distance left or right from 
the vertical axis.  This definition assumes the vertical axis is used as 
the “start point” for a basic trigonometric function such as 

( ) sin( )f x x=  or ( ) cos( )g h h= .   
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Question 5   Recreate Figure 1.64 in Excel.  The data for this is shown in 
Table 1.15 and is posted on the course website. 
 
Question 6   Now that you’ve seen how to estimate the parameters for the 
moon phase data using a sine function, determine and calculate new parameters 
for a cosine model of the same data set. 
 
Question 7   In a laboratory environment, scientists use an instrument called 
an oscilloscope to convert physical phenomena such as sound and light waves to 
electric pulses.  The data in Table 1.19 represents extracted readings from the 
oscilloscope for a particular wave.   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.19: Oscilloscope Readings for a Given Wave 
 

a. Estimate the wavelength (or period) of the wave.  Given the 
information provided in Figure 1.67, where on the electromagnetic spectrum 
does this wave lie?   
 

b. Estimate the amplitude, vertical and horizontal shift of a 
sinusoidal model that fits the given data.  Calculate the frequency of the 
sinusoidal model using your estimate of wavelength above.  

 

 
 

Figure 1.67: Region of the Electromagnetic Spectrum 

Length (in Å) Amplitude (in Volts)
0.0 -1.65
0.1 -0.93
0.2 0.00
0.3 0.93
0.4 1.65
0.5 1.99
0.6 1.87
0.7 1.33
0.8 0.48
0.9 -0.48
1.0 -1.33
1.1 -1.87
1.2 -1.99
1.3 -1.65
1.4 -0.93
1.5 0.00
1.6 0.93
1.7 1.65
1.8 1.99
1.9 1.87
2.0 1.33
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*Question 8  Given the data in Table 1.20 on the sunrise in Highland Falls, NY, 
develop a mathematical model to predict sunrise at any given day during the 
year (linked on the MA103 website). 
 

Date 
Day of 
Year 

Sunrise 
Time Date 

Day of 
Year 

Sunrise 
Time Date 

Day of 
Year 

Sunrise 
Time 

1-Jan 1 722 7-May 127 546 10-Sep 253 631 
15-Jan 15 720 21-May 141 532 24-Sep 267 645 
29-Jan 29 710 4-Jun 155 524 8-Oct 281 700 
12-Feb 43 655 18-Jun 169 522 22-Oct 295 715 
26-Feb 57 636 2-Jul 183 527 5-Nov 309 632 
12-Mar 71 613 16-Jul 197 536 19-Nov 323 649 
26-Mar 85 550 30-Jul 211 549 3-Dec 337 704 
9-Apr 99 626 13-Aug 225 603 17-Dec 351 716 
23-Apr 113 605 27-Aug 239 617 31-Dec 365 722 

Table 1.20: Sunrise data for Highland Falls, New York 

 

a. Plot the day of year versus sunrise time.  How does your data 
look?  How would you expect your data to look?  What happens 
(each year) between 26 March and 9 April? Sometimes data 
doesn’t come to us in an immediately usable format – see if you 
can “clean-up” the data to make it more usable.   

b. Estimate the period of the data.  Calculate the frequency. 

c. Estimate the amplitude of the data. 

d. Estimate the vertical shift of the data. 

e. Estimate the horizontal shift of the data.  

f. Put this all together to predict the sunrise time on July 5.  For 
what domain and range is your model valid? 
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1.10.2  Modeling with Trigonometric Functions 
 
 So far, we have introduced the properties and attributes of trigonometric 
functions.  Hopefully, by now you not only have some ideas about cyclic events, 
but also have developed the ability to estimate the parameters of trigonometric 
occurrences.  The ability to estimate the parameters of these functions is a key 
to modeling periodic behavior well.   
 

As we begin our discussion of trigonometric modeling, it is important to note 
that we will only consider the sine and cosine functions when modeling or data 
fitting. 
 
Example 1 Let’s use the moon phase data, Table 1.21, to develop a 
mathematical model that predicts the percent illumination for the day of the 
month. 
 

Date % Illumination Date % Illumination Date % Illumination
1-Jun 20.8% 15-Jun 61.8% 29-Jun 33.5%
2-Jun 13.0% 16-Jun 71.5% 30-Jun 24.1%
3-Jun 6.9% 17-Jun 80.6% 1-Jul 16.0%
4-Jun 2.7% 18-Jun 88.6% 2-Jul 9.5%
5-Jun 0.5% 19-Jun 94.8% 3-Jul 4.6%
6-Jun 0.2% 20-Jun 98.7% 4-Jul 1.5%
7-Jun 1.9% 21-Jun 99.7% 5-Jul 0.2%
8-Jun 5.3% 22-Jun 97.8% 6-Jul 0.7%
9-Jun 10.3% 23-Jun 93.0% 7-Jul 3.0%
10-Jun 16.7% 24-Jun 85.6% 8-Jul 6.9%
11-Jun 24.3% 25-Jun 76.3% 9-Jul 12.3%
12-Jun 32.8% 26-Jun 65.8% 10-Jul 19.2%
13-Jun 42.1% 27-Jun 54.8% 11-Jul 27.2%
14-Jun 51.9% 28-Jun 43.8% 12-Jul 36.2%  

Table 1.21: Moon phase data from 1 June – 12 July 2005 
 

 
 Step 1.  Transform the Problem.  We are given the data in Table 1.21 and 
must find the best model to predict the percent of illumination for any given 
day in a month.  Our plan will be to review a plot of the data (Figure 1.65, 
page 94) estimate the parameters of the model using the procedures developed 
earlier in the section, then find the best fit model by minimizing the SSE.  We 
can assume that we will use a trigonometric model for two reasons:  first, we 
know that the nature of moon phases is cyclic, requiring a trig model of the 
form ( ) * ( ( ))f x a sin b x c d= + + ; second, the graph of the data, Figure 1.65, 
demonstrates a cyclic trend that reinforces what we thought about the nature of 
the phases of the moon. 
 

Recall that a represents the amplitude or half of the distance between the 
peak and valley of the function, b represents the frequency or the number of 
cycles that occur between x=0 and  x=2π, c represents the horizontal shift, and d 
represents the vertical shift. 

 
Step 2.  Solve Using Appropriate Techniques 

  
We will begin the solution process by estimating our parameters.  To calculate 

the amplitude of the moon phase data, we find the highest and lowest 
illumination values from Table 1.21. 
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( )1
99.7% 0.2% 49.75%

2
Amplitude a= = − = . 

 
To calculate the frequency of the data we see how long the data takes to make 

1 cycle; here it takes approximately 30 days.  When looking at the table, notice 
that the illumination on 1 June is 20.8%.  After that date, the illumination falls 
until it reaches a low on the 6th of June and then climbs until it reaches its peak 
on the 21st.  In this case, to estimate the period of the data, we want to see how 
long it takes the data to drop to its lowest point, rise to its highest point and 
then fall until it reaches its approximate starting value.  This occurs between 30 
June and 1 July.  Therefore, we say the period of the illumination data is 
approximately 30 days. 
 

2 2
0.2094

30
Frequency b

period days
π π

= = = =  

 
Determining the horizontal shift for the sine model was part of your 

homework from last lesson.  You should have used a plot of the function and 
seen that we needed to shift the function to the right about 12.5 days to model 
the scenario using a sine function.  Where does the 12.5 days come from?   
 

Remember, sin(0) 0= .  This point is halfway between the function’s first 
peak and the preceding trough, both along the x-axis and along the y-axis.  See 
Figure 1.68.  In Figure 1.69 we have shifted the function to the right two units.  
The center along the y-axis between the first peak and the preceding trough 
occurs at x = 2, which is how far we have shifted the function to the right. 
 

 

Figure 1.68: Graph of ( ) sin( )f x x=  from 
2 2toπ π−  

 

Figure 1.69: Graph of ( ) sin( 2)f x x= −  
from 2 2toπ π−   
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Seeing the horizontal shift quickly becomes more complex when a function 
exhibits both a vertical as well as a horizontal shift.  Figure 1.70 illustrates that 
the same procedure is used to determine the horizontal shift for the case 
including both shifts.  We need to find the midpoint between the first peak and 
the preceding trough to determine how far our function has been shifted.  Here, 
we can see our midpoint is located at x = 4, indicating our function is shifted 4 
units to the right. 

 

 

 

 

 

 

 

Figure 1.70: Graph of ( ) sin( 4) 3f x x= − + from 2 2toπ π−  

In our moon phase data,  the horizontal shift is the number of days our data 
is shifted to the right of the dependent variable’s axis.  We see in Figure 1.71 
that the first peak occurs on 21 June and the preceding trough occurs on 6 June 
yielding a horizontal difference of 15 days.  Half of this distance is 7.5 days and 
occurs between the 13th and 14th of the month.   See Figure 1.71 for a graphical 
representation of the sine model horizontal shift.  As you can see, the center of 
the peak and trough is shifted 12.5 units to the right of the vertical axis. 
 

 
 
 
 
 
 
 
 
 

 

Figure 1.71: Illumination Data Demonstrating Horizontal Shift – Sine Model 
 

sine_model 1 13.5 12.5Horizontal Shift c= = − = −  

 
Finally, we need to determine the vertical shift of our data.  Recall that the 

vertical shift is the distance that the midline of the function is shifted upwards or 
downwards from the x-axis. 
 

49.75% 0.2% 49.95%Vertical Shift Amplitude trough= + = + =  
 

Put it all Together:  We would like to use the sine function to model our 
illumination data.  Now that we have determined estimates for each of our 
parameter values, let’s create our mathematical model.   
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95.49))5.12(*2094.0sin(*75.49)( +−= daydayillum     (2) 

 
Domain :{ | } ( , )

Range :{ | 0 100} [0,100]

day day

illum illum

−∞ < < ∞ = −∞ ∞

≤ ≤ =
 

 
Equation 2 is our mathematical model for predicting the percent of illumination 

based upon the day of the month.   
 
We now have an estimation for our model.  Figure 1.72 shows how it compares 

to a graph of our data points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.72:  Graph of Moon Phase Data Overlaid With Sine Model 
 
 
The model looks good; it passes the eyeball test, so we seem to have a good 

model.  Figure 1.73 shows the results after using Solver to minimize the SSE, and 
develop the “best fit” model.  This yields the model:  

 
06.47))26.13(*2132.0sin(*91.48)( +−= daydayillum  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.73:  Illustration of the Best Fit Sine Model 
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Step 3.  Interpret the Result:  Reflect and Communicate. 
 
In reflecting about the choices we have made for our model, we must 

challenge our assumptions to ensure they are the best for the situation.  We can 
do this by conducting a sensitivity analysis.  One major assumption we used in 
the development of our model is that a sine function would most accurately 
represent the data.  What if we chose cosine? 

 

What is the difference between sine and cosine?  Let’s consider the most basic 
sine and cosine functions, )sin()( xxf = and )cos()( xxg = .  Both functions share 
the same generalized form,  

dcxbfunctiontrigaxf ++= ))(*(_*)( . 

We see that in the most basic cases, a = 1, b = 1, c = 0, d = 0.  What’s the 
difference between the functions?  Consider where the functions cross the y-axis.  
The sine function crosses at y = 0 (the midpoint of the function) and the cosine 
at y = 1 (the peak of the function).  It appears that if we shift the sine graph left 

2
π

 we would have similar graph to the cosine graph.  So, the difference in 

modeling the data with the two functions must be in the horizontal shift.   

Note that the cosine function’s first peak from the y-axis is at )0(f .  Looking 

at the moon phase data, let’s estimate how much that first peak of our data is 
shifted to the right of the dependent axis using Figure 1.74. 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 1.74: Illumination Data Demonstrating Horizontal Shift – Cosine Model 
 

cosine_model 1 21 20Horizontal Shift c= = − = −  

 
We conclude that for our cosine model, we should set our horizontal shift 

parameter, c, equal to -20 days.  Our estimated cosine model is: 
 

95.49))20(*2094.0cos(*75.49)( +−= daydayillum     (3) 
 

|{: dayDomain
Domain :{ | } ( , )

Range :{ | 0 100} [0,100]

day day

illum illum

−∞ < < ∞ = −∞ ∞

≤ ≤ =
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After using Solver to minimize the sum of squared error and plotting the 
model in Figure 1.75, we see that the final model appears to fit the data just as 
well as the sine model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.75:  Illustration of the Best Fit Cosine Model 
 
 In fact, the sum of squared errors for each model is identical.  What we have 
just seen is that the sine and cosine models are simply shift versions of each other.  
If you data “begins” at the function’s midline, it may be easier to use the sine 
function.  If the data “begins” at the functions peak or trough, it may be easier to 
use a cosine function.   
 
 
Question 9   What does the model in Example 1 predict for the percent 
illumination on day 20 (June 20th)?  Compare this prediction to the actual value 
found in Table 1.15.  How well do you feel our model fits the data?  What 
improvements would you suggest? 
 
Question 10   The thermostat at Sara’s home in Washington D.C. is set at 70°F.  
Whenever the temperature drops to 68°, roughly every 30 minutes, the furnace 
comes on and stays on until the temperature reaches 72°.2 

a. Use your knowledge of trigonometric functions to estimate parameters 
and create a model to predict the temperature of Sara’s home as a 
function of time. 

b. Assume your barracks thermostat is set the same way.  What 
modifications would you make to your model to accurately reflect the 
temperature of your barracks? 

c. Now consider the modifications you would make to your model to 
accurately predict the temperature in a home located in southern 
Florida.  What would they be? 

d. Think about the nature of the data.  Is using a trigonometric function 
to model this situation appropriate?  Explain.  (Hint: Think about the 
rates at which the temperature increases and decreases.) 

                                                 
2 This problem is adapted from Functioning in the Real World, A Precalculus Experience by Gordon, 
Gordon, Tucker, and Siegel, p. 510. 
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*Question 11  Ever since your summer vacation of salmon fishing in Alaska you 
have wanted to go back and get the “one that got away.”  You are planning a 
fishing trip for 8 June – 12 June 2008.  You know that the best fishing occurs at 
high tide, but the problem is that you only have tidal tables that run through 31 
May 2006.  What will be the best time(s) to fish on 9 June?  An extract of the 
tide table is shown in Table 1.16.  What assumptions did you make in arriving at 
your conclusion? (Data for Question 3 located on course website) 

 
Time of Day Tide Height Observed  Time of Day Tide Height Observed 

0:00 6.94  13:00 4.23 
1:00 5.06  14:00 2.64 
2:00 3.36  15:00 1.57 
3:00 2.25  16:00 1.32 
4:00 1.93  17:00 1.96 
5:00 2.41  18:00 3.4 
6:00 3.55  19:00 5.38 
7:00 5.05  20:00 7.44 
8:00 6.46  21:00 9.08 
9:00 7.4  22:00 9.93 
10:00 7.62  23:00 9.81 
11:00 7.08  0:00 8.72 
12:00 5.86    

Table 1.16: Tidal data for Seward, Alaska on May 31, 2006 
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The Real World

Mathematical
Formulation

Mathematical
Solution

Solve

Transform

Interpret

Figure 2.1: The modeling triangle

It is worthwhile to look at the “modeling triangle” shown in Figure 2.1. The heart of
this book is using mathematics as a language. We transform problems from the real world
into mathematical problems, solve those problems mathematically, and then interpret the
mathematical results back in the real world. We start in the circle at the left, in the real
world, and then we follow the arrow up and to the right transforming, or expressing, what
we see in the real world into the language of mathematics. Then we follow the arrow
downward using all the tools of mathematics – including numerical and algebraic calcu-
lations and graphics – to obtain mathematical results. Next we follow the arrow back to
the real world interpreting our mathematical results back in the real world. Because we
are interested in using mathematics to solve real and important problems, the arrows from
and to the real world are as important as the mathematical manipulations represented by
the arrow on the right from the mathematical formulation to the mathematical solution.
In fact, these parts, transforming real problems into mathematical expressions and inter-
preting mathematical results back in the real world, of modeling and problem-solving often
require a better understanding of mathematics than the purely mathematical solutions.

Building models is an iterative process. We begin with simple models to get some trac-
tion on a problem and then, as we compare our models with the real world, we cycle several
times through the modeling triangle, progressively building better and better models.
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In Chapter 1 we worked with descriptive models – models that use functions to
describe a phenomenon. Such models are valuable because they help us organize infor-
mation and in many cases even make predictions. We are, however, even more interested
in understanding and explaining why things happen. In this chapter we begin to look at
explanatory models – models that tell us something about the underlying mechanisms
involved in real world phenomenon.

Successful modeling often involves both descriptive and explanatory modeling. One of
the great achievements of humankind is understanding our solar system. We are all familiar,
now, with diagrams showing our solar system with the planets revolving about the sun and
the moons revolving about the planets. But, these diagrams are based on our models of
the solar system. Before the advent of space travel, there were no photographs or movies
giving us this bird’s eye view of the solar system. Names like Ptolemy, Copernicus, Galileo,
Brahe, and Kepler are associated with the first huge leap in understanding – building a
succession of descriptive models that organized this data into a model with the sun at
the center of the solar system. Names like Newton and Einstein are associated with more
explanatory models – the laws of gravity, the relationship between force and acceleration,
and the theory of relativity. In this chapter we look at some explanatory models.

2.1 Introduction to Discrete Dynamical Systems

This chapter is about explanatory modeling with “discrete dynamical systems.” The word
“dynamic” refers to situations where the quantities of interest are changing over time.
In this subsection we contrast “discrete” dynamical systems and “continuous” dynamical
systems. The first two questions you might ask are:

• What are “discrete” dynamical systems and how is this kind of modeling different
from other kinds of modeling?

• When should I use “discrete” dynamical systems and when should I use other kinds
of modeling?

We begin this discussion with two examples. The first example is best modeled using
“discrete” dynamical systems and the second is best modeled using “continuous” dynamical
systems. Looking at these two models side-by-side helps answer the two questions above.

Example 1 A country, named Tankerland, is building up supplies of oil for a possible
military engagement. Every month a tanker arrives with 500,000 tonnes1 of oil that are

1Oil is often measured in metric tons, or tonnes – 1000 kilograms.
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added to the reserves. The current reserve has 1,500,000 tonnes and the first tanker is
scheduled to arrive at the end of the first month. The graph on the left side of Figure 2.2
shows the oil reserves in Tankerland over the next year.

0 12
0

10

Tankerland
0 12

0

10

Pipelineland

Figure 2.2: Tankers and a pipeline (reserves in millons of tonnes)

Example 2 A neighboring country, named Pipelineland, is building up supplies of oil for
a possible military engagement. This country has its own oil wells and is able to deliver oil
via a pipeline directly to its reserves at the rate of 500,000 tonnes per month. The current
reserve has 1,500,000 tonnes. The graph on the right side of Figure 2.2 shows the size of
the reserves in Pipelineland for the next year.

Even though 500,000 tonnes of oil are being added to the reserves each month in both
Tankerland and Pipelineland, the two graphs look quite different. The tankers deliver oil
at discrete times in big “chunks” and the pipeline delivers oil in a continuous stream. As
a result, the oil in the reserves jumps at the end of each month when oil is delivered by
tankers and it rises continuously when oil is delivered by pipeline.

For the first example we use a discrete dynamical system. We will use the letter n
to denote time. The values of n will be 0, 1, 2, . . . 12. We use the notation pn to denote
the amount of oil in the reserves during month n up to but not including the very last
day. Because oil is delivered on the very last day of each month, the amount of oil in the
reserves jumps on the very last day of each month. This gives us the model

p0 = 1.5 million tonnes
p1 = p0 + 0.5 = 2.0 million tonnes
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p2 = p1 + 0.5 = 2.5 million tonnes
...

p12 = p11 + 0.5 million tonnes

The ordered collection of numbers, p0, p1, . . . p12 is called a sequence. The individual
numbers that make up this sequence are called the terms of this sequence. Notice there
is a pattern in the calculations above. Starting with the first term (or initial value),
p0 = 1.5, we compute each subsequent term by

pn = pn−1 + 0.5

This equation, or pattern, is called a recursion equation. One way to read this particular
recursion equation is “each month we add 0.5 million tonnes of oil to the previous amount
in the reserves.” Notice the parallel between the mathematical statement “pn = pn−1+0.5”
and the English statement “each month a tanker delivers 0.5 metric tonnes of oil.” This
parallel is the reason why the adjective “explanatory” is applied to this model.

For the second example we use the continuous model

p(t) = 1.5 + 0.5t million tonnes

The function p(t) represents the amount of oil in the reserves t months from now.

We use the words discrete and continuous to distinguish between models in which
the quantity of interest changes at discrete times and models in which it changes continu-
ously. Because the idea of change is so important, we often write a model like the one for
Tankerland in the form of a difference equation

pn − pn−1 = 0.5 million tonnes

to emphasize the change from one month to the next. For a continuous model the same
idea is written as a differential equation

dp

dt
= 0.5 million tonnes.
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The symbol dp
dt on the left side of this equation denotes the derivative. The derivative is

the instantaneous rate of change of a continuously changing quantity. For example, if p(t)
is the location of a car at time t, then its derivative dp

dt , represents the car’s velocity. We
study derivatives and continuous dynamical systems later in this book.

Notice the parallel between the mathematical statement “dp
dt = 0.5” and the English

statement “oil is flowing into the reserves at the rate of 0.5 metric tonnes per month.” This
parallel is the reason why the adjective “explanatory” is applied to this model.

In summary, we will eventually use two different kinds of dynamical systems:

• Discrete dynamical systems

◦ The quantity of interest changes at distinct times and is described by a sequence
– p0, p1, . . ..

◦ A graph of the quantity of interest looks like the graph for Tankerland in Fig-
ure 2.2 on page 115 and jumps at distinct times.

◦ The way in which the quantity of interest changes is described by a difference
equation – for example,

pn − pn−1 = 0.5

or by a recursion equation – for example,

pn = pn−1 + 0.5.

Notice that the recursion equation and the difference equation express exactly
the same information. The difference equation is often read “present - past =
change” and focuses our attention on the difference between the present and
the past. This particular recursion equation might be read “present = past +
change” and focuses our attention on how we determine the present based on
the past.

◦ An initial value that tells us the starting value of the quantity of interest.

• Continuous dynamical systems

◦ The quantity of interest changes continuously and is described by a function –
p(t).

◦ A graph of the quantity of interest looks like the graph for Pipelineland in
Figure 2.2 on page 115 and shows continuous change with no jumps.
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◦ The way in which the quantity of interest changes is described by a differential
equation – for example,

dp

dt
= 0.5.

◦ An initial value that tells us the starting value of the quantity of interest.

The Tankerland example, Example 1 on page 115, is an example of the simplest kind
of discrete dynamical system or the simplest kind of sequence – an arithmetic sequence.
An arithmetic sequence can be described in many different, equivalent ways –

• An initial value and a recursion equation

p0 = a, pn = pn−1 + d

• An initial value and a difference equation

p0 = a, pn − pn−1 = d

• A formula

pn = a + nd.

A formula like this last formula that enables us to compute each term pn directly is
often called a closed form, or analytic, solution.

We often use a formula to describe a model – for example, in Tankerland the amount
of oil in the reserves after the n-th delivery is given by the formula pn = 1.5 + 0.5n
and in Pipelineland the amount of oil in the reserves is given by the formula p(t) =
1.5 + 0.5t. Except for using the notation n in one formula and the notation t in the other,
these two formulas look identical. But, we must be careful and remember the underlying
models. For example, if war broke out between these two countries each country might
make disrupting the other country’s oil supply lines an immediate priority. Tankerland
might bomb Pipelineland’s pipelines and Pipelineland might destroy the tankers bringing
oil to Tankerland. If the war began on the next to last day of any month, Tankerland
would be at a decided disadvantage with almost 0.5 million fewer tonnes of oil in reserve
than Pipelineland.
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Figure 2.3: M1091 Fuel/Water Tanker

Question 1 The M1091 fuel/water tanker (Figure 2.3.2) is designed to support soldiers
on the battlefield. It can transport 1500 gallons of either water or fuel. You are in charge
of a supply station that has been established in a secure area to supply water to troops on
the front lines. You have 95,000 gallons of water in a tank and every day a convoy of ten
M1091 tankers leaves your station with a full load of water. Develop a model for the water
in your tank. Draw a graph for this model. When will you need to be resupplied?

Question 2 Water can be pumped from the M1091 at a rate of 100 gallons per minute.
Develop a model showing how much water is in an M1091 starting at the moment it starts
pumping water out. Draw a graph for this model. How long will it take to completely empty
each tanker?

Question 3 You are posted at a mobile command center. Every morning you receive
an update from a unit in the field reporting how much fuel they have. This morning they
reported that they have 200,000 gallons of fuel. You know that every day they have reported
having 15,000 gallons less fuel than the day before. You post the most recent report every
morning immediately after it comes in at 0700. Develop a model for the number posted.
Draw a graph for this model.

Draw a graph for a continuous model that you think is plausible for the actual amount
of fuel the unit has, taking into account the fact that they are using fuel throughout the day.
Your model should take into account the idea that the rate at which the unit is using fuel
varies over the course of each day. For example, fuel might be used at a higher rate when
many personnel are out on patrol.

2Source: www.globalsecurity.org.
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2.2 Discrete Dynamical Systems, Gasoline, and Money

2.2.1 The Price of Gasoline

Figure 2.4: Buying gasoline, January and May 2008

These words are being written just one hour after the author paid over $60.00 to fill
up his car’s gasoline tank. In July 2002 the average price of regular gasoline was $1.36 per
gallon. In July 2007 the average of regular gasoline was $2.93. The left side of Figure 2.4
shows a photograph made in January 2008 and the right side shows a photograph made
in May 2008. By the time you read these words the prices in that photograph may seem
like the “good old days.” Table3 2.1 provides some historical data on the price of regular
gasoline.

Date Price Date Price Date Price

Jul 01, 1991 $1.104 Jul 07, 1997 $1.169 Jul 07, 2003 $1.448

Jul 06, 1992 $1.147 Jul 06, 1998 $1.041 Jul 05, 2004 $1.835

Jul 05, 1993 $1.086 Jul 05, 1999 $1.110 Jul 04, 2005 $2.189

Jul 04, 1994 $1.097 Jul 03, 2000 $1.606 Jul 03, 2006 $2.873

Jul 03, 1995 $1.169 Jul 02, 2001 $1.384 Jul 02, 2007 $2.933

Jul 01, 1996 $1.219 Jul 01, 2002 $1.357 Jun 16, 2008 $4.082

Table 2.1: Midyear retail price of regular gasoline per gallon
3Source: United States Energy Information Administration, Department of Energy.
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Figure 2.5: Comparing the conventional and hybrid Toyota Camries and the Toyota Prius

So you want to buy a car and you’d probably like to drive it too. You’re going to have
many choices: Will you buy a car that is really fuel efficient, like the Toyota Prius; one
that is less fuel efficient, like the Toyota Camry; a compromise like the hybrid version of
Toyota Camry; or a gas-guzzling SUV? Will you wait a few years and save money so that
you can pay cash or will you buy a car now and take out a loan? Will you finance the car
through the dealer? How about buying a very inexpensive used car now and waiting a few
years for even more fuel efficient cars before buying a new car?

The manufacturer’s suggested retail price (MSRP) for the Toyota hybrid Camry is
$25,200 and for a conventional Camry the MSRP ranges from $19,620 - $28,120. There are
two versions of the Toyota Prius. One has an MSRP of $21,500 and the other has an MSRP
of $23,770. So, the purchase prices of the three cars are all in the same range. Figure 2.54

compares the fuel economy of these three vehicles side-by-side. Fuel cost estimates are
4United States Department of Energy and Environmental Protection Agency –

http://www.fueleconomy.gov/feg/gasprices/index.shtml Downloaded from the Web June 2008
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based on regular gasoline at $4.04 per gallon. You’ve always wanted a Camry but every
time you pass a gas station, that 46 miles per gallon for combined city and highway driving
for the Prius sounds better and better. It is 84% better than the 25 miles per gallon for
combined city and highway driving for the conventional Camry.

The purpose of this chapter is to build tools that can help you make better choices.
We begin with an example that poses a specific question.

Example 1 Estimate the amount you would spend for gasoline over the next five years if
you buy the conventional Toyota Camry. Note that Table5 2.1 on page 120 provides some
historical data on the price of regular gasoline.

Like most real world problems, this problem requires some information that is not
readily available. For example, to solve this problem you need to know how much you
will drive for each of the next five years and the price of gasoline for each of the next
five years. As you work on real problems like this you will often need to make some
plausible assumptions about information that is not readily available. This author drives
about 18,000 miles per year and we will use that figure in this example. Whenever you
make assumptions like this, you must also examine how your results are affected by your
assumptions. This is often called sensitivity analysis. For example, if you drive much
less than this author does then you would spend much less for gasoline then he would.
More precisely, if you drove 25% fewer miles per year then you would spend 25% less for
gasoline.

Predicting the price of gasoline over the next five years is more difficult. From Table
2.1 on page 120 we see that from July 1997 to July 2007 the price of gasoline rose from
$1.169 per gallon to $2.933 per gallon, or $1.764. This rise occurred over a period of ten
years, so the average price increase per year is roughly $0.18. We will assume that this
rate of increase will continue. Once again note that if our assumption underestimates the
rate at which the price of gasoline rises then our estimates for the amount you will spend
on gasoline will be too low and if our assumption overestimates the rate at which the price
of gasoline rises then our estimates for the amount you will spend on gasoline will be too
high. The price of gasoline rose much more dramatically between July 2, 2007 and June
16, 2008. In fact, it rose more than one dollar in slightly less than one year. Thus, our
assumption probably underestimates the rate at which the price is rising.

With these assumptions we are ready to attack this problem. The first step is to
estimate the amount of gasoline you expect to buy each year over the next five years.
Since the conventional Toyota Camry averages 25 miles per gallon (Figure 2.5 on page

5Source: United States Energy Information Administration, Department of Energy.
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121) and we estimate you will drive 18,000 miles per year, our estimate for the number of
gallons required each year for this vehicle is

18, 000
25

= 720 gallons.

Now we must estimate the price of gasoline over the next five years. Our estimate will
be based on a sequence p2007, p2008, p2009, p2010, p2011, p2012 that gives the price each year
starting in the year 2007 and continuing for the next five years. This will give us a rough
estimate because the price of gasoline varies considerably over the course of each year. It
tends to be higher in weeks when people are doing lots of driving and lower at other times.
In midyear 2007 the price of regular gasoline was $2.93 per gallon. Thus, p2007 = $2.93.
All three of the vehicles we are considering use regular gasoline. We estimated above that
the price of regular gasoline will rise by $0.18 each year. Thus, we estimate

p2007 = $2.93
p2008 = $2.93 + $0.18 = $3.11
p2009 = $3.11 + $0.18 = $3.29
p2010 = $3.29 + $0.18 = $3.47
p2011 = $3.47 + $0.18 = $3.65
p2012 = $3.65 + $0.18 = $3.83

Notice that this is a discrete dynamical system with the initial value p2007 = $2.93 and
the recursion equation

pn = pn−1 + $0.18.

Now we can estimate the amount you will spend on gasoline over each of the next five
years by multiplying the price per gallon for each year by the number of gallons you expect
to buy each year. Then we total the figures for the five years to get the total estimated
cost of gasoline, $12,362.40. See Table 2.2 on page 124.

It is worthwhile to compare this figure, $12,362.40, with the purchase prices of the
cars under consideration to get some idea of its impact on the total cost of owning and
operating a car. These cars all cost in the range $19,000 - $26,000, so the total cost of
gasoline for the conventional Toyota Camry for five years is roughly half the purchase
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Year Gallons Price per Gallon Total

2008 720 $3.11 $2,109.60

2009 720 $3.29 $2,368.80

2010 720 $3.47 $2,498.40

2011 720 $3.65 $2,628.00

2012 720 $3.83 $2,757.60

Total $12,362.40

Table 2.2: Gasoline expenditures

price of the vehicles under consideration. Comparisons like this and even more careful
comparisons are important. For example, if a hybrid costs more than a comparable con-
ventional vehicle then it is important to know whether the savings in the cost of gasoline
for a hybrid will offset its higher cost. Because of the importance of this kind of com-
parison, Consumer Reports ran a story including not only the purchase price and cost of
gasoline but also the resale value and other factors for each vehicle in its April 2006 issue.
Cadets and faculty in MA 103 found an error in Consumer Reports’ original analysis. See
http://www.msnbc.msn.com/id/11637968/ and http://www.consumerreports.org/cro/
cars/new-cars/resource-center/fuel-economy/high-cost-of-hybrid-vehicles-406/overview/
index.htm. The online version is the corrected version but the print version contains the
original error.

Question 1 Using the same assumptions we made above, estimate the total cost of gasoline
over the next five years for a Toyota Prius.

Question 2 Using the same assumptions we made above, estimate the total cost of gasoline
over the next five years for a hybrid Toyota Camry.

Question 3 One of the reasons that the price of gasoline is rising is that worldwide con-
sumption of gasoline is rising. You can personally decrease your own gasoline consumption
by 45% if you buy a Toyota Prius rather than a conventional Toyota Camry. Suppose that
everyone in the United States made the decision to lower their consumption of gasoline and
other petroleum products. How would this affect the model above and our conclusions?

Question 4 Choose three vehicles that you might consider buying. Choose one vehicle
that gets relatively poor gas mileage, one vehicle that gets very good gas mileage, and one
vehicle whose gas mileage is between the other two. You can find mileage estimates from
http:fueleconomy.gov. Compare the cost of gasoline for these three vehicles over the next
five years using your own estimates for how many miles you expect to drive.

http://www.msnbc.msn.com/id/11637968/
http://www.consumerreports.org/cro/cars/new-cars/resource-center/fuel-economy/high-cost-of-hybrid-vehicles-406/overview/index.htm
http://www.consumerreports.org/cro/cars/new-cars/resource-center/fuel-economy/high-cost-of-hybrid-vehicles-406/overview/index.htm
http://www.consumerreports.org/cro/cars/new-cars/resource-center/fuel-economy/high-cost-of-hybrid-vehicles-406/overview/index.htm
http:fueleconomy.gov
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Question 5 Between 1997 and 2007 the price of regular gasoline rose by an average of
9.6% each year. Compare the total cost for gasoline over the next five years for the con-
ventional Toyota Camry, the hybrid Toyota Camry, and the Toyota Prius assuming that
you drive 18,000 miles per year and that the price of gasoline continues to rise by 9.6%
each year.

Question 6 The preceding questions were all written before the dramatic gasoline price
increases in the first half of 2008. Look back at your answers and conclusions. How would
they be changed in light of more recent data?

2.2.2 Borrowing Money

Example 2 Suppose that you have decided on a car that costs $23,000. The car dealer
offers you a special financing package. She will give you a $1,000 discount on the price of
the car if you finance it through the dealership and borrow the full purchase price ($22,000
after the discount). You must pay $559.99 per month for 48 months. Your credit union is
willing to loan you $23,000 at an annual percentage rate of 5% (or 0.416667% per month)
if you make monthly payments of at least $400.00. If you finance through the credit union,
you will not receive the $1,000 discount that the dealer offered you.

Which way should you finance your purchase?

Discrete dynamical systems are ideal for studying this kind of problem. We will use
a sequence p0, p1, p2, . . . p48 to keep track of what would happen if we financed the car
through the credit union. The first term, p0, of the sequence is the amount of the loan.

p0 = $23, 000

As usual the value, $23,000, of the first term, p0, is called the initial value. The
remaining terms p1, p2, . . . p48 represent the loan balance after each of 48 monthly payments.
After one month the bank charges interest at the rate of 0.416667% and then deducts the
amount of the payment. Suppose you pay $559.99 each month, the same monthly payment
you would make if you financed the car through the dealer. Then we would compute the
balance, p1, after the first monthly payment by

p1 = p0 + 0.00416667p0︸ ︷︷ ︸
interest

− $559.99︸ ︷︷ ︸
payment

= $22, 535.84.
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and we could compute the balance, p2, after the second monthly payment by

p2 = p1 + 0.00416667p1︸ ︷︷ ︸
interest

− $559.99︸ ︷︷ ︸
payment

= $22, 069.75.

We can continue computing the balance after each monthly payment by

pn = pn−1 + 0.00416667pn−1︸ ︷︷ ︸
interest

− $559.99︸ ︷︷ ︸
payment

,

for n = 1, 2, 3, . . . 48. This equation is the recursion equation and describes how each term,
pn, of the sequence is computed from the previous term, pn−1. Table 2.3 shows the results
of these calculations.

Term Balance Term Balance Term Balance Term Balance

0 $23,000.00

1 $22,535.84 13 $16,812.78 25 $10,796.92 37 $4,473.28

2 $22,069.75 14 $16,322.85 26 $10,281.92 38 $3,931.92

3 $21,601.72 15 $15,830.87 27 $9,764.77 39 $3,388.32

4 $21,131.74 16 $15,336.84 28 $9,245.47 40 $2,842.45

5 $20,659.80 17 $14,840.75 29 $8,724.00 41 $2,294.30

6 $20,185.89 18 $14,342.60 30 $8,200.36 42 $1,743.87

7 $19,710.01 19 $13,842.37 31 $7,674.54 43 $1,191.14

8 $19,232.14 20 $13,340.06 32 $7,146.52 44 $636.12

9 $18,752.29 21 $12,835.65 33 $6,616.31 45 $78.78

10 $18,270.43 22 $12,329.14 34 $6,083.89 46 -$480.88

11 $17,786.57 23 $11,820.52 35 $5,549.25 47 -$1,042.88

12 $17,300.69 24 $11,309.79 36 $5,012.38 48 -$1,607.21

Table 2.3: Loan balances

Notice that after the 46th payment the loan balance is negative. When we add interest
to p45 we get

p45 + 0.00416667p45 = $79.11.

So the 46th payment should have been only $79.11 and would have paid off the loan. There
was no need for payments 47 and 48. This is a much better way to finance the vehicle.
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Figure 2.6: A Mathematica screenshot with some underlined code

Because computing all the loan balances after all 48 payments is time-consuming and
tedious, we usually use either Mathematica or a spreadsheet to do the work. See Figure
2.6. Notice that we have underlined the code corresponding to the three key elements of
the model in the Mathematica notebook.

• The second line in the Mathematica notebook corresponds to the initial value p0 =
$23, 000. In this line we underlined the code corresponding to the initial value 23 000.
This is the code you will change for different initial values. Notice that in Mathematica
we do not use commas or dollar signs in numbers. Mathematica automatically puts
a small space where a comma would normally be. You do not type the space.

• The third line in the Mathematica notebook corresponds to the recursion equation

pn = pn−1 +
(

0.05
12

)
pn−1 − 559.99.

In this line we underlined the code that corresponds to the right hand side of the
recursion equation. This is the code you will change for different recursion equations.

• The fourth line of the Mathematica notebook prints a table showing the terms pn

for n = 0, 1, 2, . . . 48. We have underlined the code that specifies which terms are
to be included in the table. This is the code you will change if you are interested
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in different terms. To save space we only show part of the output in Figure 2.6 on
page 127.

You can use this Mathematica notebook to study other models like this by changing
the underlined code in the notebook.

Question 7 You had decided that you could afford payments of $559.99 per month for 48
months but it was a stretch. Could you lower your payments to $539.99 per month and
still pay off the loan in 48 months?

Question 8 Recall that the credit union will give you a loan at this rate if you make
monthly payments of at least $400.00. How long would it take you to pay off this loan if
you made the minimum monthly payments?

Question 9 Suppose that you have been considering some options that would bring the
price of this vehicle up to $24,000. Can you buy the vehicle with these options and still pay
$559.99 per month for 48 months?

Question 10 The Federal Reserve Bank has just lowered interest rates in response to a
sagging economy. As a result, you can get a new car loan at the annual rate of 4.5% per
year. How would this affect your car buying options?

2.2.3 Geometric Sequences

We begin this subsection with an example.

Example 3 Suppose that your rich uncle gave you a gift of $10,000 the day that you were
born and that the money was invested in a fund that pays 6% interest each year with the
interest credited on your birthday. How much money would you have after interest was
credited on your 21st birthday?

We can express this situation with the recursion equation and initial value

pn = pn−1 + 0.06pn−1 = 1.06 pn−1, p0 = $10, 000

A sequence, like the one produced by this recursion equation, in which the terms change
by the same percentage amount each time, is called a geometric sequence. Notice that
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p1 = 1.06p0

p2 = 1.06p1 = 1.06(1.06p0) = (1.06)2p0

p3 = 1.06p2 = 1.06((1.06)2p0 = (1.06)3p0

...
pn = (1.06)np0.

More generally, we can write a geometric sequence using a recursion equation of the
form

pn = Rpn−1

or by the formula

pn = Rnp0.

As mentioned earlier, a formula like this that expresses the terms pn by a function

pn = f(pn)

is called a closed form or analytic solution. For our example, the closed form solution is

pn = (1.06)n$10, 000.

On your 21st birthday you will have

p21 = (1.06)21$10, 000 = $33, 995.60.

The next example is somewhat more complicated and cannot be described be a geo-
metric sequence.

Example 4 Suppose that your rich uncle gives you a gift of $50,000. Suppose you deposit
the gift in a bank account that earns interest at the rate of 5% per year and that each year
on the anniversary of the gift after the interest is posted you withdraw $5,000 and use it
for a vacation. How long will you be able to continue taking vacations using your uncle’s
gift?



CHAPTER 2. DISCRETE DYNAMICAL SYSTEMS 130

We use an to denote the money in your bank account at the beginning of the nth year
after your uncle’s gift. Thus,

a1 = $50, 000
an = an−1 + 0.05an−1 − $5, 000

= 1.05an−1 − $5, 000.

This leads to Table 2.4. Note that this is not a geometric sequence and so does not have
a closed form solution of the form pn = Rnp0.

Year Amount Year Amount

1 $50,000.00 9 $26,127.23

2 $47,500.00 10 $22,433.59

3 $44,875.00 11 $18,555.27

4 $42,118.75 12 $14,483.03

5 $39,224.69 13 $10,207.18

6 $36,185.92 14 $5,717.54

7 $32,995.22 15 $1,003.42

8 $29,644.98 16 -$3,946.41

Table 2.4: The amount of money in your bank account

Notice that a16 = −$3, 946.41, which means that after withdrawing $5,000 at the end
of the 15th year for your 15th vacation your balance would be negative – your account was
$3,946.41 short of what you needed for your 15th vacation. Thus, you will be able to take
14 full vacations and one much smaller vacation.

Question 11 The model that we used in the preceding example,

a1 = $50, 000
an = an−1 + 0.05an−1 − $5, 000

= 1.05an−1 − $5, 000,

reflected the fact that you withdrew $5,000 each year after the interest was paid. How would
you change this model if you withdrew $5,000 each year before the interest was paid?
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Question 12 Suppose that you deposit $3,000 each year on your birthday in a bank account
that earns interest at the rate of 4% per year. How much money would you have immediately
after making your 10th deposit? What assumptions did you make regarding when your bank
paid interest? Use a discrete dynamical system to model this situation and answer the
questions.

Question 13 Suppose that you deposit $250 each month on the first of the month in a bank
account that earns interest at the rate of 4% per year. Suppose that the bank pays interest
monthly (at the rate of 1/3% per month). How much money would you have immediately
after making your 120th deposit? What assumptions did you make regarding when your
bank paid interest? Use a discrete dynamical system to model this situation and answer
the questions.

Question 14 In this question we consider the possibility of setting up a permanent colony
on the moon. Suppose that we sent one rocket to the moon each year with 75 colonists for
twenty years and that the birthrate on the moon was 5% – that is, each year the number of
babies born was 5% of the current population. Assume that the death rate was 1% per year.
What would the population of the colony be after twenty years? What assumptions did you
make? Use a discrete dynamical system to model this situation and answer the questions.

Question 15 Someone dumped 100 tons of garbage on some vacant land. You just pur-
chased the land and plan to build a development on the land. You must remove the garbage.
Your trucks can remove 5 tons of garbage each day. If you start removing the garbage now
you want to know how much garbage will remain each day. Model this situation with a
discrete dynamical system. Find a closed form solution for this discrete dynamical system.
Use your closed form solution to determine how long it will take to remove all the garbage.

Question 16 Someone dumped 100 tons of a pollutant into a spring-fed lake. You have
just purchased the lake and some surrounding land. You plan to use the lake for fish-farming
but before you do so you must remove 95% of the pollution. Each week you can remove 5%
of the water in the lake and it will be replaced by unpolluted water from the spring. Thus,
each week you can lower the amount of pollution in the lake by 5%. Model this situation
with a discrete dynamical system. Find a closed form solution for this discrete dynamical
system. Use your closed form solution to determine how long it will take to remove 95%
of the pollution.
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Figure 2.7: Pentagon Federal Credit Union money market rates (31 January 2008)

2.2.4 A Multibillion Dollar Question – Discrete vs. Continuous

Figure 2.7 shows a typical advertisement for money market interest rates. Notice that
there are two different interest rates – the “dividend rate” and the “APY”, or “annual
percentage yield.” Actually, if you dig a bit deeper, you will find there are more than
two – and it is not just money market certificates but loans and virtually any investment
that have a multitude of different “rates” and “yields.” This is not a finance course so we
will only scratch the surface of this topic. We will, however, discuss the most significant
mathematical issue involved – the same issue that is involved in discrete versus continuous
dynamical systems.

The fundamental mathematical6 issue underlying the two rates in Figure 2.7 is when
or how often interest (or dividends) is added to the account, or “compounded.” We begin
with a question. Answer it before going on to the next page.

Question 17 Suppose that you invest $12,000 in a bank account that earns 4% interest
per year with the interest paid annually. How much money will be in the account after ten
years?

6You may wonder why we attach the qualifying adjective “mathematical” to the noun “issue.” The
reason is that there are a number of other equally important issues that are not purely mathematical. For
example, when you take out a loan or buy stock there may be various fees involved.
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Many investments pay interest, or compound, more often than once a year. The next
example looks at one common possibility – quarterly compounding.

Example 5 Suppose you invest $12,000 in a bank account that earns 4% interest per year
with interest paid quarterly (every three months). How much money will be in the account
after ten years?

Banks often pay interest quarterly or monthly. Some even pay interest daily. Since the
interest rate is 4% each year, the bank pays 1% each quarter. We model this situation as
follows.

First, we let n = 0, 1, 2, . . . 40 denote the number of quarters after the initial investment.
Then,

p0 = $12, 000
pn = 1.01pn−1

Table 2.5 shows the calculations for this example – $12,000 invested at an annual
interest rate of 4% with the interest compounded (paid) quarterly. Table 2.6 on page 134
shows the calculations for Question 17 – $12,000 invested at an annual interest rate of 4%
with the interest compounded yearly.

n pn n pn n pn n pn

0 $12,000.00

1 $12,120.00 11 $13,388.02 21 $14,788.70 31 $16,335.93

2 $12,241.20 12 $13,521.90 22 $14,936.59 32 $16,499.29

3 $12,363.61 13 $13,657.12 23 $15,085.96 33 $16,664.28

4 $12,487.25 14 $13,793.69 24 $15,236.82 34 $16,830.92

5 $12,612.12 15 $13,931.63 25 $15,389.18 35 $16,999.23

6 $12,738.24 16 $14,070.94 26 $15,543.08 36 $17,169.23

7 $12,865.62 17 $14,211.65 27 $15,698.51 37 $17,340.92

8 $12,994.28 18 $14,353.77 28 $15,855.49 38 $17,514.33

9 $13,124.22 19 $14,497.31 29 $16,014.05 39 $17,689.47

10 $13,255.47 20 $14,642.28 30 $16,174.19 40 $17,866.36

Table 2.5: Bank account balance – compounded quarterly

Notice that if the interest is compounded quarterly, then, after ten years, there is
$17,866.36 in the bank account; whereas, if the interest is only compounded yearly, the
balance is $17,762.93 (as calculated in Question 17).
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0 $12,000.00

1 $12,480.00

2 $12,979.20

3 $13,498.37

4 $14,038.30

5 $14,599.83

6 $15,183.83

7 $15,791.18

8 $16,422.83

9 $17,079.74

10 $17,762.93

Table 2.6: Bank account balance – compounded annually

Even after the end of the first year the investment that was compounded quarterly is
worth more than the investment that was compounded annually – $12,487.25 as compared
to $12,480.00. In effect, the investment that was compounded quarterly has earned 4.06%
interest in one year as computed by:

$12, 487.25− $12, 000
$12, 000

× 100% = 4.06%

This is called the effective annual interest rate. Bankers use several different terms
for variations on these ideas. Sometimes they use the term annual percentage yield. See
Figure 2.7 on page 132 at the beginning of this subsection. We can calculate the effective
annual interest rate another way. Recall that our model for this investment is based on
the recursion equation

pn = 1.01pn−1.

Thus, we see that for any quarter k,

pk+1 = 1.01pk

pk+2 = 1.01pk+1 = (1.012)pk

pk+3 = 1.01pk+2 = (1.013)pk

pk+4 = 1.01pk+3 = (1.014)pk
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and each year (each four quarters) the investment is multiplied by (1.01)4 = 1.0406. This
is the same thing as adding 4.06% interest.

Question 18 Analyze an investment of $12,000 for ten years in a bank account earning
4% interest compounded monthly. How much is this investment worth at the end of ten
years? What is the effective annual interest rate?

Question 19 Analyze an investment of $12,000 for ten years in a bank account earning
4% interest compounded daily. How much is this investment worth at the end of ten years?
What is the effective annual interest rate?

The following questions all involve loans that are repaid in one lump sum rather than
in monthly or yearly payments.

Question 20 Suppose you borrow $12,000 for a period of ten years at an interest rate of
12% per year and the interest is compounded monthly. How much do you have to repay at
the end of ten years? What is the effective annual interest rate?

Question 21 Suppose you borrow $12,000 for a period of ten years at an interest rate of
12% per year and the interest is compounded daily. How much do you have to repay at the
end of ten years? What is the effective annual interest rate?

Question 22 Suppose you borrow $12,000 for a period of ten years at an interest rate of
18% per year and the interest is compounded monthly. How much do you have to repay at
the end of ten years? What is the effective annual interest rate?

Question 23 Suppose you borrow $12,000 for a period of ten years at an interest rate of
18% per year and the interest is compounded daily. How much do you have to repay at the
end of ten years? What is the effective annual interest rate?

Not surprisingly, banks want to earn as much money as possible from their loans.
Suppose that a loan is advertised as having an interest rate of 18% per year. If the interest
is compounded every quarter, or four times per year, then each quarter the interest rate is
18%/4 = 4.5%. Thus, if we let p0 be the initial loan and pn be the amount owed (with no
payments) after n quarters we see that
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p1 =
(

1 +
0.18

4

)
p0

p2 =
(

1 +
0.18

4

)2

p0

p3 =
(

1 +
0.18

4

)3

p0

p4 =
(

1 +
0.18

4

)4

p0 ≈ 1.1925p0

and after four quarters (one year) the effective interest rate is 19.25%. Thus, by com-
pounding the interest quarterly instead of annually the bank would earn an additional
1.25% interest each year.

If the bank compounded the interest monthly instead of quarterly we would have a
monthly interest rate of 18%/12 = 1.5% and

p1 =
(

1 +
0.18
12

)
p0

p2 =
(

1 +
0.18
12

)2

p0

...

p12 =
(

1 +
0.18
12

)12

p0 ≈ 1.1956p0

and after 12 months (one year) the effective interest rate is 19.56%. Thus, by compounding
the interest monthly instead of annually the bank would earn an additional 1.56% interest
each year.

If the bank compounded the interest daily then we would have

p1 =
(

1 +
0.18
365

)
p0

p2 =
(

1 +
0.18
365

)2

p0
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...

p365 =
(

1 +
0.18
365

)365

p0 ≈ 1.197164p0

and after 365 days (one year) the effective interest rate is 19.72%. Thus, by compounding
the interest daily instead of annually the bank would earn an additional 1.72% interest
each year.

You might wonder what would happen if the bank compounded the interest “infinitely”
often or “continuously.” Of course, compounding the interest infinitely often seems impossi-
ble but you could approximate the result by compounding the interest every hour, or every
minute, or every second. You would discover that the effective interest rate eventually
approaches a limit, about 19.721736%. Later in this book we will talk about continu-
ous dynamical systems. Continuous compounding, or compounding “infinitely often,” is
modeled by the differential equation

dp

dt
= 0.18p

and has the closed form solution

p(t) ≈ (1.1972136)tp0.

Thus, a credit card with an advertised rate of 18% per year can actually earn up to
19.72% depending on how often they compound interest. The difference between 18% and
19.72% is huge if you are making billions of dollars worth of loans.

We close this section by listing explicitly five steps that are very useful for developing
a model. These steps are all part of the transform arrow in the modeling triangle (Figure
2.1 on page 113) – expressing a situation in the real world mathematically. Following these
steps carefully can help you organize your model development and avoid some common
mistakes. Notice that we list these steps using a bulleted list rather than a numbered list
because you may not always follow these five steps in exactly the order below.

• Define the variables of interest: These variables identify the quantities of interest
– that is, the quantities that you are modeling or tracking. For example, you might
be interested in the amount of money in a bank account, the average personal income
of the residents of a particular country, or the amount of oil in worldwide known oil
reserves. As part of identifying and defining the variables of interest, you need to
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describe the units in which they are measured. For example, if you are tracking the
average personal income in a particular country you need to specify whether income
is measured in local currency or in some common currency7. In addition, you need
to specify whether or not income is measured in an inflation adjusted currency.

• Identify the domain: In most of the models in this book, we are tracking how the
variables of interest change over time. This is not, however, always the case. For
example, we might be interested in tracking how the amount of dissolved oxygen in
the ocean changes as the depth changes. If we are tracking a particular variable, say
p over time or, for example, as depth changes, we use a subscript to denote the value
of that variable at a particular time or depth. That is, we use notation like pn for
the value of p at time n or at depth n. We need to specify the units in which n is
measured and the domain of n. For example, if we are tracking the amount of money
owed on a car loan over a period of 60 months, we would use the notation pn to
denote the amount of money owed after n monthly payments. The subscript n would
be measured in payments or months and n would have the values n = 0, 1, 2, 3, . . . 60.
The number p0 would represent the initial amount borrowed; the number p1 would
represent the amount owed one month after the loan was taken out and after the
first payment; the number p2 would represent the amount owed two months after the
loan was taken out and after the second payment; and the number p60 = $0.00 would
represent the final loan balance 60 months after the loan was taken out and after the
final payment. Notice that the first payment on the loan is made one month after the
loan is taken out and the last payment is made 60 months after the loan is taken out.
This is the most common practice but it is possible to set up different loan payment
schedules. Whatever schedule is used is an important part of the model.

• List assumptions: This is often a key part of building a model and in many cases
assumptions are implicit rather than explicit – that is, people may not state explic-
itly all the assumptions that underlie the model. It is easy to go overboard listing
assumptions but it is also easy to err in the other direction, ignoring assumptions
that are important. For example, if we are modeling the price of gasoline we might
assume that political conditions in oil-producing countries are stable. This is a very
significant assumption. On the other hand, we might also assume that we are not
visited by an interplanetary group of oil traders based on the planet Neptune that
offers us regular and reliable oil deliveries in any quantity at a price of $8.00 per
barrel. This is a frivolous assumption.

7Personal income is a tricky business. Two commonly used measures are U.S. dollars in a fixed year
and “purchasing power parity.” The former is good if we are primarily interested in how residents of a
particular country compete on an international market – for example, can they afford to buy gasoline or
travel to international destinations or can they afford to send their kids to college in the United States or
Europe. The latter is useful if we are interested in local standards of living – how much food can they buy
or what kind of housing can they afford.
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• State the initial value: If, for example, we were tracking the amount owed on a
loan of $15,000, the initial value would be p0 = $15, 000.

• Determine the difference equation or the recursion equation that describes
how each term of the sequence is computed from the preceding term: If, for
example, the loan was paid off in monthly installments of $350 at an annual interest
rate of 6%, this would be

pn = pn−1 +
(

0.06
12

)
pn−1 − $350.

or

pn = pn−1 + 0.005pn−1 − $350.

We use three slightly different but equivalent forms to describe how each term is com-
puted from the previous term.

• The first form focuses on the difference between the current term and the preceding
term – for example,

pn︸︷︷︸
current

− pn−1︸︷︷︸
preceding

= 0.005pn−1 − $350︸ ︷︷ ︸
difference

.

• The second form expresses the current term as the present term plus some difference
– for example,

pn︸︷︷︸
current

= pn−1︸︷︷︸
preceding

+ 0.005pn−1 − $350︸ ︷︷ ︸
difference

.

• The third form expresses the current term as a function of the preceding term – for
example,

pn︸︷︷︸
current

= 1.0005 pn−1︸︷︷︸
preceding

−$350.
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2.3 Linear Discrete Dynamical Systems

This section looks at linear discrete dynamical systems. Linear discrete dynamical systems
are important for three reasons.

• They are easy to use.

• They can be used to model many important situations.

• They illustrate in simple form some of the most interesting ideas that come up when
we study and apply discrete dynamical systems.

Throughout this chapter we use two different kinds of graphs to help us visualize discrete
dynamical systems given by an initial condition

p0 =

and a recursion equation

pn = f(pn−1).

• Time series graphs focus our attention on the sequence p0, p2, . . . pn.

• Fundamental graphs focus our attention on the recursion equation – that is, on
the way the value of the quantity p changes from one term to the next.

In the two subsections below we illustrate these two kinds of graphs with the same
discrete dynamical system.

pn = 0.75pn−1 + 100, p0 = 50.

2.3.1 Time Series Graphs

Table 2.7 on page 141 shows the first thirty terms of the sequence generated by this discrete
dynamical system and Figure 2.8 on the same page shows exactly the same information as
a graph. This is an example of a time series graph. It focuses our attention on the values
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n pn n pn n pn

0 50.00

1 137.50 11 385.22 21 399.17

2 203.13 12 388.91 22 399.38

3 252.34 13 391.68 23 399.53

4 289.26 14 393.76 24 399.65

5 316.94 15 395.32 25 399.74

6 337.71 16 396.49 26 399.80

7 353.28 17 397.37 27 399.85

8 364.96 18 398.03 28 399.89

9 373.72 19 398.52 29 399.92

10 380.29 20 398.89 30 399.94

Table 2.7: pn = 0.75pn−1 + 100, p0 = 50
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200

300
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Figure 2.8: Time series graph for pn = 0.75pn−1 + 100

of the quantity p over a period of time – in this case over the period n = 0, 1, . . . 30. Figure
2.9 on page 142 shows Mathematica code that you can use as a template for making time
series graphs by modifying the underlined code.

Question 1 Draw a time series graph for the discrete dynamical system

pn = 0.90pn−1 + 100, p0 = 50.

Question 2 Draw a time series graph for the discrete dynamical system

pn = 1.10pn−1 + 100, p0 = 50.
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Figure 2.9: Mathematica code for making time series graphs

2.3.2 Fundamental Graphs

Figure 2.10 is the fundamental graph for the same discrete dynamical system,

pn = 0.75pn−1 + 100, p0 = 50,

that we used as an example in the previous subsection.

0

100

200

300

400

500
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pn

pn−1

pn = pn−1

pn = 0.75pn−1 + 100

Figure 2.10: Fundamental graph for pn = 0.75pn−1 + 100

The fundamental graph focuses on the recursion equation – that is, on the way the value
of the quantity p changes from one term to the next. Think of the recursion equation,

pn = 0.75pn−1 + 100,
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as a function whose input (or independent variable) is denoted pn−1 and whose output (or
dependent variable) is denoted pn. In other words this is a machine for computing pn from
pn−1. We have labeled the axes in Figure 2.10 on page 142 using this notation. The graph
of the function

pn = 0.75pn−1 + 100

is a thick red (if you have a color copy) line. Notice it is just a linear function whose
y-intercept is 100 and whose slope is 0.75.

We also draw a second graph, the graph of the function

pn = pn−1,

on the fundamental graph. This graph is a thin black line. This graph represents the
world’s most boring recursion equation – the one that represents an absolutely unchanging
situation – where p0 = p1 = p2 = p3 = · · · and so on forever. By comparing these two
graphs on the fundamental graph we can see some interesting things.

• If the thick red graph, the graph of pn = 0.75pn−1 + 100, is above the thin black
graph, the graph of pn = pn−1, then pn will be greater than pn−1. In other words the
quantity p will increase. Notice that in Figure 2.10 on page 142 whenever pn−1 < 400
the thick red graph is above the thin black graph and pn will be larger than pn−1.
That is why the terms p0, p1, p2, . . . in Figure 2.8 on page 141 keep increasing – each
term is below 400 and therefore the next term is larger.

• If the thick red graph, the graph of pn = 0.75pn−1 + 100, is below the thin black
graph, the graph of pn = pn−1, then pn will be less than pn−1. In other words the
quantity p will decrease. Notice that in Figure 2.10 on page 142 whenever 400 < pn−1

the thick red graph is below the thin black graph and pn will be less than pn−1.

• At points where the two graphs cross, for example pn−1 = 400 in Figure 2.10 on page
142, the value of p will not change. As an example, notice that if we plug this value
pn−1 = 400 into the recursion equation

pn = 0.75pn−1 + 100

we get

pn = 0.75(400) + 100 = 300 + 100 = 400

Points like this are called equilibrium points. They are extremely important and the
subject of Section 2.7.
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Figure 2.11 shows Mathematica code that you can use as a template for making funda-
mental graphs by modifying the underlined code.

Figure 2.11: Mathematica code for making fundamental graphs

Question 3 Draw a fundamental graph for the discrete dynamical system

pn = 1.10pn−1 − 25, p0 = 300.

Discuss what this fundamental graph tells us about how the quantity p changes.

Question 4 Draw a fundamental graph for the discrete dynamical system
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pn = 1.10pn−1 + 25, p0 = 300.

Discuss what this fundamental graph tells us about how the quantity p changes.

We now turn to the primary topic of this section – linear discrete dynamical systems.

2.3.3 Linear Discrete Dynamical Systems

We begin with some applications that come from very different places but that use exactly
the same mathematics.

Example 1 Barren Island is a miserable and inhospitable island off the coast of a lush and
much more hospitable mainland. There is a colony of 1200 birds on the island. Because
the island is so inhospitable, the population would drop by 20% each year if the island were
isolated. Each year, however, 500 birds arrive from the mainland and make their homes
on the island. Model this situation and predict the future bird population on the island.

We follow the steps discussed at the end of the section 2.2 as we model this situation.

• Defining the variables of interest: The variable of interest is the bird population on
Barren Island. We use the notation pn to denote the bird population measured in
numbers of birds on the island in the year n.

• Identifying the domain: Because the bird population varies over the course of each
year, it needs to be measured at a particular time each year, say May 15. Time is
measured in years. Typically we start with the first year for which we have reliable
data or we start with the year in which the model is built. The domain for population
models is usually a few tens of years but this depends on the use to which the model
will be put and how confident we are in the long-term usefulness of the model. As
described above, we use the notation n to denote the year and let n = 1, 2, . . . with
n = 1 being the current year.

• Stating the initial value: The initial value is

p1 = 1, 200.
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• Determining the recursion equation: The recursion equation is

pn = pn−1 − 0.20pn−1︸ ︷︷ ︸
natural drop

+ 500︸︷︷︸
immigration

Notice that one term represents the natural population drop of 20% that would occur
if there were no immigration and another term represents the immigration. Note also
that we are assuming that the immigration occurs after the natural population drop
of 20%. With a little algebra this becomes

pn = pn−1 − 0.20pn−1 + 500
= 0.80pn−1 + 500

This model and any model that can be written in the form

pn = mpn−1 + b,

where m and b are constants, is called a linear discrete dynamical system. The
adjective “linear” comes from the fact that the function

pn = mpn−1 + b

that appears as the recursion equation is linear. Its graph, the fundamental graph,
is a straight line. If the constant b is zero then this is called a homogeneous linear
discrete dynamical system and is just a geometric model. If the constant b is not
zero then this is called a nonhomogeneous linear discrete dynamical system.
Figure 2.12 on page 147 and Table 2.8 on page 147 show some predictions made by
this model.

Notice that because this is a linear system, the fundamental graph is a straight line.
The time series graph, Figure 2.12, however, is not a straight line.

• Listing assumptions:

This model has many assumptions. For example, we are assuming that the climate
on the island and immigration patterns remain stable, so that the same recursion
equation applies during the lifetime of the model.
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Figure 2.12: Birds on Barren Island

Year Population Year Population Year Population

1 1200.00 11 2360.41 21 2485.01

2 1460.00 12 2388.33 22 2488.01

3 1668.00 13 2410.66 23 2490.41

4 1834.40 14 2428.53 24 2492.33

5 1967.52 15 2442.83 25 2493.86

6 2074.02 16 2454.26 26 2495.09

7 2159.21 17 2463.41 27 2496.07

8 2227.37 18 2470.73 28 2496.86

9 2281.90 19 2476.58 29 2497.49

10 2325.52 20 2481.27 30 2497.99

Table 2.8: Birds on Barren Island

Example 2 You are saving8 to buy a car. You currently have $4,0009 and plan to save an
additional $200 each month for 24 months. You are keeping this money in a bank account
that earns interest at the annual rate of 3% compounded monthly. How much will you have
after 24 months?10

The annual interest rate of 3% results in a monthly rate of 0.25%. We assume that
each month you add $200 to the account after interest is paid. We model this using the

8Defining the variables of interest: The variable of interest pn is the amount of money in a savings
account.

9Stating the initial value: The initial value is p0 = $4, 000.
10Identifying the domain: The domain is n = 0, 1, 2, . . . 24, measured in months after now.
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linear model11

p0 = $4, 000
pn = pn−1 + 0.0025pn−1 + $200

= 1.0025pn−1 + $200

where pn denotes the amount of money in your new car fund after n additional payments
and n = 0, 1, 2, . . . 24. The results12 are shown in Table 2.9. Notice that after 24 payments
you will have $9,187.59 in your new car fund.

Month Balance Month Balance

0 $4,000.00

1 $4,210.00 13 $6,771.33

2 $4,420.53 14 $6,988.26

3 $4,631.58 15 $7,205.73

4 $4,843.16 16 $7,423.74

5 $5,055.26 17 $7,642.30

6 $5,267.90 18 $7,861.41

7 $5,481.07 19 $8,081.06

8 $5,694.77 20 $8,301.26

9 $5,909.01 21 $8,522.02

10 $6,123.78 22 $8,743.32

11 $6,339.09 23 $8,965.18

12 $6,554.94 24 $9,187.59

Table 2.9: New Car Fund

As you answer the questions below, go through the five modeling steps explicitly.

Question 5 A particular area has a thriving rabbit population. If the rabbits were left
to themselves, their population would increase by 30% each year. However, people from
a nearby town hunt the rabbits for food. If the current rabbit population is 5,000 rabbits
and each year the townspeople kill 2,000 rabbits, describe what will happen. What would
happen if the townspeople killed only 1,000 rabbits each year? What advice would you give
the townspeople?

Question 6 Three insurance companies are trying to sell you life insurance policies. All
three policies offer the same benefits and coverage. The premium for one policy is currently

11Determining the recursion equation: The recursion equation is pn = 1.0025pn−1 + $200.
12Listing assumptions: We are assuming that all payments are made on schedule.
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$1,500 per year and will rise by 1% per year. The premium for the second policy is currently
$1,200 per year and will rise by $100 per year. The premium for the third policy is currently
$1350 and will rise by 2% per year. Compare the premiums for the three policies.

Question 7 A storage facility currently has 400 kilograms of a particular radioactive iso-
tope. Left by itself this isotope will decay at the rate of 15% per year. Each year an
additional 150 kilograms of the isotope is placed in storage. How many kilograms of the
isotope will be in the storage facility in ten years?

Question 8 You are about to buy some coffee. One stand sells coffee that is 175 degrees
Fahrenheit and another sells coffee that is 195 degrees Fahrenheit. Suppose that coffee is
safe to drink when its temperature is 143 degrees Fahrenheit and that you prefer coffee whose
temperature is above 125 degrees Fahrenheit. The dining room is 68 degrees Fahrenheit.
You have a choice between a small cup of coffee and a large mug. If you buy a small
cup, then each minute it will lose 10% of the difference between its temperature and room
temperature. If you buy a large mug, it will only lose 4% of this difference each minute.
Discuss the pros and cons of your four choices.

Question 9 The parents of a new baby decide that each year they will save some money
to help with her college expenses. Because they don’t have much money when the baby is
born but expect their incomes to rise, they plan to deposit $1,000 times the child’s age in
years into the bank each year. Thus, on the baby’s first birthday they will start the child’s
education fund with $1,000. On the child’s second birthday, they will add $2,000 and so
forth. Assume that the account pays interest at the rate of 6% per year. How much money
will the child have after the deposit is made on her 18th birthday. Is your model a linear
model?
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2.4 Supply and Demand

Figure 2.13: Buying fresh tomatoes in the summer

In this section we will see one way in which economists use discrete dynamical systems
to understand our complex economy. We begin by looking at models in which prices
are determined by supply and demand and we conclude this section by using what we’ve
learned to help us understand what might happen when the price of raw materials rises.
This kind of modeling can, for example, provide some insight into the ripple effects of rising
oil prices.

Toward the end of the summer, tomatoes are not only wonderful; they are cheap. How-
ever, when tomatoes are out-of-season, the quality is low and the price is high. Although it
doesn’t seem fair to have to pay more for inferior tomatoes, this is exactly what is predicted
by the Law of Supply and Demand.

The Law of Supply and Demand is the dream of free market economists. It is used to
describe how prices are determined in a situation with many independent producers and
many independent buyers.

We will illustrate the Law of Supply and Demand with a hypothetical product called
Byties. Byties are baked each night by many independent bakers and are sold each morning
in the town square to many independent buyers. Each baker decides how many Byties to
bake or even whether to bake any Byties at all on the basis of the price of Byties on the
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Figure 2.14: An example of a supply function

preceding day. When the price is high, they bake many Byties and when the price is low
they only bake a few. If the price is so low that bakers can’t recover the costs of ingredients,
they won’t bake any Byties at all. The number of Byties bakers bake is called the supply
of Byties. This relationship between the price of Byties and the supply of Byties is called
the supply function because the supply (the dependent variable) of Byties is determined by
their price (the independent variable). Figure 2.14 shows an example of a supply function,
the function

S(p) =
{

0, if p ≤ 1;
10 (p− 1)2 , if 1 < p.

Notice that when the price is higher, so is the supply. This matches our intuition since
we would expect people to be willing to bake more Byties when their profit would be higher.
Although this is generally what we would expect, we can also imagine other scenarios. For
example, when the price dropped, producers might actually bake more Byties in an attempt
to make up in volume what they are losing on individual sales.

The supply function S(p) = 10(p − 1)2 shown in Figure 2.14 is the kind of supply
function one would expect if the cost of ingredients was $1.00 because bakers won’t make
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Figure 2.15: An example of a supply and a demand function

any profit at all unless the price is above $1.00 and, thus, the supply function is zero unless
the price is greater than $1.00. Since we want to be able to study what happens when the
cost of ingredients changes, we are interested in the supply function below, in which the
fixed cost $1.00 has been replaced by a parameter c representing a cost that might possibly
change. When c = $1.00 this supply function is exactly the same as the one above.

S(p) =
{

0, if p ≤ c;
10 (p− c)2 , if c < p.

There is a live version of Figure 2.14 (page 151) on the web. Click here13 and then
follow the instructions to experiment with different values of the parameter c that represents
the cost of ingredients.

Each day the buyers decide whether to go to the town square and how many Byties
to buy based on the price the preceding day. This is called the demand for the product
and the relationship between the price for a product and the demand is called the demand
function. Figure 2.15 shows an example of a demand function, the function

13http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/liveSupply.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/liveSupply.html


CHAPTER 2. DISCRETE DYNAMICAL SYSTEMS 153

D(p) =
{

100(10− p), if p ≤ 10;
0, if 10 < p,

added to our earlier graph.

Notice that as the price rises, the demand falls. Again, this is what we would generally
expect but we can imagine other scenarios. For example, sometimes people actually buy
more when a product is more expensive because they equate price with quality. There are
many examples of this phenomenon – for example, people sometimes avoid cheap hotels
and motels because they assume the quality is lower.

Notice that when the price is relatively low the demand is larger than the supply and
when the price is relatively high the demand is lower than the supply. There is a price,
slightly below $7.00, at which the supply and demand are equal. On the graph this is the
point at which the graphs of the supply function and the demand function intersect. This
price is called the equilibrium price. This is the ideal price because the bakers are selling
all the Byties they bake and the buyers are able to buy all the Byties they want to buy.
We can determine the equilibrium price algebraically as shown below.

D(p) = S(p)
100(10− p) = 10(p− 1)2

1000− 100p = 10p2 − 20p + 10
10p2 + 80p− 990 = 0

p2 + 8p− 99 = 0

Applying the quadratic formula we see that the equilibrium price is roughly $6.72. Note
that the quadratic formula yields two roots but the second one is negative and irrelevant
in this situation.

Click here14 for a live version of Figure 2.15 on the Web. Follow the instructions to see
how different values for the parameter15 c affect the equilibrium price.

Question 1 Suppose that the cost of ingredients rises to $2.00. What happens to the
equilibrium price?

14http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/liveDemand.html
15Recall that this parameter represents the cost of ingredients.

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/liveDemand.html
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The change in the equilibrium price is only the beginning of the story. When you
answered the question above, you probably discovered that the equilibrium price went up.
At the new and higher equilibrium price the demand will be lower than it was at the old
equilibrium price. This will affect bakers because they will sell fewer Byties. They might
also be affected in other ways. When the cost of ingredients went up their profit per Bytie
might go down. Whether and how much it goes down depends on how much the selling
price (the new equilibrium price) has risen. The next question asks you to look at the
effects of the rise in the cost of ingredients on the various players – bakers and buyers.
This question is part of the interpret step in the modeling triangle. We are interested in
what our mathematical model can tell us about the real world. For example, if you are a
baker you want to know whether you should look for another job and this model can shed
some light on that question.

Question 2 What other effects are caused by the rise in the cost of ingredients? Think
about what happens from the point-of-view of the bakers. Think about what happens from
the point-of-view of the buyers.

Question 3 Consider the supply and demand functions:

S(p) = 10, 000(p− 2)
D(p) = 5, 000(20− p)

Find the equilibrium price.

Question 4 Consider the supply and demand functions:

S(p) = 10, 000(p− c)
D(p) = 5, 000(20− p)

where c is a parameter representing the cost of ingredients. How does the equilibrium price
depend on the cost of ingredients?

Now, we are ready to talk about how the marketplace works and how prices change –
that is, we will look at a dynamic model in which prices change rather than a static market
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in which the price somehow has found its equilibrium. We will illustrate this discussion
with an example – the familiar baked good, Byties. Suppose that Byties are wonderful
when they are fresh but stale Byties aren’t very good. As a result, bakers must sell their
Byties each day because day-old Byties aren’t worth very much. There are many products
like this. For example, an empty airplane seat becomes stale as soon as the plane takes off.

Early each morning bakers bring their Byties to the town square. A few minutes later
customers begin to arrive and a few hours later that same day there are three possibilities
that will affect the price of Byties the next day:

• If the price is the equilibrium price, then everybody is happy. The bakers sell all
their Byties and the customers are able to buy all the Byties they want.

• If the price is above the equilibrium price, then there are more Byties than the
customers want to buy and bakers are faced with unsold Byties that are about to
become stale. In this situation, customers begin to bargain and bakers begin to put
their remaining Byties “on sale.” As a result, the price of Byties falls.

• If the price is below the equilibrium price, then there are more customers than Byties
and the bakers are able to raise their prices for the remaining Byties.

One simple model that captures this general behavior is given by a recursion equation
of the form

pn = pn−1 + k (D (pn−1)− S (pn−1)) ,

where k is a positive constant whose value is determined by the nature of the marketplace
and the bakers and customers. Notice that today’s price, pn, is determined by the supply
and the demand based on yesterday’s price, pn−1. The quantity (D (pn−1)− S (pn−1)) is
the difference between the demand and the supply based on yesterday’s price. Notice that,
since k is a positive constant, if the demand is greater than the supply then the price will
go up and, if the demand is lower than the supply, then the price will go down.

Example 1 Suppose the supply and demand functions for Byties are

S(p) = 10, 000(p− 2)
D(p) = 5, 000(20− p)
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This leads to the recursion equation

pn = pn−1 + k (D (pn−1)− S (pn−1))
pn = pn−1 + k (5, 000 (20− pn−1)− 10, 000 (pn−1 − 2))
pn = pn−1 + k (100, 000− 5, 000pn−1 − 10, 000pn−1 + 20, 000)
pn = pn−1 + k (120, 000− 15, 000pn−1)
pn = pn−1 + 15, 000k (8− pn−1)

We can rewrite this last equation as

pn = (1− 15, 000k)pn−1 + 120, 000k

and we see that this is a linear discrete dynamical system.

Now, suppose that the value of the constant k is 0.00004 and that the initial price is
$4.00. Thus, our complete model is

p0 = $4.00
pn = pn−1 + 15, 000(0.00004) (8− pn−1)

= 0.40pn−1 + 4.8

Table 2.10 on page 157 shows the results computed using this model for the next ten
days.

The value of the constant k represents the volatility of the marketplace and depends on
customs and the nature of both the bakers and the customers. Some markets are very quick
to adjust prices – both customers and sellers like to bargain. Others are slower to adjust
prices. Notice that in this example, the initial price was below the equilibrium price but
within nine days it was within a fraction of a cent of the equilibrium price. The following
questions are also part of the interpret step in the modeling triangle.

Question 5 Experiment with Example 1. What happens if the initial price is above the
equilibrium price?
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Day Price

1 $4.00

2 $6.40

3 $7.36

4 $7.74

5 $7.90

6 $7.96

7 $7.98

8 $7.99

9 $8.00

10 $8.00

Table 2.10: The price of Byties

Question 6 Continue your experimentation with Example 1.

• What happens if the marketplace is less volatile – for example, what happens if k =
0.00002?

• What happens if the marketplace is more volatile – for example, what happens if
k = 0.00008?

• See if you can find a general description of what happens with various values of the
volatility constant k.

The last question looks at some of the downstream or “ripple” effects of a rise in the
cost of ingredients. This kind of modeling is important when we try to analyze the effects
of rises in oil prices.

Question 7 Example 1 uses a supply function that would be appropriate if the cost of the
ingredients for Byties was $2.00. Suppose that the price is at equilibrium and the cost of
the ingredients for Byties suddenly rises to $4.00. Describe what happens. How does the
volatility of the marketplace affect what happens? Describe the effects of the rise in the cost
of ingredients on both bakers and buyers.
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2.5 Long Term Behavior and Limits

2.5.1 Long Term Behavior and Limits

In this section we develop notation and terminology for discussing the long term behavior
of sequences generated by discrete dynamical systems. We begin with an example.

Example 1 Consider the discrete dynamical system

pn = 0.75pn−1 + 100, p0 = 50

n pn n pn n pn

0 50.00

1 137.50 11 385.22 21 399.17

2 203.13 12 388.91 22 399.38

3 252.34 13 391.68 23 399.53

4 289.26 14 393.76 24 399.65

5 316.94 15 395.32 25 399.74

6 337.71 16 396.49 26 399.80

7 353.28 17 397.37 27 399.85

8 364.96 18 398.03 28 399.89

9 373.72 19 398.52 29 399.92

10 380.29 20 398.89 30 399.94

Table 2.11: pn = 0.75pn−1 + 100, p0 = 50

0 10 20 30
0

100

200

300

400

500

Figure 2.16: pn = 0.75pn−1 + 100

The first thirty terms of the resulting sequence are shown in Table 2.11 and Figure 2.16.
Notice that the sequence is getting closer and closer to the number 400. In this situation
we say that the sequence converges to the number 400. We make this a formal definition.
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Definition 1 If after a long time (that is, for large n) the terms of a sequence p1, p2, p3, . . .
are getting arbitrarily close to a number L then we say that the sequence is converging to
the number L and write

lim
n→∞

pn = L.

This is sometimes read “the limit of the sequence p1, p2, p3, . . . is L.”

Notice that usually the sequence never actually reaches the limit. It just gets very, very
close.

Example 2 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p1 = 200, pn = 0.80pn−1.

The first 20 terms of this sequence are shown graphically in Figure 2.17.

0 10 20
0

100

200

Figure 2.17: Example 2

Because this sequence is a geometric sequence it has a closed form solution

pn = 200(0.80)n

We can use this closed form solution to calculate some additional sample terms.

p30 = 200(0.80)29 = 0.3095
p50 = 200(0.80)49 = 3.56× 10−3

p100 = 200(0.80)99 = 5.09× 10−8
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Notice that for very large values of n, pn is getting close to zero. So we say that this
sequence converges to zero and write

lim
n→∞

pn = 0.

We can see why this sequence converges to zero by looking at its closed form solution

pn = 200(0.80)n−1.

Because (0.80) is less than one, as n gets bigger and bigger (0.80)n gets smaller and smaller
and thus pn = 200(0.80)n also gets smaller and smaller.

Question 1 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p1 = 50, pn = 0.80pn−1 + 200.

Does the sequence produced by this discrete dynamical system converge? If so, determine
its limit.

Question 2 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p1 = 500, pn = 0.80pn−1 + 200.

Does the sequence produced by this discrete dynamical system converge? If so, determine
its limit.

Question 3 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p1 = 5, 000, pn = 0.80pn−1 + 200.

Does the sequence produced by this discrete dynamical system converge? If so, determine
its limit.

Table 2.12 on page 161 looks at the first twenty terms of the sequence produced by the
discrete dynamical system

pn = 0.5pn−1 + 200, p0 = 50.
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n p p p p

0 50 50.0 50.00 50.000

1 225 225.0 225.00 225.000

2 313 312.5 312.50 312.500

3 356 356.3 356.25 356.250

4 378 378.1 378.13 378.125

5 389 389.1 389.06 389.063

6 395 394.5 394.53 394.531

7 397 397.3 397.27 397.266

8 399 398.6 398.63 398.633

9 399 399.3 399.32 399.316

10 400 399.7 399.66 399.658

11 400 399.8 399.83 399.829

12 400 399.9 399.91 399.915

13 400 400.0 399.96 399.957

14 400 400.0 399.98 399.979

15 400 400.0 399.99 399.989

16 400 400.0 399.99 399.995

17 400 400.0 400.00 399.997

18 400 400.0 400.00 399.999

19 400 400.0 400.00 399.999

20 400 400.0 400.00 400.000

Table 2.12: The discrete dynamical system pn = 0.5pn−1 + 200, p0 = 50

All four columns labeled p in this table have exactly the same entries except that the
entries are rounded differently. In the first of these columns the entries are rounded to the
nearest integer; in the second they are rounded to one digit past the decimal point; in the
third to two digits; and in the fourth to three digits. Notice that this sequence appears
to converge to the limit 400. It appears that the sequence actually reaches its limit but
this is an illusion created by roundoff. Notice in the first p column, where we round to
the nearest integer, the sequence appears to reach its limit by n = 10. But, in the second,
where we round to one digit past the decimal point, we have to wait until n = 13 before
the sequence appears to reach its limit. In the third column, rounding to two digits past
the decimal point, we must wait until n = 17 and in the fourth column, rounding to three
digits, we must wait until n = 20. If we round the entries to more and more digits to the
right of the decimal point we see that the sequence never actually reaches its limit.

Example 3 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p0 = 1000, pn = 1.3pn−1 − 100.
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0 5 10
0

5,000

10,000

Figure 2.18: Example 2

Figure 2.18 shows the first few terms of the sequence produced by this discrete dy-
namical system graphically. The terms appear to be getting larger and larger without any
bound. In this situation we say the sequence diverges to +∞. We make this a formal
definition.

Definition 2 If after a very long time (that is, for large n) the terms of a sequence
p1, p2, p3, . . . are getting very large and positive without any bound then we say that the
sequence is diverging to +∞ and write

lim
n→∞

pn = +∞.

Sometimes this is read “The limit of the sequence p1, p2, p3, . . . is +∞.”

If after a very long time (that is, for large n) the terms of a sequence p1, p2, p3, . . .
are getting very large and negative without any bound then we say that the sequence is
diverging to −∞ and write

lim
n→∞

pn = −∞.

Sometimes this is read “The limit of the sequence p1, p2, p3, . . . is −∞.”

These ideas are very important for modeling. If, for example, a sequence p1, p2, p3, . . .,
of prices converges to a limit L – that is, if

lim
n→∞

pn = L
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then over the long term prices are settling down to the number L. But, if the sequence
diverges to +∞ – that is, if

lim
n→∞

pn = +∞

then we have run-away inflation for this product.

Question 4 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p0 = 10, 000, pn = 1.2pn−1 − 3000.

Does the sequence produced by this discrete dynamical system converge? Does it diverge?
If so, express your answer using limit notation.

Question 5 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p0 = 10, 000, pn = 1.2pn−1 − 1000.

Does the sequence produced by this discrete dynamical system converge? Does it diverge?
If so, express your answer using limit notation.

Question 6 Consider the discrete dynamical system given by the initial value and recur-
sion equation

p0 = 10, 000, pn = 1.2pn−1 − 2000.

Does the sequence produced by this discrete dynamical system converge? Does it diverge?
If so, express your answer using limit notation.

2.5.2 Supply and Demand, Revisited

In the last section we studied supply and demand models and, as one example, looked at
the recursion equation

pn = (1− 15, 000k)pn−1 + 120, 000k
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that described how prices changed. The parameter k is particularly important. It repre-
sents the volatility of the market – how rapidly prices respond to market conditions. In
the last section we looked at a number of examples and questions with different values of
k and with different initial values. Look back at this work as you answer the following
question.

Question 7 How does the value of the volatility constant, k, affect the long-term behavior
of prices in this example?

Question 8 How does the initial value affect the long-term behavior of prices in this ex-
ample?

Question 9 A large lake with many fish is fed by water draining from the surrounding
area and is drained by a river. The water draining from the surrounding area contains a
certain pollutant. As a result, the water in the lake contains the same pollutant. After
a heavy rain, runoff from the surrounding area causes the level of this pollutant to rise
dramatically. You are part of a team that has been studying this lake for the local board of
health. You have determined that during periods of normal rainfall the level of pollution in
the lake changes according to the recursion equation

pn = 0.8pn−1 + 15 ppm

where n is time in weeks. There was a very heavy rain three days ago but now the weather
has returned to normal. As a result of the heavy rain and the following runoff, the level
of pollution in the lake is now 200 ppm.16 Table 2.13 on page 165 shows your predictions
based on this recursion equation for pollution levels for the next 60 weeks.

Notice that apparently

lim
n→∞

pn = 75 ppm.

This observation agrees with historical records of the pollution level in the lake. Unfor-
tunately for the fishermen and their customers this pollution level is uncomfortably high.
Fish caught in this water are fairly safe to eat but when the pollution level rises much
above this level the fish can pose a danger. The preponderance of medical opinion is that
people should not eat fish caught in water where the pollution level is above 90 ppm. Thus,

16Parts per million.
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n p n p n p

0 200.0000

1 175.0000 21 76.4412 41 75.0208

2 155.0000 22 76.1529 42 75.0166

3 139.0000 23 75.9223 43 75.0133

4 126.2000 24 75.7379 44 75.0106

5 115.9600 25 75.5903 45 75.0085

6 107.7680 26 75.4722 46 75.0068

7 101.2144 27 75.3778 47 75.0054

8 95.9715 28 75.3022 48 75.0044

9 91.7772 29 75.2418 49 75.0035

10 88.4218 30 75.1934 50 75.0028

11 85.7374 31 75.1547 51 75.0022

12 83.5899 32 75.1238 52 75.0018

13 81.8719 33 75.0990 53 75.0014

14 80.4976 34 75.0792 54 75.0011

15 79.3980 35 75.0634 55 75.0009

16 78.5184 36 75.0507 56 75.0007

17 77.8147 37 75.0406 57 75.0006

18 77.2518 38 75.0325 58 75.0005

19 76.8014 39 75.0260 59 75.0004

20 76.4412 40 75.0208 60 75.0003

Table 2.13: Predicted Pollution Levels

immediately after a major rainfall like this one, the fisherman must suspend their fishing.
When will it be safe for the fisherman to resume fishing?

The fishermen believe that medical opinion is too strict and that the fish would be safe
if the level of pollution were below 100 ppm. If we accept their argument when will it be
safe for them to resume fishing?

New studies give some evidence that this pollutant is more dangerous than previously
thought. As a result, a new regulation has been proposed that prohibits fishing in lakes when
the level of pollution is above 80 ppm. If this new regulation is accepted when will it be safe
for the fisherman to resume fishing?

Question 10 Your parents are building up their savings by depositing $12,000 each year
in an investment account that earns interest at the rate of 5.5% each year. Their current
balance in this account is $350,000. During your trip home on Thanksgiving you built the
following model that they can use to predict the balance in their retirement account.

pn = 1.055pn−1 + $12, 000, p0 = $350, 000
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and told them that

lim
n→∞

pn = +∞.

Needless to say the idea of having an infinite amount of money to spend in their retire-
ment was rather exciting but you pointed out to them that ∞ was a long time away.

Suppose they would like to have a nest egg of $1,000,000 when they retire. When can
they retire?

Suppose they would like to have a nest egg of $2,000,000 when they retire. When can
they retire?

Suppose they would like to have a nest egg of $3,000,000 when they retire. When can
they retire?

In practice, retirement plans must consider the impact of inflation. Suppose your par-
ents believe they could retire comfortably now if they had a nest egg of $2,000,000 but they
believe that inflation will average 2% per year for the foreseeable future. When can they
retire?
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2.6 Life in a Finite Habitat – Logistic Models

Figure 2.19: A finite habitat

2.6.1 Logistic Models

In this section we are interested in populations that live in a finite habitat, like a lake
or the Earth. The simplest models are often expressed informally using words like “the
population is increasing at the rate of 3% per year” or “the population is decreasing at the
rate of 2% per year.” These two models can be expressed by the recursion equations

pn = 1.03pn−1 or pn = 0.98pn−1.

These kinds of population models are of the form

pn = mpn−1

where p0 > 0 and m > 0. They produce geometric sequences and have closed-form solutions
of the form

pn = mnp0.
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These kinds of models are often called exponential models. There are three possi-
bilities for the long term behavior of exponential models.

• If m = 1 then pn = pn−1, so p0 = p1 = p2 = · · · and the initial population never
changes.

• If m < 1 then the population converges to zero – that is,

lim
n→∞

pn = 0.

In other words the population dies out.

• If m > 1 then the population diverges to +∞ – that is,

lim
n→∞

pn = +∞.

In other words, the population increases without any bound. Because exponential
models with m > 1 grow rapidly without any bound, the word “exponential” is
sometimes used in informal language as a synonym for rapid and unbounded growth.

The three possibilities for the behavior of these models are shown in Figure 2.20.
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m = 0.90

Figure 2.20: Three possibilities four exponential models with p0 = 100

None of these possibilities describe the populations that we see around us every day.
Usually, when a new species is introduced into a habitat, it either dies out, in which case
we don’t see it, or it grows rapidly until it reaches a point where the available resources and
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the competition prevent it from growing further. Thus, real populations often have two
equilibrium points – zero and an equilibrium that is determined by the size of the habitat
and its available resources – food, water, shelter, and so forth. Most of the models we have
looked at so far are linear models – that is, they can be described by difference equations
of the form

pn = mpn−1 + b.

Figure 2.21 shows the fundamental graph for a linear model. Notice there is only one
equilibrium point. Thus, linear models can’t model many of the population situations we
see in the natural world.

0 1000
0

1000

Figure 2.21: The fundamental graph for a linear model

In this section we look at some models that are not linear – that is, they are nonlinear.
We start with linear models that can be written either using a difference equation of the
form

pn − pn−1 = Rpn−1

or, equivalently, using a recursion equation

pn = mpn−1.
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These two forms are just different ways of writing the same model. Notice that we can
rewrite the difference equation form

pn − pn−1 = Rpn−1

as

pn = (1 + R)︸ ︷︷ ︸
m

pn−1.

We know that these models are exponential models and have closed-form solutions of
the form

pn = (1 + R)np0.

The constant R in the finite difference equation

pn − pn−1 = Rpn−1

says that the population rises or falls by the same percentage from one term to the next
no matter what is going on. The number R is unaffected by weather, the food supply, the
water supply, or any other event. To build a more realistic model, we must replace the
constant factor R by a factor that depends on what is occurring in the habitat. This factor
might depend on many different things – food, water, the current population, predators,
and so forth. In this section we will work with models for habitats that are relatively stable.
That is, the food and water supply is relatively constant; the weather is relatively constant;
the predator situation is relatively constant; and so forth. The factor that replaces R will
depend on only one thing – the population itself. One example is a nonlinear difference
equation of the form

pn − pn−1 = R
(

1− pn−1

C

)
︸ ︷︷ ︸

replaces the constant R

pn−1

When we use the simple constant factor R, the population always changes by the
same percentage but when we use the factor R

(
1− pn−1

C

)
, the percentage by which the

population changes depends on the population. When the population is low, it grows by
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a large percentage but, as the population rises, it grows by smaller percentages as a larger
population shares the same food, water, shelter, and other resources.

The models in this family are called logistic models. Notice that when pn−1 is very
small, the quantity Pn−1/C is very small and the righthand side

R
(

1− pn−1

C

)
pn−1

of the difference equation is very close to Rpn−1. So, when the population is very low, a
logistic model behaves like an exponential model.

When pn−1 = C,

R
(

1− pn−1

C

)
= R

(
1− C

C

)
= 0.

So, the population does not change – that is, the rate of increase is zero. The number C
is called the carrying capacity of the habitat.

When pn−1 < C,

R
(

1− pn−1

C

)
> 0.

So, the rate at which the population increases is positive and the population rises.

On the other hand, when pn−1 > C,

R
(

1− pn−1

C

)
< 0.

So, the rate at which the population increases is negative and the population drops.

Example 1 Consider the logistic model

pn − pn−1 = 0.25
(

1− pn−1

500

)
pn−1



CHAPTER 2. DISCRETE DYNAMICAL SYSTEMS 173

0 10 20 30
0

100

200

300

400

500

600

Figure 2.22: Four initial values for a logistic model

The carrying capacity for this model is 500. Figure 2.22 shows what happens with four
different initial values.

• p0 = 50.

• p0 = 500.

• p0 = 600.

• p0 = 0.

When the initial value is greater than zero and below the carrying capacity, the pop-
ulation rises and, in this example, approaches the carrying capacity. When the initial
value is equal to the carrying capacity, then it stays there. When the initial value is above
the carrying capacity, the population drops and, in this example, approaches the carrying
capacity. When the initial value is zero, the population stays at zero.

Figure 2.23 on page 174 shows the fundamental graph for this same model. Notice the
two equilibrium points. Compare this figure with Figure 2.21 on page 170. Note that there
are two equilibrium points in Figure 2.23 but only one in Figure 2.21.

Question 1 Investigate the logistic model

pn − pn−1 =
(

1− pn−1

2000

)
pn−1

with different initial values. Find the equilibrium values of this model. Be sure to choose
initial values that illustrate the full range of possible behaviors. For example, you should
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1− pn−1
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)
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Figure 2.23: The fundamental graph for the recursion relation pn = pn−1 +
(
1− pn−1

500

)
pn−1

try some initial values that are below the carrying capacity and some that are above the
carrying capacity. What happens if p0 = 0?

Question 2 Investigate the logistic model

pn − pn−1 =
(

1− pn−1

5000

)
pn−1

with different initial values. Determine the equilibrium values of this model. Be sure to
choose initial values that illustrate the full range of possible behaviors. You should try some
initial values that are below the carrying capacity and some that are above the carrying
capacity.

Question 3 Investigate the logistic model

pn − pn−1 =
(

2− pn−1

1000

)
pn−1

with different initial values. Determine the equilibrium values of this model. Be sure to
choose initial values that illustrate the full range of possible behaviors. You should try some
initial values that are below the carrying capacity and some that are above the carrying
capacity.
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Question 4 Investigate the logistic model

pn − pn−1 =
(

2.5− pn−1

1000

)
pn−1

with different initial values. Determine the equilibrium values of this model. Be sure to
choose initial values that illustrate the full range of possible behaviors. You should try some
initial values that are below the carrying capacity and some that are above the carrying
capacity.

Question 5 Start with the logistic model

pn − pn−1 =
(

1− pn−1

2000

)
pn−1

and modify it to include immigration of 200 individuals per year. Investigate the resulting
model with different initial values. Describe your results. Be sure to choose initial values
that exhibit the full range of possible behavior.

Question 6 The forest near a town has a colony of small animals whose population can
be modeled by the logistic equation

pn − pn−1 =
(

1− pn−1

50, 000

)
pn−1.

The population is currently 50,000. The townspeople start killing these small animals for
food at the rate of 400 per year. Describe what happens as a result. What is the maximum
sustainable rate at which townspeople could kill these animals for food.

2.6.2 A More Complicated Example

In this subsection we look at a more complicated example that illustrates a fairly common
behavior. Many species rely on cooperation – for example, some species hunt in packs and
may be unable to catch sufficient prey individually. We consider the following recursion
equation.

pn =
p2

n−1

170

(
1− pn−1

900

)
.
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Figure 2.24: The fundamental graph for the recursion relation pn =
p2

n−1

170

(
1− pn−1

900

)
The fundamental graph for this recursion relation is shown in Figure 2.24. We can

learn a lot from this graph. First, notice that there are three equilibrium points. Roughly
speaking, they are at p = 0, p ≈ 228, and p ≈ 672. Notice the following.

• Between the first two equilibrium points, labeled (a) and (b), the graph of

pn =
p2

n−1

170

(
1− pn−1

900

)
is below the graph of pn = pn−1. If the population is in this range it will fall and
eventually die out. This is exactly what we would expect for a species that relies on
cooperation. If the population is too low then it will fall.

• If the population is between the second and third equilibrium points, labeled (b) and
(c), then the graph of

pn =
p2

n−1

170

(
1− pn−1

900

)
is above the graph of pn = pn−1. This means that if the population is in this range
it will rise. This is similar to the behavior we saw for the logistic model. The third
equilibrium point, labeled (c), acts like the carrying capacity.

• If the population is above the third equilibrium point, labeled (c), then the graph of
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pn =
p2

n−1

170

(
1− pn−1

900

)
is below the graph of pn = pn−1. This means that if the population is in this range
it will fall. This is what we would expect when the population exceeds the carrying
capacity.
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Figure 2.25: Two initial value problems for the recursion relation pn =
p2

n−1

170

(
1− pn−1

900

)
Figure 2.25 shows what happens with two different initial values. One initial value,

p1 = 227, is just slightly below the second equilibrium point. Notice that with this initial
value the population dies out. The second initial value, p1 = 300, is slightly above the
second equilibrium point. Notice that with this initial value the population approaches the
third equilibrium point, the one that acts like the carrying capacity.

Question 7 Try other initial value problems using the recursion equation:

pn =
p2

n−1

170

(
1− pn−1

900

)
Describe what you see.
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2.7 Equilibrium Points

Equilibrium points and the long term behavior of models are intimately related. We have
seen many examples of different kinds of long term behavior. In this section we introduce
some terminology and we study the relationship between equilibrium points and long term
behavior.

2.7.1 Equilibrium Points

Definition 1 An equilibrium point for a recursion equation

pn = f(pn−1)

is a solution of the equation

p = f(p).

We often use the notation p∗ to denote an equilibrium point and write this equation as

p∗ = f(p∗).

The reason equilibrium points are important is that if p∗ is an equilibrium point and if
any pn−1 = p∗ then

pn = f(pn−1) = f(p∗) = p∗.

So that if a sequence starts at or ever hits an equilibrium point it stays there.

We first met equilibrium points in section 2.3 and our first example involved the recur-
sion equation

pn = 0.75pn−1 + 100.

The fundamental graph for this recursion equation is shown in Figure 2.26 on page 179.
From this fundamental graph we can see that the equilibrium point is roughly p∗ = 400.
We can also find this equilibrium point algebraically by solving the equation f(p∗) = p∗.
For this example, since
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pn = f(pn−1) = 0.75pn−1 + 100,

we solve the equation

p∗ = 0.75p∗ + 100
0.25p∗ = 100

p∗ =
100
0.25

p∗ = 400

0

100

200

300

400

500

0 100 200 300 400 500

pn

pn−1

pn = pn−1

pn = 0.75pn−1 + 100

Figure 2.26: Fundamental graph for pn = 0.75pn−1 + 100

Figure 2.27 and Table 2.14 on page 180 look at one initial value problem for this
recursion equation. An initial value problem is a recursion equation together with an initial
value. Notice that for this initial value problem the sequence pn converges to the equilibrium
point. Often, as in this case, the sequence never actually reaches the equilibrium point. It
just gets closer and closer. You may want to look back to Table 2.12 on page 161 and to
the discussion on the same page.
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Figure 2.27: Time series graph for pn = 0.75pn−1 + 100

n pn n pn n pn

0 50.00

1 137.50 11 385.22 21 399.17

2 203.13 12 388.91 22 399.38

3 252.34 13 391.68 23 399.53

4 289.26 14 393.76 24 399.65

5 316.94 15 395.32 25 399.74

6 337.71 16 396.49 26 399.80

7 353.28 17 397.37 27 399.85

8 364.96 18 398.03 28 399.89

9 373.72 19 398.52 29 399.92

10 380.29 20 398.89 30 399.94

Table 2.14: pn = 0.75pn−1 + 100, p0 = 50

Question 1

• Find the equilibrium point of the recursion equation pn = 0.65pn−1+200 algebraically.
Then verify the answer numerically and graphically.

• Describe the long term behavior of the initial value problem

pn = 0.65pn−1 + 200, p0 = 50.

• Describe the long term behavior of the initial value problem

pn = 0.65pn−1 + 200, p0 = 1000.
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Question 2

• Find the equilibrium point of the recursion equation

pn = 1.2pn−1 − 200.

• Describe the long term behavior of the initial value problem

pn = 1.2pn−1 − 200, p0 = 900.

• Describe the long term behavior of the initial value problem

pn = 1.2pn−1 − 200, p0 = 1000.

• Describe the long term behavior of the initial value problem

pn = 1.2pn−1 − 200, p0 = 1100.

You probably noticed a big difference between your answers to Question 1 and Ques-
tion 2. For both initial conditions in Question 1 it turns out that

lim
n→∞

pn = p∗

That is, the sequence converges to the equilibrium point. In fact, for any initial value you
try you will discover exactly the same thing. This kind of equilibrium point is called a
globally attracting equilibrium point because wherever you start you are pulled in
to the equilibrium point. You may wonder about the adverb “globally.” This equilibrium
point pulls you in no matter where you start. Many equilibrium points are attracting
but might not pull you in if you do not start sufficiently close. You have seen examples of
this behavior earlier and will see them again. Sometimes we add the adverb “locally” and
speak of a locally attracting equilibrium point to emphasize that you might not be
pulled in to the equilibrium point if you do not start sufficiently close to it. The adverb
“locally” is not necessary. An attracting equilibrium point with no qualifying adverb
is locally attracting. Sometimes we just add the adverb “locally” for emphasis.

We sometimes use another term, “stable equilibrium,” instead of “attracting equilib-
rium” for these equilibrium points. The two terms “stable equilibrium” and “attracting
equilibrium” are synonymous. The adjective “stable” emphasizes a very important quality
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of these equilibrium points – if you are on a stable equilibrium point and something hap-
pens to move you a small distance away then you will be pulled back. When you drive a
vehicle, you illustrate this kind of behavior. If you hit a rut or a pothole and are deflected
from your path straight ahead, you subconsciously correct and steer back toward your
original course.

For Question 2, however, the results are different. For this recursion equation we see
that

• If p0 > p∗ then

lim
n→∞

pn = +∞

• If p0 < p∗ then

lim
n→∞

pn = −∞

• If p0 = p∗ then

lim
n→∞

pn = p∗

This equilibrium point is an example of a repelling equilibrium. These equilibrium
points get their name from the fact that unless you start out exactly on the equilibrium
point it pushes you away. In this example, the pushing away is extreme – all the way to
+∞ or −∞. Many repelling equilibrium points do not push you that far away.

We sometimes use another adjective, “unstable,” instead of “repelling” for these equi-
librium points. The two terms “unstable” and “repelling” are synonyms in mathematics.
The adjective “unstable” emphasizes a very important quality of these equilibrium points
– if you are on an unstable equilibrium point and something happens to move you a small
distance away then you get pushed further away. Staying on unstable equilibrium points
is a delicate balancing act. In fact, you rarely see things in an unstable equilibrium. For
example, you can, in theory, balance a baseball bat in the palm of your hand so that it
points straight upward but this is an unstable situation and the slightest breath of air will
knock the bat away from this equilibrium and it will fall over.
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Question 3 Find the equilibrium points for the model given by the recursion equation

pn = 0.80pn−1 + 100.

Investigate what happens with this recursion equation and several different initial values.

Question 4 Find the equilibrium points for the model given by the difference equation

pn − pn−1 = 0.30pn−1 − 200.

Describe what happens with the model given by this difference equation and the initial value
p0 = 100. Describe what happens with the model given by this difference equation and the
initial value p0 = 1000.

Question 5 Find the equilibrium points for the model given by the difference equation

pn − pn−1 = −0.30pn−1 + 200.

Describe what happens with the model given by this difference equation and the initial value
p0 = 100. Describe what happens with the model given by this difference equation and the
initial value p0 = 1000.

2.7.2 Equilibrium Points and Linear Discrete Dynamical Systems

Linear recursion equations,

pn = mpn−1 + b,

have one equilibrium point unless m = 1 . We can see this from the fundamental graph.
Graphically, equilibrium points of a recursion equation,

pn = f(pn−1),

are points at which the graph of the function
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pn = f(pn−1)

intersects the graph of the function

pn = pn−1

and both the graph of

pn = mpn−1 + b and pn = pn−1

are straight lines. Straight lines always intersect in exactly one pointunless they are parallel.
These two straight lines are parallel if m = 1.

We can also see this algebraically. To find the equilibrium point of a recursion equation

pn = mpn−1 + b

we solve the equation

p∗ = mp∗ + b

p∗ −mp∗ = b

p∗(1−m) = b

p∗ =
b

1−m

Thus, once again we see that there is one equilibrium point

p∗ =
b

1−m

unless m = 1. Notice that if m = 1 then the equation p∗ = mp∗ + b becomes p∗ = p∗ + b,
or 0 = b, so this equation has no solutions unless b = 0, in which case every point is an
equilibrium point.
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2.7.3 Equilibrium points and nonlinear discrete dynamical systems

Our next example is a nonlinear discrete recursion equation – a logistic equation.

Example 1 Consider the difference equation

pn − pn−1 =
(

1− pn−1

500

)
pn−1

This can also be written as a recursion equation,

pn = pn−1 +
(

1− pn−1

500

)
pn−1

or

pn =
(

2− pn−1

500

)
pn−1.

We find the equilibrium points of this recursion equation with a bit of algebra

p∗ = p∗ +
(

1− p∗
500

)
p∗

0 =
(

1− p∗
500

)
p∗,

which leads to the two solutions p∗ = 0 or p∗ = 500. This recursion equation has two
equilibrium points, zero and 500. We can see the same thing from the fundamental graph,
Figure 2.28 on page 186.

Table 2.15 on page 186 and Figure 2.29 on page 187 show the results of using this
recursion equation with four different initial values: p0 = 0; p0 = 200; p0 = 500; and
p0 = 700. Notice that 500 is a locally attracting equilibrium point.

Question 6 Find the equilibrium points for the model given by the difference equation

pn − pn−1 =
(

1− pn−1

1000

)
pn−1 − 20.
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Figure 2.28: The fundamental graph for pn = pn−1 +
(
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)
pn−1

n p0 = 0 p0 = 200 p0 = 500 p0 = 700

0 0.00 200.00 500.00 700.00

1 0.00 320.00 500.00 420.00

2 0.00 435.20 500.00 487.20

3 0.00 491.60 500.00 499.67

4 0.00 499.86 500.00 500.00

5 0.00 500.00 500.00 500.00

Table 2.15: Example 1

Investigate what happens with the model given by this difference equation and several dif-
ferent initial values. Try the initial values: p0 = 20, p0 = 50, p0 = 700, and p0 = 990.

Question 7 Find the equilibrium points for the model given by the difference equation

pn − pn−1 =
(

1− pn−1

1000

)
pn−1 − 200.

Investigate what happens with this difference equation and several different initial values.
Try the initial values: p0 = 200, p0 = 300, p∗ = 700, and p∗ = 800.
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Figure 2.29: Four time series for the recursion relation pn =
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)
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Question 8 Find the equilibrium points for the model given by the recursion equation

pn =
6pn−1

3( pn−1
500 )

.

Investigate what happens with this recursion equation and several different initial values.

Example 2 Find the equilibrium points for the recursion equation

pn =
p2

n−1

170

(
1− pn−1

900

)
.

Classify these equilibrium points – that is, determine whether each one is attracting, re-
pelling, or neither.

Figure 2.30 on page 188 shows the fundamental graph for this recursion equation. From
this graph we can see that there are three equilibrium points – at zero, roughly 210, and
roughly 620. We can determine these equilibrium points more precisely algebraically by
solving the equation

p∗ =
p∗

2

170

(
1− p∗

900

)
.

Since p∗ is a factor of both sides of this equation, p∗ = 0 is one solution. Now, if p∗ is
not zero, we can divide both sides of this equation by p∗, leaving us with



CHAPTER 2. DISCRETE DYNAMICAL SYSTEMS 188

0 900
pn−1

0

900

pn

pn =
p2

n−1

170

(
1− pn−1

900

)

pn = pn−1

(c)

(b)

(a)

Figure 2.30: The fundamental graph for the recursion relation pn =
p2

n−1

170

(
1− pn−1

900

)
p∗

170

(
1− p∗

900

)
= 1,

which we solve as follows

p∗
170

(
1− p∗

900

)
= 1

p∗(900− p∗) = (170)(900)
900p∗ − p2

∗ = 153, 000
p∗ − 900p + 153, 000 = 0

p∗ =
900±

√
9002 − 4(153, 000)

2

p∗ =
900±

√
810, 000− 612, 000

2

p∗ =
900±

√
198, 000

2

This yields two more equilibrium points p∗ ≈ 672.49 and p∗ ≈ 227.51. Together with
our first equilibrium point p∗ = 0 we have a total of three equilibrium points p∗ = 0,
p∗ ≈ 672.49 and p∗ ≈ 227.51. A little experimentation (See Figure 2.31 on page 189)
provides some evidence that the equilibrium points p∗ = 0 and p∗ ≈ 672.49 are attracting
and the equilibrium point p∗ ≈ 227.5 is repelling.
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Figure 2.31: Two initial value problems for the recursion relation pn =
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Question 9 Find and classify the equilibrium points of the recursion equation

pn = 2.0
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.

Question 10 Find and classify the equilibrium points of the recursion equation

pn = 2.5
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.

Question 11 Find and classify the equilibrium points of the recursion equation

pn = 3.0
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.
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Question 12 Find and classify the equilibrium points of the recursion equation

pn = 3.2
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.

Question 13 Find and classify the equilibrium points of the recursion equation

pn = 3.4
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.

Question 14 Find and classify the equilibrium points of the recursion equation

pn = 3.6
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.

Question 15 Find and classify the equilibrium points of the recursion equation

pn = 3.8
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.

Question 16 Find and classify the equilibrium points of the recursion equation

pn = 4.0
(

1− pn−1

1000

)
pn−1.

Describe the long term behavior of this recursion equation with the initial value p0 = 50.
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2.8 The Linear Stability Theorem

One of the most important themes in mathematics is the interplay between experimen-
tation and theory. Understanding always begins with experimentation. Theory is largely
organizing, confirming, and giving names to the things we observe during experimentation.
In the last few sections we have analyzed many examples of linear recursion equations

pn = mpn−1 + b

and we have seen that, unless m = 1, there is one equilibrium point

p∗ =
b

1−m
.

Furthermore, this equilibrium always seems to be either globally attracting or globally re-
pelling. Our goal in this section is to prove a theorem, called the Linear Stability Theorem,
that confirms and organizes our observations. To see how to prove this theorem we begin
with two examples.

Example 1 A small colony of birds lives on a barren island a few miles off the coast of
a lush mainland. The island is so inhospitable that, left on its own, the population of the
colony would drop by 20% each year and could be described by the recursion equation

pn = 0.80pn−1.

Each year, however, 500 birds from the mainland get lost and wind up on the barren
island. This leads to the recursion equation

pn = 0.80pn−1 + 500.

Figure 2.32 on page 193 shows this model’s predictions for the next 20 years if the
initial population of the colony is p0 = 5, 000 birds.

Notice that this model has one equilibrium point, p∗ = 2500, and experimentation
suggests that it is globally attracting.
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Figure 2.32: A barren island

Example 2 IASA, the International Aeronautics and Space Administration, plans to es-
tablish a colony on Mars. IASA will only be able to send a single spaceship to Mars and
will choose colonists who are expected to have lots of children. In fact, if there were no
interference, the population of the colony would be expected to grow by 10% every year.
This would lead to the recursion equation:

pn = 1.10pn−1.

Unfortunately, Martian leaders have been monitoring the weak signals from earth televi-
sion programs that have reached Mars. Because the signals are so weak, the general Martian
populace has not yet been exposed to these programs and Martian leaders are determined
to protect their culture from the influence of these programs. They were able to annihilate
an earlier expedition sent from earth. IASA has determined that the Martians can kill 100
colonists every year. Thus, they believe that the colony’s population change can be described
by the recursion equation:

pn = 1.10pn−1 − 100.

Notice that this model has one equilibrium point, p∗ = 1000, and it appears to be
repelling. See Figure 2.33 on page 194.

Notice that both of these examples have linear recursion equations. We want to deter-
mine when the equilibrium point of a linear recursion equation is attracting and when it is
repelling. To do this it is helpful to look not just at the terms of a sequence produced by
the recursion equation but also at the difference between each term and the equilibrium
value. We are interested in this difference because we are interested in whether the terms
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Figure 2.33: Population of Mars over time

are getting close to the equilibrium value and, if so, how fast they are approaching the
equilibrium value.

Table 2.16 shows at the first few terms for Example 1. This table has an extra column
that gives the difference between each term and the equilibrium point, p∗ = 2500. Notice
that the differences between the terms and the equilibrium point appears to be falling by
20% from term to term.

n pn pn − p∗
0 5000 2500
1 4500 2000
2 4100 1600
3 3780 1280

Table 2.16: The first few terms of pn = 0.80pn−1 + 500 and the differences pn − p∗

Question 1 For each of the following discrete dynamical systems make a table like Table
2.16.

a. pn = 0.50pn−1 + 200, p0 = 600.

b. pn = 0.50pn−1 + 200, p0 = 200.

c. pn = 0.50pn−1 + 200, p0 = 0.

d. pn = 0.75pn−1 + 200, p0 = 1000.
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e. pn = 0.75pn−1 + 200, p0 = 500.

f. pn = 0.75pn−1 + 200, p0 = 0.

This experimentation motivates us to do some algebra that enables us to generalize our
observations. We compute the difference between each term pn and the equilibrium point

p∗ =
b

1−m

and compare it to the difference between the preceding term and the equilibrium point as
shown below.

pn − p∗ = mpn−1 + b− p∗

= mpn−1 + b−
(

b

1−m

)

= mpn−1 + m

(
b

m
− b

m(1−m)

)

= m

(
pn−1 +

b

m
− b

m(1−m)

)

= m

(
pn−1 +

b(1−m)− b

m(1−m)

)

= m

(
pn−1 +

b− bm− b

m(1−m)

)

= m

(
pn−1 −

b

1−m

)
= m (pn−1 − p∗)

Thus,

p1 − p∗ = m (p0 − p∗)
p2 − p∗ = m (p1 − p∗) = m (m (p0 − p∗)) = m2 (p0 − p∗)
p3 − p∗ = m (p2 − p∗) = m

(
m2 (p0 − p∗)

)
= m3 (p0 − p∗)

...
pn − p∗ = mn (p0 − p∗)
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Now, one last algebraic step gives us an analytic solution, or closed-form, solution

pn − p∗ = mn (p0 − p∗)
pn = p∗ + mn (p0 − p∗) .

We can now state and prove two theorems that find and classify the equilibrium point
of a linear recursion equation and determine the long term behavior of a linear discrete
dynamical system. The first helps us find equilibrium points and the second helps us
classify them

Theorem 1 If m 6= 1 then the linear model

pn = mpn−1 + b

has exactly one equilibrium point

p∗ =
b

1−m
.

If m = 1 then we are looking at the recursion equation

pn = pn−1 + b

and

• if b = 0 then every point is an equilibrium point since the equation is pn = pn−1

• if b 6= 0 then there are no equilibrium points since the equation

p∗ = p∗ + b

has no solutions.
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Theorem 2 (Linear Stability Theorem) if m 6= 0 then the long-term behavior of the
linear model

pn = mpn−1 + b

is determined as follows.

• If |m| < 1, then for every initial value p0,

lim
n→+∞

pn = p∗.

Thus, p∗, is globally attracting.

• If m > 1 and

◦ if p0 = p∗, then
lim

n→+∞
pn = p∗.

◦ if p0 > p∗, then
lim

n→+∞
pn = +∞.

◦ if p0 < p∗, then
lim

n→+∞
pn = −∞.

Thus, p∗, is globally repelling.

• If m < −1 and

◦ if p0 = p∗, then
lim

n→+∞
pn = p∗.

◦ if p0 6= p∗, then the sequence p0, p1, p2, . . . oscillates wildly, bouncing back-and-
forth from below the equilibrium point to above the equilibrium point and getting
further and further away from the equilibrium point.

Thus, p∗ is globally repelling.

Because this is a long theorem with many parts, in the next few pages we will look at
an example and a series of questions relating to this theorem.
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Example 3 The first clause of this theorem states that

• If |m| < 1 then for every initial value p0,

lim
n→+∞

pn = p∗.

In this situation the equilibrium point, p∗, is globally attracting.

This part of our theorem (and, indeed, every part) follows from the closed form solution
that we obtained earlier in this section,

pn = p∗ + mn(p0 − p∗).

For this part, we observe that, if |m| < 1, then for large values of n, mn is very small.
Thus, mn(p0 − p∗) is also very small and p∗ + mn(p0 − p∗) is very close to p∗.

Example 1 on page 192 illustrates this clause of the Linear Stability Theorem.

Question 2 Discuss, with examples, each bullet and subbullet of the Linear Stability The-
orem. Your discussion should be similar to the discussion in Example 3.

Question 3 Consider the recursion equation from Example 1 on page 155.

pn = pn−1 + 15, 000k(8− pn−1)

where p0, p1, p2, . . . is a sequence of prices that change according to the Law of Supply and
Demand.

• Find the equilibrium point for this recursion equation.

• For what values of the constant k is this equilibrium point globally attracting?

• For what values of the constant k do prices oscillate wildly?

Does this help us understand the behavior of models based on supply and demand? Your
answer should build on the features of the marketplace that are represented by the value of
the constant k.
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Question 4 Experiment with the nonlinear models

(a) pn = pn−1 + 1.2pn−1

(
1− pn−1

1, 000

)

(b) pn = pn−1 + 1.8pn−1

(
1− pn−1

1, 000

)

(c) pn = pn−1 + 2.2pn−1

(
1− pn−1

1, 000

)

(d) pn = pn−1 + 2.4pn−1

(
1− pn−1

1, 000

)

(e) pn = pn−1 + 2.6pn−1

(
1− pn−1

1, 000

)

How do you think Theorems 1 and 2 in this section would need to be modified to apply
to nonlinear models?

Question 5 Summarize our work with linear models by filling in the blanks in Table 2.17.

value of m p0 Long term behavior of pn

m = 0
m < −1 If p0 6= p∗
−1 < m < 0 If p0 6= p∗
0 < m < 1

1 < m If p0 6= p∗
If p0 < p∗
If p∗ < p0

|m| < 1
|m| > 1 If p0 6= p∗

Table 2.17: Long-term behavior for pn = mpn−1 + b

Question 6 For the models in Question 1 on page 194, use the Linear Stability Theorem
to find

lim
n→∞

pn.
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2.9 Closed-Form Solutions

Given a discrete dynamical system we can always compute the terms of the corresponding
sequence by starting with the initial value and then applying the recursion equation repeat-
edly, once for each subsequent term. As we have seen, sometimes there is another way —
we can compute the terms directly using a closed-form solution. The terms “closed-form
solution,” “analytic solution,” and “algebraic solution” are all synonymous. Both ways
of computing the terms are useful. The first way is more direct because it mirrors the
underlying mechanism – how things change. More importantly, it may be quite difficult
or even impossible to find a closed-form solution. If we do have a closed-form solution,
however, then

• We can find any term with one calculation instead of first calculating all the preceding
terms.

• It is often easy to see the long-term behavior from the closed-form solution.

Closed-form solutions depend on both the initial value and the recursion relation. We
often use the term initial value problem, or IVP, to refer to this combination of an initial
value and a recursion equation. A closed-form solution must satisfy both the recursion
equation and the initial value. In fact, we often find a closed-form solution in two steps.

• First, we find a general solution that satisfies the recursion equation. The general
solution usually has one parameter, or constant, that can have different values.

• Second, we find a particular solution by choosing the value of the parameter or
constant that satisfies the initial value.

2.9.1 Verifying general and particular solutions

It is often useful to check or “verify” a solution that we have found. Verifying a general
solution to a recursion equation or a particular solution to an initial value problem relies on
basically the same idea as verifying a solution to an equation – we substitute the proposed
solution into the original equation and check to see if it satisfies the original equation.

Example 1 Verify that x = 2 is a solution to the equation

x2 − 4x + 4 = 0.
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Solution:

x2 − 4x + 4 = 0
(2)2 − 4(2) + 4 ?=? 0

4− 8 + 4 ?=? 0
0 = 0 YES!!

Substituting a number for a variable in an equation is easy. Substituting a closed-form
solution is a bit harder. The following example illustrates the idea.

Example 2

• Verify that the formula pn = C(2n) is a general solution to the recursion equation

pn = 2pn−1.

• Verify that the formula pn = 100(2n) is a particular solution to the initial value
problem

pn = 2pn−1, p1 = 200.

Solution:

To verify the formula pn = C(2n) is a general solution to the recursion equation we
want to substitute it into the recursion equation

pn = 2pn−1.

First, we need to look at the proposed closed form solution and substitute (n−1) for n.

Original : pn = C(2n)

After the substitution : pn−1 = C(2(n−1)).
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Now we have a formula for pn−1 in addition to our original formula for pn. We substitute
these into the recursion equation

pn = 2pn−1

C(2n)︸ ︷︷ ︸
replaces pn

?=?2 C(2(n−1))︸ ︷︷ ︸
replaces pn−1

and now do a bit of algebra

C(2n) ?=? 2C(2(n−1))
C(2n) ?=? C2(2(n−1))
C(2n) = C(2n) YES!!!

To verify that pn = 100(2n) is a solution to the IVP

pn = 2pn−1, p1 = 200

we need to do two things.

• Verify that it satisfies the recursion equation.

• Verify that it satisfies the initial value.

Because the proposed particular solution, pn = 100(2n), is obtained from the general
solution, pn = C(2n), by setting the constant C = 100, we already know that the first
condition is satisfied. Thus, we only need to check the second condition

p1 = 200
100(21) ?=? 200

200 = 200 YES!!!

Sometimes we are given a proposed particular solution directly without being given a
general solution. The following example illustrates this.
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Example 3 Verify that

pn = 2− 1
2n

is a closed form solution for the initial value problem (IVP)

pn = pn−1 +
1
2n

, p0 = 1.

Since this is a possible particular solution, we must check both the recursion equation
and the initial value. We usually check the initial value first because it is easiest.

p0 = 1

2− 1
20

?=? 1

2− 1
1

?=? 1

2− 1 ?=? 1

1 = 1 YES!!!

Now we turn our attention to the recursion equation. First we substitute (n− 1) for n
in the original closed-form solution

pn = 2− 1
2n

to obtain

pn−1 = 2− 1
2(n−1)

Next we substitute our formulas for pn and pn−1 into the recursion equation

pn = pn−1 +
1
2n
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to obtain

2− 1
2n︸ ︷︷ ︸

substituted for pn

?=? 2− 1
2(n−1)︸ ︷︷ ︸

substituted for pn−1

+
1
2n

and now with a bit of algebra

2− 1
2n

?=? 2− 1
2(n−1)

+
1
2n

2− 1
2n

?=? 2− 2
2n

+
1
2n

2− 1
2n

?=? 2− 2− 1
2n

2− 1
2n

?=? 2− 1
2n

YES!!!

In many cases we have a general closed-form solution for a recursion equation and want
to find a particular closed-form solution given an initial condition. The following example
illustrates this.

Example 4 A particular lake is fed by runoff from the surrounding agricultural area and
drained by a river. You are an analyst for the department of public works and have been
tracking the level of a particular pollutant in the lake. The level always goes up after a
particularly heavy rainfall and then returns to normal as the weather returns to normal.
The recursion equation that governs this is

pn = 0.80pn−1 + 0.05

with n measured in days and pn in parts per million. You have computed the equilibrium
point for this recursion equation. It is p∗ = 0.25. You have also found a general solution
for this recursion equation. It is

pn = 0.25 + C(0.8n).
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Two days ago there was a tremendous rain. You just measured the level of pollution in the
lake this morning and found it to be 1.85 parts per million. Find a particular solution for
this IVP. Use your particular solution to determine when the level of pollution will drop
below 0.50 parts per million.

Solution:

We let n = 0 be today. We substitute the initial value p0 = 1.85 into the closed form
solution

pn = 0.25 + C(0.8n)

to obtain

1.85 = 0.25 + C(0.80)

and with a bit of algebra

1.85 = 0.25 + C(0.80)
1.60 = C(0.80))
1.60 = C(1)
1.60 = C

Thus, the particular solution we seek is

pn = 0.25 + 1.60(0.8n).

To find out when the pollution level will reach 0.50 parts per million we solve the
equation

0.25 + 1.60(0.8n) = 0.50
1.60(0.8n) = 0.25

0.8n =
0.25
1.60
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n log(0.8) = log
(

0.25
1.60

)

n =
log
(

0.25
1.60

)
log(0.8)

n ≈ 8.32

So after 9 days the level of pollution will be below 50 parts per million. We can check
this by computing

p9 = 0.25 + 1.60(0.89) ≈ 0.4647

and

p8 = 0.25 + 1.60(0.88) ≈ 0.5184.

Question 1 Check if

pn =
n(n + 1)

2
.

is a closed-form solution of the initial value problem:

p1 = 1, pn = pn−1 + n.

Question 2 Check if

pn = C + 0.90n

is a general closed-form solution of the recursion equation

pn = 0.90 ∗ pn−1 + 100.
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If so, find the particular solution of the IVP

pn = 0.90 ∗ pn−1 + 100, p1 = 600.

Question 3 Check if

pn = 200 + C(0.90n)

is a general closed-form solution of the recursion equation

pn = 0.90 ∗ pn−1 + 100.

If so, find the particular solution of the IVP

pn = 0.90 ∗ pn−1 + 100, p1 = 600.

Question 4 Check if

pn = 1000 + C(0.90n)

is a general closed-form solution of the recursion equation

pn = 0.90 ∗ pn−1 + 100.

If so, find the particular solution of the IVP

pn = 0.90 ∗ pn−1 + 100, p1 = 600.

Example 5 When the economy slows people often talk about an economic stimulus package
to help the economy recover. In early 2008 politicians agreed rapidly on a politically easy
solution – temporary tax cuts. But, there are other options. In this example we examine
one of those options. The nation’s infrastructure is in bad shape and one possibility would
have been to spend the money on repairing the infrastructure instead of temporary tax
cuts. This would have created jobs directly. In addition, it would have created some jobs
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indirectly because people newly employed repairing our infrastructure would buy more and
would, thus, create new jobs. These new jobs would, in turn, create more new jobs, and so
forth. Suppose that each job that is created creates in turn R new jobs. Normally, R < 1.
Suppose that we create A jobs directly by an economic stimulus package focused on repairing
our infrastructure. If we only consider the jobs created directly we have a first estimate of
the total number of jobs created

p1 = A jobs.

If we add the jobs created indirectly by the jobs created directly we get a second estimate

p2 = p1︸︷︷︸
original jobs

+ AR︸︷︷︸
first indirect jobs

.

But now the first indirect jobs create more indirect jobs giving us a third estimate

p3 = p2 + AR2︸︷︷︸
second indirect jobs

.

This leads us to the recursion equation

pn = pn−1 + AR(n−1).

Analyze the impact of creating A new jobs repairing the nation’s infrastructure.

We will begin by verifying a proposed closed-form solution of the IVP

pn = pn−1 + AR(n−1), p1 = A.

In this section we will not discuss how this solution was found. The proposed solution
is

pn = A

(
1−Rn

1−R

)
.

First, we check the initial condition
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A ?=? p1

A ?=? A

(
1−R1

1−R

)
A ?=? A(1)
A = A YES!!!

Next we check the recursion equation. First we substitute (n−1) for n in the closed-form
solution

pn = A

(
1−Rn

1−R

)
.

to get

pn−1 = A

(
1−R(n−1)

1−R

)
.

and now substituting in the recursion equation and doing some algebra, we see

pn = pn−1 + AR(n−1)

A

(
1−Rn

1−R

)
?=? A

(
1−R(n−1)

1−R

)
+ AR(n−1)

(
1−Rn

1−R

)
?=?

(
1−R(n−1)

1−R

)
+ R(n−1)

(
1−Rn

1−R

)
?=?

(
1−R(n−1)

1−R

)
+

(
R(n−1)(1−R)

1−R

)
(

1−Rn

1−R

)
?=?

(
1−R(n−1)

1−R

)
+

(
R(n−1) −Rn

1−R

)
(

1−Rn

1−R

)
?=?

(
1−R(n−1) + R(n−1) −Rn

1−R

)
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(
1−Rn

1−R

)
=

(
1−Rn

1−R

)
YES!!!

So our proposed closed-form solution is correct. Job creation is not instantaneous.
Suppose that it takes one month for each newly created job to create R new jobs. Then if
we create A new jobs now after one year the total number of direct and indirect new jobs
will be

p13 = A

(
1−R13

1−R

)
Suppose that we assume that R = 0.75 – that is, that each new job creates indirectly

0.75 additional new jobs. Then

p13 = A

(
1− (0.75)13

1− 0.75

)
≈ 3.90A

The factor 3.90 is called the job multiplier.

If we considered all the new jobs created over the long term by this investment in our
infrastructure we would get

lim
n→∞

pn = 4.0A.

Notice that the vast majority of the new jobs that are created, are created in the first year.

Question 5 Explain why in the example above that

lim
n→∞

pn = 4.0A.

Question 6 We made a lot of assumptions in the example above. These include

• R = 0.75.

• It takes one month for each job to generate R new jobs.
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We did not make any assumptions about how many jobs would be created by an economic
stimulus package.

The economic stimulus package passed in early 2008 was $168,000,000,000. Make your
own assumption about how many jobs this money would have created if it were invested
in repairing our infrastructure. Make your own assumptions about the value of R and
about how long it takes each new job to create R additional new jobs. Based on your
assumptions, how many jobs would have been created in the first year? How many jobs
would have eventually been created? Explain how you arrived at your assumptions.

2.9.2 Guess-and-check

We can often find a closed-form solution for an initial value problem by the method of
guess-and-check. To see this, consider the following example.

Example 6 Find a closed-form solution for the initial value problem:

p1 = 1, pn = pn−1 + (2n− 1).

Table 2.18 shows the first few terms of this sequence.

n pn

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

10 100

Table 2.18: The first few terms of the sequence p1 = 1, pn = pn−1 + (2n− 1)

Looking at Table 2.18 we can make a guess, or conjecture that: pn = n2. We can check
whether this guess is correct as follows.
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• First, we need to check that it gives the correct initial value. The conjectured closed-
form solution pn = n2 predicts that p1 = 12 = 1 and thus, agrees with the actual
initial value. Our conjectured formula passes this first test.

• Next, we need to check that our guess meets the requirements of the recursion equa-
tion. According to our guess,

◦ pn = n2

◦ pn−1 = (n− 1)2

and substituting these into the recursion equation,

pn = pn−1 + (2n− 1),

we check

n2︸︷︷︸
replaces pn

?=? (n− 1)2︸ ︷︷ ︸
replaces pn−1

+(2n− 1)?

n2 ?=? n2 − 2n + 1 + 2n− 1?
n2 ?=? n2 YES!!

Thus, our guess passes both tests and is a correct closed-form solution of the initial
value problem. These two steps – guess and check – are a powerful method for determining
closed-form solutions for initial value problems. This method is called the guess-and-
check method.

Question 7 Use the guess-and-check method to find a closed-form solution for the initial
value problem

p0 = 1, pn = pn−1 + (2n + 1).

Question 8 Use the guess-and-check method to find a closed-form solution for the initial
value problem

p0 = 0, pn = pn−1 + (2n + 1).
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Question 9 Use the guess-and-check method to find a closed-form solution for the initial
value problem

p0 = 0, pn = pn−1 +
1
2n

.

What is the long-term behavior of this sequence?

Question 10 Check if

pn =
1− rn+1

1− r

is a closed-form solution of the initial value problem

p0 = 1, pn = pn−1 + rn.

Question 11 Consider the recursion equation

pn = pn−1 + 37.

1. Guess a general solution of this recursion equation by computing a few terms and
looking for a pattern.

2. Verify that your guess is a general solution.

3. Find a particular solution to the IVP

pn = pn−1 + 37, p1 = 150.

4. Find a particular solution to the IVP

pn = pn−1 + 37, p0 = 150.

Question 12 Show that

pn = CRn +
b

1−R
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is a general solution of the recursion equation

pn = Rpn−1 + b.

Then, find the particular solution of the IVP

pn = Rpn−1 + b p1 = 2000.
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Figure 3.1: Known oil reserves (end of 2007). BP Statistical Review of World Energy, 2008

In the last chapter we focused on modeling situations in which we kept track of one
quantity of interest but there are many situations in which we need to keep track of many
quantities. For example, Figure 3.1 shows proven oil reserves at the end of the year 2007
broken down by region. It is not enough to keep track of the total oil reserves for the whole
world. We need to know where the oil reserves are located.

This chapter is about vectors and matrices – two tools that are enormously powerful
when we need to keep track of many quantities. In this chapter we also study systems of
linear equations. These systems can often be used to describe or at least approximate the
relationships among quantities. The mathematics we develop in this chapter for working
with many changing quantities and linear relationships is so important and so powerful
for modeling and simulation that modern computers have powerful GPUs, or Graphics
Processing Units, that can perform trillions of operations per second based on this math-
ematics.
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Region Oil Reserves (Thousand million barrels)

Asia Pacific 40.8

North America 69.3

South and Central America 111.2

Africa 117.5

Europe and Eurasia 143.7

Middle East 755.3

Table 3.1: Known oil reserves (end of 2007).

3.1 Introduction to Vectors

Figure 3.1 on page 217 shows the world’s known oil reserves at the end of the year 2007.
Because the location of the oil is important, we are interested in showing oil reserves by
region, as in Figure 3.1 and in Table 3.1, rather than just a single number giving the world’s
total known oil reserves.

3

2

2

3
(2, 3)

(3, 2)

Figure 3.2: The points (3, 2) and (3, 2)

There are many other situations in which we need lists of numbers rather than a single
number. For example, a point on a plane is described by a list of two numbers giving its
x- and y-coordinates as shown in Figure 3.2. Notice that the order of the elements of a
list is important. The points (2, 3) and (3, 2) are different points. Similarly, a point in
three-dimensional space can be described by a list of three numbers giving its x- y- and
z-coordinates.

Lists of numbers – like the lists of two numbers used to describe a point in the plane,
the lists of three numbers used to describe points in three dimensional space, or the list of
six numbers used above to describe the world’s known oil reserves at the end of 2007 – are
called vectors and are written as described in the following definition.
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Definition 1 An n-dimensional vector is an ordered list of n numbers. We use a
symbol like ~v with an arrow above a letter to denote a vector and we use the same letter
with subscripts to denote the entries in the vector. We use the symbols “〈” and “〉” to
enclose the entries in the vector. For example, if ~v = 〈3,−2, 4〉 is a three-dimensional
vector then v1 = 3, v2 = −2, and v3 = 4. The order of the entries in a vector is important.

You may have seen two- and three-dimensional vectors before used to represent points
in a plane or in three-dimensional space but there are many situations in which much longer
lists – that is, much higher dimensional vectors – are used. For example, the data in Table
3.1 on page 218 can be written as the six-dimensional vector,

〈40.8, 69.3, 111.2, 117.5, 143.7, 755.3〉.

Modern sound recordings are made using vectors with 44,100 entries1 for each second of
sound, and digital photographs often use vectors that have 3,000,000 or more entries. Black-
and-white photographs use one entry for each pixel and color photographs use three entries
for each pixel, one each for the red, blue, and green components of the color. The tools
we develop in this chapter are used not only to record and process real sound and images,
they are also used in movies like Star Wars and in electronic games to create completely
artificial worlds. One of the most important uses of these tools in the military is to create
simulations that allow us to rehearse dangerous operations. Both electronic games and
virtual simulations rely on trillions of vector and matrix operations per second. Because
these operations are so important and because we need so many of them, modern graphics
processing units are designed for extremely high-speed vector and matrix operations.

Example 1 In order to combat an insurgency in a particular country, it is important to
keep track of the number of insurgents in different parts of the country. Analysts have
divided the country into six sectors. Each week, analysts record the situation as a list of six
numbers – each number giving the estimated number of insurgents in one of the six sectors.
Table 3.2 on page 220 is an example of such a list for one particular week.

We can represent this information by the vector

~v = 〈160, 182, 231, 119, 158, 318〉

1Sound is caused by rapid variations in air pressure and each entry in the vectors that record sound
represents the difference between the air pressure at a particular time and the average air pressure.
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sector number
1 160
2 182
3 231
4 119
5 158
6 318

Table 3.2: Insurgents in each sector

Example 2 Three insurgent groups (let’s call them a, b, and c) have members in the six
sectors given by the following three vectors.

~a = 〈250, 140, 175, 86, 90, 315〉
~b = 〈115, 230, 214, 100, 65, 75〉
~c = 〈77, 60, 329, 113, 413, 115〉

We can compute the total number of insurgents in each sector as follows.

• Sector 1: 250 + 115 + 77 = 442.

• Sector 2: 140 + 230 + 60 = 430.

• Sector 3: 175 + 214 + 329 = 718.

• Sector 4: 86 + 100 + 113 = 299.

• Sector 5: 90 + 65 + 413 = 568.

• Sector 6: 315 + 75 + 115 = 505.

We can express the total number of insurgents in each sector as a vector.

~t = 〈442, 430, 718, 299, 568, 505〉

Notice that each entry in the vector ~t is obtained by adding the corresponding entries
of each of the three vectors, ~a, ~b, and ~c.
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Because we often need to add the corresponding entries of two or more vectors in this
way, we introduce an operation called vector addition, or the vector sum, as described
in the definition below.

Definition 2 Suppose that ~u = 〈u1, u2, . . . un〉 and ~v = 〈v1, v2, . . . vn〉 are two vectors of
the same dimension. Then, we define their vector sum, ~u+ ~v, by

~u+ ~v = 〈u1 + v1, u2 + v2, . . . un + vn〉

For example,

〈1, 2, 3〉+ 〈2,−4, 6〉 = 〈3,−2, 9〉

〈1, 2, 3, 4〉+ 〈0, 0, 0, 0〉 = 〈1, 2, 3, 4〉

〈1, 2〉+ 〈3, 4, 5〉 = not defined!

The sum < 1, 2 > + < 3, 4, 5 > is not defined because the two vectors do not have the
same dimension.

Similarly, we define vector subtraction by

~u− ~v = 〈u1 − v1, u2 − v2, . . . un − vn〉.

Question 1 New intel reports that the numbers of insurgents given by the three vectors,
~a,~b, and ~c, in Example 2 seriously underestimates the true strength of each group. This
intel reports that the figures for the group represented by ~a should be multiplied by 1.5 and
the figures for each of the other two groups should be doubled. Find three vectors that
describe the revised estimated number of insurgents in each sector for each of the three
groups and then use these vectors to find a vector describing the total number of insurgents
from all three groups in each sector.

Your first step in answering Question 1 above was probably multiplying the entries of
the vector ~a by 1.5 as shown below.

1.5〈250, 140, 175, 86, 90, 315〉 = 〈375, 210, 262.5, 129, 135, 472.5〉

Because we often need to multiply all the entries in a vector by the same number, we
introduce an operation called scalar multiplication as described in the definition below.
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Definition 3 Suppose that ~u = 〈u1, u2, . . . un〉 is an n-dimensional vector and that c is a
real number, or scalar. Then, we define the scalar multiple, c~u, of the vector ~u multiplied
by the scalar c to be

c~u = 〈cu1, cu2, . . . cun〉

For example,

3〈1, 2, 3〉 = 〈3, 6, 9〉.

Question 2 According to the BP Statistical Review of World Energy, 2008, the total
known reserves of oil at the end of 2007 were 1,237.8 billion2 barrels, or GbO. Table 3.1
on page 218 breaks this total down by area of the World. Represent this information as a
vector.

According to the same source, oil production by area in 2007 was given by Table 3.3.
These figures are in thousands of barrels per day.

Region Oil Production (Thousands of Barrels per Day)

Asia Pacific 7,907

North America 13,665

South and Central America 6,633

Africa 10,318

Europe and Eurasia 17,835

Middle East 25,176

Table 3.3: 2007 Oil production.

If no new oil reserves are discovered and oil production continues at the present rate
for the next five years, what will the known reserves for each sector be at the end of 2008?
at the end of 2009? at the end of 2010? Use the vector operations described in Definitions
2 and 3 to answer these questions.

We have already mentioned one of the most common uses of two-dimensional vectors
– to represent points in the plane. For example, Figure 3.3 on page 223 shows the point
represented by the vector ~v = 〈3, 2〉. This is the point whose x-coordinate is 3 and whose
y-coordinate is 2. Figure 3.3 shows both this point and its vector representation. Notice

2In the United States and this book “billion” means a thousand million or 109. In some parts of the
world “billion” means a million million or 1012.
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that vectors and points are different things. A vector may represent many different things,
one of which is a point. For this reason we use the notation (u1, u2) to denote a point and
the notation 〈u1, u2〉 to denote a vector.

3

2 (3, 2)

3

2 ~v = 〈3, 2〉

Figure 3.3: A point (3, 2) and its vector representation ~v = 〈3, 2〉

Another very common use of vectors is to represent motion, or displacement, from
one point to another. For example, the motion or displacement required to reach the
point (3, 1) from the point (0,−1) is represented by the vector ~v = 〈3, 2〉. Figure 3.4
shows several displacements represented by the same vector ~v = 〈3, 2〉. Notice that the
same vector is used to represent the displacement between any two points with the same
difference in x-coordinates and the same difference in y-coordinates. When we talk about
the displacement required to go from one point to another, we sometimes use the words
“initial point” for the starting point and “final point” for the ending point.

Figure 3.4: Several displacements represented by the vector ~v = 〈3, 2〉
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If the point A is represented by the vector ~a and the point B is represented by the
vector ~b, then the displacement required to reach the point B from the point A is just
~b− ~a. We sometimes denote this vector −−→AB.

Question 3 If A = (3, 2) and B = (5, 7) find −−→AB both numerically and graphically.

Question 4 If A = (5, 7) and B = (3, 2) find −−→AB both numerically and graphically.

Scalar multiplication has a simple geometric meaning as shown in Figure 3.5. Multi-
plying a vector by a positive number bigger than one stretches it. Multiplying a vector
by a positive number less than one shrinks it. Multiplying a vector by a negative number
reverses its direction and can also shrink it or stretch it.

~u

2~u

−~u

Figure 3.5: The geometric meaning of scalar multiplication

Vector addition also has a simple geometric meaning as shown in Figure 3.6 on page
225. If the vectors ~u and ~v represent the sides of a parallelogram, then the vector ~u + ~v
represents the diagonal shown in Figure 3.6.

Similarly, the vector operation ~v − ~u has a simple geometric meaning as shown in
Figure 3.7 on page 225. If ~u and ~v represent two sides of a triangle, then the vector ~v − ~u
represents the third side going from the point ~u to the point ~v. You can also think of ~v−~u
as the motion or displacement required to reach the point represented by ~v from the point
represented by ~u. This is shown clearly in Figure 3.7.

3.1.1 Applications

You have probably seen movies like Star Wars in which computer generated spaceships
move across the screen. These movies are made using the two ideas we have just discussed.
Suppose you want to move a spaceship from one point, represented by a vector ~u, to another
point, represented by a vector ~v. This can be done by creating a series of frames in each of
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~u

~v

~u+ ~v = ~v + ~u

Figure 3.6: The geometric meaning of vector addition

~v

~u
~v − ~u

Figure 3.7: The geometric meaning of vector subtraction

which the spaceship has moved a little further along the desired path. When these frames
are projected in a rapid sequence we see the illusion of motion. In Figure 3.8 on page 226,
a series of dots represent different positions of the space ship as it moves. Each of the dots
represents one of the points in the following list.

• ~u = ~u + 0.0(~v − ~u). This dot is labeled ~u and is slightly larger than the unlabeled
dots.

• ~u+ 0.1(~v − ~u).

• ~u+ 0.2(~v − ~u).

• ~u+ 0.3(~v − ~u).
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~v

~u
~u+ 0.5(~v − ~u)

Figure 3.8: Positions of a spaceship

• ~u+ 0.4(~v − ~u).

• ~u + 0.5(~v − ~u). This dot is labeled ~u + 0.5(~v − ~u) and is slightly larger than the
unlabeled dots.

• ~u+ 0.6(~v − ~u).

• ~u+ 0.7(~v − ~u).

• ~u+ 0.8(~v − ~u).

• ~u+ 0.9(~v − ~u).

• ~v = ~u + 1.0(~v − ~u). This dot is labeled ~v and is slightly larger than the unlabeled
dots.

Question 5 How would you use vectors and vector operations to find the point halfway
between the points represented by ~u and ~v?

Question 6 How would you use vectors and vector operations to find the point two-thirds
of the way from the point represented by ~u to the point represented by ~v?

Click here3 to open a Mathematica notebook showing how these operations create the
illusion of motion – moving a black dot from the position marked by a red dot to the
position marked by a blue dot. See Figure 3.9 on page 227. To see the animation, evaluate
the cell.

3http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/moving-
dot.nb

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/moving-dot.nb


CHAPTER 3. VECTORS, MATRICES, AND SYSTEMS OF LINEAR EQUATIONS 227

Figure 3.9: Mathematica screenshot

The key line in this Mathematica notebook is the line in large type. The number t is a
parameter used in computing the vector

~c = ~a+ t(~b− ~a)

As t moves from zero to one, the point represented by the vector ~c moves from the point
represented by the vector ~a (when t = 0) to the point represented by the vector ~b (when
t = 1). This Mathematica notebook creates an animation by showing a sequence of still
pictures, or frames, with the point represented by the vector ~c moving by a small amount
from each frame to the next frame.

Question 7 Note the vectors ~u and ~v in Figure 3.10 on page 228. Sketch each of the
following vectors on Figure 3.10. Label your answers on the figure.

• 2~u.

• ~v + 2~u.

• 2~u− ~v.

• −~u.

• −~v.

• −(~u+ ~v).
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~v

~u

Figure 3.10: Question 7

Question 8 The food that astronauts bring with them is carefully planned. They have
a choice of meals but there are many conditions that must be met. Suppose that astro-
nauts have a choice of ten possible meals and that each of three astronauts chooses meals
represented by one of the following vectors

~a = < a1, a2, a3, . . . , a10 >

~b = < b1, b2, b3, . . . , b10 >

~c = < c1, c2, c3, . . . , c10 >

for each week on the International Space Station (ISS). For example, a1 represents the
number of packages of meal 1 brought by astronaut A for each week.

Use vector operations to compute the following.

a. A vector representing the total weekly food supply for all three astronauts.

b. Vectors representing the total food supply for each of the three astronauts for ten
weeks.

c. A vector representing the total food supply for all three astronauts for ten weeks.
Describe two different ways of finding this vector. Does it make any difference which
way you use?
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d. Suppose the calorie content of each meal is given by the vector ~v =< v1, v2, v3, . . . , v10 >
– that is, v1 is the calorie content of meal 1, v2 is the calorie content of meal 2, and
so forth. How would you compute the total weekly calorie content for each astronaut?

e. Suppose the mass of each meal is given by the vector ~m =< m1,m2,m3, . . . ,m10 >.
How would you compute the total mass of the weekly food supply for each astronaut?

In practice, astronauts, especially those in crews made up of astronauts from different
countries, often wind up trading meals on board the ISS just like kids trade the school
lunches they bring from home.
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1 2

1

2 〈
√

2,
√

2〉

Figure 3.11: The vector 〈
√

2,
√

2〉

3.2 Magnitude, Direction, and the Dot Product

You may have heard vectors described as having magnitude and direction – for example, the
vector shown in Figure 3.11 can be described as a vector whose magnitude is 2 and whose
direction is to the northeast, or whose direction makes an angle of 45◦ or π/4 radians with
the x-axis. Up to now we have been using notation like 〈

√
2,
√

2〉 to describe this vector.
These two descriptions are just two ways of describing exactly the same thing.

In this section we are interested in going back-and-forth between a purely numeric
description of a vector as a list of numbers and a more geometric description of a vector
in terms of magnitude and direction. We will also develop a new vector operation called
the dot product, or scalar product that is especially useful for using mathematics (and
computers) to describe and create geometric images.

The length, magnitude, or norm (these are all synonyms) of a two-dimensional
vector can be computed using the Pythagorean Theorem.

Definition 1 The length, magnitude, or norm of a vector ~u = 〈u1, u2〉 is written |~u|
and can be computed (See Figure 3.12 on page 231) by

|~u| =
√
u2

1 + u2
2.

In fact, a very similar computation works in three dimensions.
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u1

u2
~u√

u2
1 + u2

2

Figure 3.12: The magnitude of a vector

Definition 2 If ~u = 〈u1, u2, u3〉 then

|~u| =
√
u2

1 + u2
2 + u2

3.

This leads to the even more general, Definition 3, for an n-dimensional vector.

Definition 3 If ~u = 〈u1, u2, . . . un〉 then

|~u| =
√
u2

1 + u2
2 + · · ·+ u2

n.

Example 1 If the displacement required to fly from one place to another is ~u = 〈150, 200〉,
measured in kilometers, then the length of the trip is given by

|~u| =
√

1502 + 2002 = 250 kilometers

Question 1 Let ~u = 〈3,−2, 1〉. Find |~u|.

Question 2 Find |〈3,−4〉|.

Next we want to describe the direction of a vector. In two dimensions we use an-
gles. Mathematicians usually describe angles in terms of radians (or sometimes degrees)
measured counter-clockwise from the positive x-axis. In everyday life, however, angles are
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usually described in terms of degrees measured from the north. In three dimensions we use
various ways to describe direction. Astronomers talk about azimuth and declination and
in the military we often talk about azimuth and elevation.

We are going to develop a method that works in all dimensions, not just two and three
dimensions. Think about sitting at the origin in the middle of a circle of radius 1. Think
of this circle as a dial on which you are going to mark a direction. The different points
on this circle or dial represent the different directions you might take when you walk away
from the origin.

Now, look at Figure 3.13. This figure shows a vector 〈3, 4〉. It also shows the unit circle
centered at the origin. The dot on this circle marks the point on the dial that indicates
the direction of the vector 〈3, 4〉.

〈3, 4〉

Figure 3.13: Describing direction by a unit vector

We can think of this dot as the tip of a vector. Since this vector has the same direction
as the vector ~v = 〈3, 4〉, it must be a scalar multiple of ~v and, since it has magnitude 1, it
must be the vector

~u =
1
|~v|

~v.

Vectors like the vector ~u, that have length 1, are important because they capture the
idea of direction. In view of this importance, we make the following definition.
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Definition 4 A vector ~u that has length 1 is called a unit vector. We often use the
notation û instead of ~u to emphasize that a vector is a unit vector.

Notice that if ~v is any vector then the vector

û =
1
|~v|

~v

is a unit vector and we can write

~v = |~v| û.

~v

û point on dial

Figure 3.14: A vector using a unit vector and magnitude

We think of the unit vector, û, as indicating the direction of the vector ~v. Thus, we
have written ~v in terms of its magnitude, |~v|, and its direction, û. See Figure 3.14. The
key idea is that the unit vector, û, represents a point on a dial centered at the origin and
that points on this dial indicate direction from the origin. In three dimensions, we get
exactly the same picture except that now the dial is spherical rather than circular. In
higher dimensions the dial is harder to visualize but the idea is the same – we can write
any vector in terms of its magnitude and a unit vector that indicates its direction. More
precisely, we have written it as the product of its length and its direction, as represented
by a unit vector.
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Question 3 Express each of the following vectors in terms of its magnitude and a unit
vector indicating its direction.

a. ~v = 〈4, 3〉

b. ~v = 〈−4, 3〉

c. ~v = 〈4,−3〉

d. ~v = 〈−4,−3〉

e. ~v = 〈1, 2〉.

f. ~v = 〈1, 2, 3〉.

g. ~v = 〈1, 2, 3, 4〉.

We often write two-dimensional vectors in the form

~v = 〈v1, v2〉 = 〈|~v| cos θ, |~v| sin θ〉 = |~v|〈cos θ, sin θ〉

based on Figure 3.15.

θ

~v = 〈v1, v2〉

v1 = |~v| cos θ

v2 = |~v| sin θ

Figure 3.15: Expressing direction by angle

Question 4 Show that the vector 〈cos θ, sin θ〉 is a unit vector.
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Our new description is used in many ways. One example is aiming devices that allow a
pilot to aim at a target by looking at it. An on-board computer determines the direction
of the vector from the pilot’s eye to the target by sensing where the pilot is looking. This
direction is expressed as a unit, three-dimensional vector because targets live in our three-
dimensional world. Then, a ranging device is used to determine the magnitude of the
vector from the pilot’s eye to the target.

Our next goal is another useful vector operation, called the dot product or scalar
product. We begin with an example.

Example 2 In this example we examine oil consumption. For this discussion we divide
the world into six groups of countries. The first three groups each contain just a single
country – the United States, China, and India. We divide the remaining countries into
three groups by income. This division is used by the World Bank. The fourth group is high
income countries excluding the United States. The fifth group is middle income countries
excluding China. The sixth group is low income countries excluding India. The 2004
population of each group is given in Table 3.4.

United States China India Other High Other Middle Other Low

293,027,571 1,298,847,624 1,065,070,607 707,306,600 1,709,730,000 1,258,362,000

Table 3.4: 2004 population

The 2004 oil consumption per capita (that is, per person) for these six groups is given
in barrels in Table 3.5.

United States China India Other High Other Middle Other Low
25.51 1.90 0.88 15.78 4.08 1.85

Table 3.5: 2004 per capita oil consumption in barrels

We can represent this information by two six-dimensional vectors.

~p = 〈293027571, 1298847624, 1065070607, 707306600, 1709730000, 1258362000〉

and

~q = 〈25.51, 1.90, 0.88, 15.78, 4.08, 1.85〉
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Suppose that we want to compute the total oil consumption for the world in 2004. We
need to multiply the population in each group by the per capita oil consumption in the same
group to get the total oil consumption in each group. Then we need to add these six figures.
In other words we need to compute

(p1 × q1) + (p2 × q2) + (p3 × q3) + (p4 × q4) + (p5 × q5) + (p6 × q6)

The answer is roughly, 3.13× 1010 or slightly more than 31 billion barrels.

The computation in the example above is extremely common. For example, suppose
that you buy four boxes of cereal at $2.50 per box and two gallons of milk at $3.00 per
gallon. You can represent your purchases by the vector ~q = 〈4, 2〉 and the prices by the
vector 〈$2.50, $3.00〉. Then the total price you must pay is

(4× $2.50) + (2× $3.00) = $16.00.

This leads us to define a new vector operation, called the scalar product or the dot
product.

Definition 5 Suppose that

~u = 〈u1, u2, . . . , un〉

and

~v = 〈v1, v2, . . . , vn〉

are two n-dimensional vectors. We define their scalar product, or dot product, denoted
~u · ~v by

~u · ~v = u1v1 + u2v2 + · · ·+ unvn =
n∑

i=1

uivi.

The two terms “scalar product” and “dot product” are synonyms.
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Note that the scalar product we developed in this section is different from the scalar
multiplication we discussed in the previous section and that we use the notation ~u · ~v for
the scalar product of two n-dimensional vectors and the notation c~u for the scalar multiple
of the scalar c and the vector ~u. This notation can be confusing because in the past you
have used the notation x · y and xy as synonyms for the product of two real numbers x
and y. When we deal with vectors the two notations are not synonymous.

Question 5 For each of the following, identify whether the product is a scalar multiplica-
tion or a scalar product and if the operation is legal. If it is legal then compute the answer.
If not, then state why it is not.

1. 4〈1, 2, 3, 4〉

2. 〈1, 2, 3, 4〉 · 〈3, 2, 1〉.

3. 6 · 〈3, 2, 1〉.

4. 〈1, 2, 3, 4〉 · 〈−1, 2, 1,−2〉.

5. (〈1, 2, 3〉 · 〈3, 2, 1〉) · 〈4, 2, 4〉.

6. (〈−1, 2,−2〉 · 〈2,−1, 2〉)〈2, 1, 3,−1〉.

We have been talking about vectors using both geometric ideas and numeric computa-
tions. For example, the magnitude of a vector is a geometric idea and we can compute it
numerically. The connection between geometry and numerical computation is at the heart
of computer-based simulations and movies like Star Wars. Our next theorem establishes
another important connection between geometric ideas and numerical computations. Its
proof requires a trigonometric identity:

cos(α− β) = cosα cosβ + sinα sinβ. (1)

Theorem 1 Suppose that ~u and ~v are two, two-dimensional vectors. Then

~u · ~v = |~u||~v| cos θ

where θ is the angle between the two vectors. See Figure 3.16 on page 238.
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β

~v

~u

α
θ = α− β

Figure 3.16: The angle between two vectors

Proof

Recall from Figure 3.15 on page 234 that we can write

~u = |~u| 〈cosα, sinα〉

~v = |~v| 〈cosβ, sinβ〉
and

~u · ~v = |~u| 〈cosα, sinα〉 · |~v| 〈cosβ, sinβ〉 = |~u||~v|(cosα cosβ + sinα sinβ) = |~u||~v| cos(α− β) = |~u||~v| cos θ

by the trigonometric identity Equation (1). This proves the theorem since θ, the angle
between the vectors ~u and ~v, is α− β. See Figure 3.16.

Although the proof above assumed that the vectors were two-dimensional vectors, the
theorem is true for three-dimensional and higher dimensional vectors. We state this more
general theorem but do not give a proof.

Theorem 2 Suppose that ~u and ~v are two, n-dimensional vectors. Then

~u · ~v = |~u||~v| cos θ

where θ is the angle between the two vectors. See Figure 3.16.
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Two vectors, ~u and ~v, are perpendicular if the angle, θ, between them is a right angle.
This implies that cos θ = 0 and ~u · ~v = 0 leading to the following theorem.

Theorem 3 Two vectors ~u and ~v are perpendicular if and only if

~u · ~v = 0.

We use the word orthogonal as a synonym for perpendicular. When two vectors are
perpendicular we write ~u ⊥ ~v.

Definition 6 If ~u and ~v are two nonzero vectors, then we say they are parallel if there
is a real number x such that ~v = x~u.

Question 6 Determine which of the following pairs of vectors are perpendicular.

• 〈3, 2〉 and 〈−4, 6〉.

• 〈1, 2,−6〉 and 〈1, 3, 1〉.

• 〈1, 2,−6〉 and 〈2, 2, 1〉.

Question 7 Determine which of the following pairs of vectors are parallel.

• 〈1, 2, 4〉 and 〈2, 4, 6〉.

• 〈2, 0, 4〉 and 〈−4, 0,−8〉.

• 〈1, 2, 3〉 and 〈2, 3, 1〉.

Question 8 For each of the following pairs of vectors, determine whether they are per-
pendicular, parallel, or neither.

• 〈2, 4, 8〉 and 〈3, 6, 12〉.

• 〈1, 2, 3〉 and 〈2,−7, 4〉.

• 〈1, 2, 3〉 and 〈−2, 7,−4〉.
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• 〈1, 2, 3〉 and 〈2, 7,−4〉.

We have established some powerful connections in this section between purely algebraic
operations like the algebraic definition of the dot product

~u · ~v = u1v1 + u2v2 + · · ·+ unvn

and the purely algebraic computation of length

|~v| =
√
v2
1 + v2

2 + · · ·+ v2
n

and very geometric ideas like the length of a vector and the angle between two vectors.
This connection is captured in the equation

~u · ~v = |~u||~v| cos θ

where θ is the angle between ~u and ~v.

Because computers cannot measure angles using protractors as people do, this equa-
tion is one of the key equations involved in computer-based simulations. Computers can
compute the angle between two vectors algebraically by

|~u||~v| cos θ = ~u · ~v

cos θ =
~u · ~v
|~u||~v|

θ = arccos
(
~u · ~v
|~u||~v|

)
θ = arccos

(
u1v1 + u2v2 + · · ·+ unvn√

u2
1 + u2

2 + · · ·+ u2
n

√
v2
1 + v2

2 + · · ·+ v2
n

)

Of course, people can compute the angle between two vectors in the same way.
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Question 9 Find the angle between the vectors 〈2, 3〉 and 〈5,−3〉.

Question 10 Find the angle between the vectors 〈2, 1, 4〉 and 〈2,−3, 7〉.

The vector operations – scalar multiplication, vector addition, and the dot product, or
scalar product – are based on the familiar operations of addition and multiplication of real
numbers. For this reason, many of the familiar properties of real number operations carry
over to these vector operations.

Addition is commutative: Given any two real numbers, a and b, the two sums, a+b
and b+ a, are the same. As a result if ~u and ~v are any two vectors then

~u+ ~v = ~v + ~u.

This property is called the commutative property of addition and we say that “vector
addition is commutative.”

Addition is associative: Given any three real numbers, a, b, and c, a + (b + c) =
(a+ b) + c. This is called the associate property of addition. It carries over to vector
addition – if ~u, ~v, and ~w are any three vectors, then

~u+ (~v + ~w) = (~u+ ~v) + ~w.

Multiplication is also commutative and associative – that is, given any three
real numbers a, b, and c

ab = ba and a(bc) = (ab)c.

As a result, given any two real numbers, a and b, and any vector ~u,

a(b~u) = (ab)~u and a(b~u) = b(a~u).

Multiplication is distributive across addition: Given any three real numbers,
a, b and c, a(b + c) = ab + ac. As a result, given any real numbers, a and b, and any two
vectors, ~u and ~v,

a(~u+ ~v) = a~u+ a~v.
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and

(a+ b)~u = a~u+ b~u.

Scalar product properties: Finally, given any real number, a, and any three vectors,
~u, ~v, and ~w,

~u · ~v = ~v · ~u,

a(~u · ~v) = (a~u) · ~v = ~u · (a~v),

and

~u · (~v + ~w) = (~u · ~v) + (~u · ~w).

These properties are summarized below.

• ~u + ~v = ~v + ~u. This property is called the commutative property of vector
addition.

• ~u + (~v + ~w) = (~u + ~v) + ~w. This property is called the associative property of
vector addition.

• a(b~u) = (ab)~u and a(b~u) = b(a~u). This property does not seem to have a name.

• a(~u+ ~v) = a~u+ a~v. This property is another distributive property.

• (a+ b)~u = a~u+ b~u. This property is another distributive property.

• ~u · ~v = ~v · ~u. This property is called the commutative property of the dot
product.

• a(~u · ~v) = (a~u) · ~v = ~u · (a~v). This is another property without a name.

• ~u · (~v + ~w) = (~u · ~v) + (~u · ~w). This property is another distributive property.
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Question 11 Compute the following wherever possible. If a particular computation is not
possible state why.

a. 〈1, 3,−6〉+ 3〈3, 1,−4〉.

b. 〈3,−2, 3〉 · 〈−2, 4, 6〉.

c. 〈6,−1, 2〉+ 〈3, 4, 2, 1〉.

d. 〈1, 2, 3〉 · 〈5, 4, 3, 2〉.

e. 0.25〈12, 4, 8〉+ 0.33〈6, 9, 18〉.

f. ~u+ 2(~v − ~u).

Question 12 Show that if ~u ⊥ ~v and ~u ⊥ ~w then ~u ⊥ (~v + ~w).

Question 13 Show that if ~u, ~v, and ~w are three nonzero vectors, then, if ~u and ~v are
parallel and ~v and ~w are parallel, ~u and ~w are parallel.
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3.3 Matrix Algebra, I

We have been studying vectors, or lists4 of numbers. Vectors are important because there
are many situations in which we must keep track of lists of numbers rather than just a single
number. The following application is a good example illustrating the power of vectors.

Application 1 Sound recordings are vectors. In the old days, sound recordings were rep-
resented physically by magnetic signals on tapes. Nowadays, most sound recordings are
digital with up to 44,100 numbers for each recorded second. Digital sound recordings are
just very high dimensional vectors. For example, a ten second recording would be a vector

~v = 〈v1, v2, . . . v441000〉

You can physically add two sounds of the same length together by playing them at the
same time and you can physically multiply a sound recording by a real number by running
its signal through an amplifier. If the real number is negative, then you also have to run it
through a circuit called an inverter. If the sound is recorded digitally, you can accomplish
the same operations by using vector addition and scalar multiplication. If you have a pair of
noise-cancelling headphones, you have a nice example of how this is used. Noise-cancelling
headphones have a microphone that captures the noise around you. The signal captured by
this microphone is inverted and added to the signal that reaches your ears. This effectively
cancels the noise and allows you to listen to your music even in noisy environments.

There are other situations in which we must keep track of tables of numbers instead of
lists of numbers. In these situations we use matrices instead of vectors. Tables typically
have several rows and several columns. If a table, or matrix, has n rows and k columns we
say it is an (n × k)-matrix, read an “n by k matrix.” We sometimes say the matrix has
“dimension n by k.” We use the following notation:

Definition 1 We use a capital letter – for example, A – to denote a matrix and the same
lower case letter with subscripts to denote its entries. For example, the entry in the ith row
and jth column of the matrix A is denoted aij. We use square brackets – “[” and “]” – to
enclose the entries in a matrix.

4Recall that lists are ordered lists.



CHAPTER 3. VECTORS, MATRICES, AND SYSTEMS OF LINEAR EQUATIONS 245

Example 1 Let

A =
[

1 2 3
4 5 6

]
This is a (2× 3)-matrix and its entries are

a11 = 1
a12 = 2
a13 = 3
a21 = 4
a22 = 5
a23 = 6

Application 2 Images from digital cameras can be represented by matrices. Such images
are made up of very small points or pixels arranged in a rectangle. The simplest images
are monochrome, or black-and-white. A typical medium resolution image might have 800
rows with 1200 pixels in each row. If a monochrome image is made up of n rows of pixels
and each row has k pixels, then it can be represented by a matrix that has n rows and k
columns. Usually, each entry in such a matrix is a real number between zero and one,
with zero being black and one being the brightest white that can be displayed by a particular
device. Mathematically, we often ignore this restriction. It really only comes into play
when the image is displayed. Color images can be represented by three matrices, each of
whose entries represent the intensity of one of the three colors – red, green, and blue – for
one of the pixels.

In this section, we look at two operations – multiplying a matrix by a scalar and matrix
addition – that are very similar to the two vector operations – multiplying a vector by a
scalar and vector addition – from the last section. These operations are very easy and have
the same properties that we saw in the last section. They are also powerful. Later in this
section we look at an example showing how these operations are used in image processing.
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Definition 2 Suppose that

A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank


is a matrix with n rows and k columns, or an (n× k)-matrix, and that c is a real number.
We define the matrix cA by

cA =


ca11 ca12 · · · ca1k

ca21 ca22 · · · ca2k
...

...
...

can1 can2 · · · cank


Definition 3 Suppose that

A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank


and

B =


b11 b12 · · · b1k

b21 b22 · · · b2k
...

...
...

bn1 bn2 · · · bnk


are both matrices with n rows and k columns. Note: They must both have the same number
of rows and the same number of columns. We define the sum A+B by

A+B =


a11 + b11 a12 + b12 · · · a1k + b1k

a21 + b21 a22 + b22 · · · a2k + b2k
...

...
...

an1 + bn1 an2 + bn2 · · · ank + bnk


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Example 2 [
1 2 3
4 5 6

]
+
[

2 −1 3
−1 3 −2

]
=
[

3 1 6
3 8 4

]
Note that the two matrices added in this example both have the same dimension, (2×3),

and the result has the same dimension.

Example 3 [
1 2 3
4 5 6

]
+
[

2 −1
−1 3

]
= undefined.

Note that in this example the attempt to add the two matrices fails because they have
different dimensions – one has dimension (2× 3) and the other has dimension (2× 2).

The two operations, scalar multiplication of matrices and matrix addition, defined
above, have the familiar properties –

• If A and B are both (n× k)-matrices then A+B = B +A.

• If A, B, and C are all (n× k)-matrices then A+ (B + C) = (A+B) + C.

• If A is an (n× k)-matrix and a and b are real numbers then a(bA) = (ab)A = b(aA).

• If A and B are both (n×k)-matrices and a is a real number then a(A+B) = aA+aB.

• If A is an (n× k)-matrix and a and b are real numbers then (a+ b)A = aA+ bA.

Question 1 Using the matrices below

A =
[

1 2 3
4 5 6

]
B =

[
−1 0 6
2 1 −3

]
C =

[
−1 3
3 −2

]
compute each of the following when it is possible. If it is not possible state why.

a. 2A+ 2B

b. 2(A+B)

c. 3A−B

d. A+ C
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e. C +A.

f. A+ (B −A)

The two pictures in Figure 3.17 were taken at Lake Minnewaska State Park in New
York State. They show Awosting Falls in the spring and in the winter. Pictures like this
are often used in movies to suggest the passage of time. At the end of one scene, the camera
might focus on the picture on the left – Lake Awosting in spring. Then, that picture might
fade out at the same time as the right hand picture – Lake Awosting in winter – fades in
and music suggests the passage of time.

Figure 3.17: Awosting Falls in spring and winter

Figure 3.9 on page 227 showed how we can use vector operations to create the illusion
of motion. To move a dot, for example, from the point represented by the vector ~a to the
point represented by the vector ~b we created a series of frames with the dot at the point

~c = ~a+ t(~b− ~a)

and as t goes from 0 to 1 the dot moves from the point represented by the vector ~a to the
point represented by the vector ~b. We use the same idea together with matrix operations
to create a smooth transition from Awosting Falls in the spring to Awosting Falls in the
winter. We start with a matrix A that represents our picture of Awosting Falls in the
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spring and a matrix B that represents our picture of Awosting Falls in the winter. Then
we look at the matrices

C = A+ t(B −A)

as t varies from 0 to 1. Typically, we would generate 20 or 30 frames and then show them
in rapid succession to create a smooth transition. Figure 3.18 shows three of these frames.

Figure 3.18: Three intermediate frames in a transition from spring to winter

We close this section with an application that continues an application from Section
3.1 and some questions that will motivate a new idea in the next section.

Application 3 In order to combat an insurgency in a particular country, it is important
to keep track of the number of insurgents in different parts of the country. This task
is complicated by the fact that the insurgents are highly mobile and move around a lot.
Analysts have divided the country into six sectors and they estimate that the number of
insurgents in each sector during the current week is given by Table 3.6 on page 250.

Intel indicates that each week insurgents move from one sector to another according to
Table 3.7 on page 250. The entry in the row labeled “to sector i” and the column labeled
“from sector j” indicates the fraction of the insurgents in sector j that move from sector j
to sector i each week. For example, each week 17% of the insurgents in sector 4 move from
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sector number
1 160
2 182
3 231
4 119
5 158
6 318

Table 3.6: Insurgents in each sector (current week)

sector 4 to sector 1 and each week 8% of the insurgents in sector 5 move from sector 5 to
sector 2.

to sector from sector
1 2 3 4 5 6

1 0.40 0.10 0.05 0.17 0.05 0.05
2 0.04 0.30 0.15 0.07 0.08 0.15
3 0.10 0.10 0.45 0.12 0.06 0.08
4 0.08 0.07 0.09 0.42 0.04 0.04
5 0.10 0.15 0.05 0.14 0.40 0.06
6 0.12 0.09 0.07 0.06 0.05 0.60

Table 3.7: Movements among sectors from one week to the next week

Question 2 Based on Tables 3.6 and 3.7, how many insurgents would you expect to be in
each sector the week after the current week?

Question 3 Based on Tables 3.6 and 3.7, how many insurgents would you expect to be in
each sector two weeks after the current week?

Question 4 Based on Tables 3.6 and 3.7, how many insurgents would you think would
have been in each sector the week prior to the current week?

Used together, matrices and vectors are powerful modeling tools in situations where
there are many quantities of interest. We have already seen several examples. The questions
below ask you to use these tools to build some models based on the data shown, graphically,
in Figure 3.19 on page 251 and, numerically, in Table 3.8 on page 252. This set of data is
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refered to as a population pyramid because it presents a snapshot of population broken
down by age and gender and the graphs often look like pyramids. This data and similar
data is available at http://www.census.gov/ipc/www/idbnew.html. You can see a lot from
data like this – for example, there are a lot of people whose age is between 40 and 59. This
age group will put a strain on social security and medicare over the next 20 - 30 years.

Figure 3.19: United States population by gender and age group midyear 2006

Question 5

a. Determine a vector whose entries represent the male population in each age group.

b. Determine a vector whose entries represent the female population in each age group.

c. Determine a vector whose entries represent the total population in each age group.

Question 6 Pick another country in which you are interested and get similar data from
the Web site http://www.census.gov/ipc/www/idbnew.html. For the country you choose –

a. Determine a vector whose entries represent the male population in each age group.

b. Determine a vector whose entries represent the female population in each age group.

c. Determine a vector whose entries represent the total population in each age group.

http://www.census.gov/ipc/www/idbnew.html
http://www.census.gov/ipc/www/idbnew.html
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From Age To Age Male Female

0 4 10,544,578 10,094,346

5 9 10,034,348 9,597,204

10 14 10,516,921 10,024,322

15 19 11,012,552 10,451,316

20 24 10,754,502 10,194,491

25 29 10,336,863 10,022,829

30 34 9,833,159 9,659,910

35 39 10,542,520 10,485,644

40 44 11,106,208 11,243,245

45 49 11,215,604 11,512,111

50 54 10,025,751 10,470,636

55 59 8,754,898 9,310,852

60 64 6,440,788 7,062,450

65 69 4,833,624 5,543,152

70 74 3,819,597 4,698,878

75 79 3,096,612 4,252,239

80 – 3,792,455 7,159,610

Table 3.8: United States population by gender and age group midyear 2006

Question 7 During every presidential year, there is a great deal of discussion about social
security and medicare. The year 2008 is unlikely to be an exception. Make a rough estimate
for the fraction of the population that is retired in each age group and gender. Based on
your estimates, how many people were retired in 2006?

Question 8 For the country you chose in Question 6, make a rough estimate for the
fraction of the population that is retired in each age group and gender. Based on your
estimates how many people were retired in 2006 in that country?

Question 9 Suppose that you would like to predict the population of the United States by
age group and gender in the year 2011 – that is, five years after the data presented in
Figure 3.19 on page 251 and Table 3.8. Begin discussing this problem with words. What
factors are important as you try to make a prediction? What data would you like? As
you attack this question, consider the following steps which are useful in any modeling
problem. These steps can help with the arrow in the modeling triangle (Figure 3.20 on page
253 going from the real world to the mathematical formulation – expressing a real world
problem mathematically or transforming a real world problem into a mathematical one.

• Identify the quantities that are known.

• Identify the quantities that are unknown.
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• Identify the relationships between the unknown quantities and the known quantities.

• Identify additional unknown quantities or data whose determination would be useful.

The Real World

Mathematical
Formulation

Mathematical
Solution

Solve

Transform

Interpret

Figure 3.20: The modeling triangle

As one example, the people in each age group and gender who survive for five years will
move to the next age group and the same gender. One crucial piece of additional data is
the fraction in each age group and gender that will survive for five years.
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3.4 Matrix Algebra, II

We begin this section with a matrix operation that will prove to be extremely powerful. It
is called Matrix Multiplication.

Definition 1 Suppose that A is an (n× k)-matrix and that B is a (k× p)-matrix. Notice
that the number of columns in the matrix A must match the number of rows in the matrix B.

A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank

 B =


b11 b21 · · · b1p

b21 b22 · · · b2p
...

...
...

bk1 bk2 · · · bkp


We define a matrix C called the product of A and B in that order and written AB = C

as follows.

C =


c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
...

cn1 cn2 · · · cnp


where

cij = ai1b1j + ai2b2j + · · ·+ aikbkj =
k∑

r=1

airbrj .

For example,

c21 = a21b11 + a22b21 + · · ·+ a2kbk1.

Notice that the entry, cij, in the ith row and jth column of the matrix C = AB is
computed using the entries from the ith row of the matrix A and the jth column of the
matrix B. It is the dot product of the ith row of the matrix A and the jth column of the
matrix B. That is why the matrix A must have the same number of columns as the matrix
B has rows.
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The matrix C is an (n×p)-matrix – it has the same number of rows as the first matrix,
A, and the same number of columns as the second matrix, B.

Example 1

»
1 2 3
4 5 6

–24 −1 3
4 −2
2 −1

35 =

»
1× (−1) + 2× 4 + 3× 2 1× 3 + 2× (−2) + 3× (−1)
4× (−1) + 5× 4 + 6× 2 4× 3 + 5× (−2) + 6× (−1)

–
=

»
13 −4
28 −4

–

Example 2

[
2 1 −3
−2 3 4

] 0 2 1 4
6 −2 3 −2
3 2 −1 5

 =
[
−3 −4 8 −9
30 −2 3 6

]

Example 3  0 2 1 4
6 −2 3 −2
3 2 −1 5

[ 2 1 −3
−2 3 4

]
= undefined.

This product is undefined because the number of columns in the first matrix does not match
the number of rows in the second matrix.

Question 1 Four of the six entries in the matrix multiplication below have been worked
out. Fill in the two missing entries.

[
1 2
3 4

] [
2 1 4
0 3 0

]
=
[

1 7
6 12

]

Question 2 Let

A =
[

1 2
3 4

]
and B =

[
−1 0 3
2 1 −1

]
Find the two matrix products AB and BA. If either or both of these products don’t

exist, say so.
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sector number

1 160

2 182

3 231

4 119

5 158

6 318

Table 3.9: Insurgents

Example 4

Recall that, in the last section, we looked at insurgents in six sectors of a particular
country. Table 3.9 describes the current number of insurgents in each sector. We rewrite
the information in this table as a (6× 1)-matrix

P =



160
182
231
119
158
318

 .

Table 3.10 describes the fraction of insurgents in each sector that moved from that sector
to each of the six sectors from one week to the next.

to sector from sector

1 2 3 4 5 6

1 0.40 0.10 0.05 0.17 0.05 0.05

2 0.04 0.30 0.15 0.07 0.08 0.15

3 0.10 0.10 0.45 0.12 0.06 0.08

4 0.08 0.07 0.09 0.42 0.04 0.04

5 0.10 0.15 0.05 0.14 0.40 0.06

6 0.12 0.09 0.07 0.06 0.05 0.60

Table 3.10: Movements of insurgents among sectors

We rewrite the information in this table as a (6× 6)-matrix
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T =



0.40 0.10 0.05 0.17 0.05 0.05
0.04 0.30 0.15 0.07 0.08 0.15
0.10 0.10 0.45 0.12 0.06 0.08
0.08 0.07 0.09 0.42 0.04 0.04
0.10 0.15 0.05 0.14 0.40 0.06
0.12 0.09 0.07 0.06 0.05 0.60

 .

Based on the information in these two tables, we want to determine how many insur-
gents will be in each sector next week. Consider the product

TP =

26666664
0.40 0.10 0.05 0.17 0.05 0.05
0.04 0.30 0.15 0.07 0.08 0.15
0.10 0.10 0.45 0.12 0.06 0.08
0.08 0.07 0.09 0.42 0.04 0.04
0.10 0.15 0.05 0.14 0.40 0.06
0.12 0.09 0.07 0.06 0.05 0.60

37777775

26666664
160
182
231
119
158
318

37777775

=

26666664
(0.40× 160) + (0.10× 182) + (0.05× 231) + (0.17× 119) + (0.05× 158) + (0.05× 318)
(0.04× 160) + (0.30× 182) + (0.15× 231) + (0.07× 119) + (0.08× 158) + (0.15× 318)
(0.10× 160) + (0.10× 182) + (0.45× 231) + (0.12× 119) + (0.06× 158) + (0.08× 318)
(0.08× 160) + (0.07× 182) + (0.09× 231) + (0.42× 119) + (0.04× 158) + (0.04× 318)
(0.10× 160) + (0.15× 182) + (0.05× 231) + (0.14× 119) + (0.40× 158) + (0.06× 318)
(0.12× 160) + (0.09× 182) + (0.07× 231) + (0.06× 119) + (0.05× 158) + (0.60× 318)

37777775

=

26666664
137.78
164.32
187.35
115.30
153.79
257.59

37777775 .

Lets look at the calculation we would need to make to determine how many insurgents
will be in sector 1 next week. The insurgents that will be in sector 1 next week come from
the six sectors. There are currently 160 insurgents in sector 1, and according to the table,
40% of them will remain in sector 1. Thus, sector 1 contributes 0.40×160 = 64 insurgents
to sector 1 next week. Notice that this is just the first term in the computation below for
the first element of the product TP .

(0.40× 160) + (0.10× 182) + (0.05× 231) + (0.17× 119) + (0.05× 158) + (0.05× 318)

Sector 2 currently has 182 insurgents and, according to the table, 10% of them will move
to sector 1 next week. Thus, sector 2 will contribute 0.10× 182 = 18.2 insurgents to sector
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1 next week. Notice this is just the second term in the computation above. This analysis
continues in the same way. The contribution that each of the six sectors makes to the
number of insurgents in sector 1, next week, is computed by one of the six terms in the
computation above of the first element of the product TP . The computation of the number
of insurgents in sector 2, next week, corresponds to the computation of the second element
of the product TP ; the computation of the number of insurgents in sector 3, next week,
corresponds to the computation of the third element of the product TP ; and so forth. This
is not an accident. The definition of the matrix product was invented to apply to situations
like this.

Thus, next week the number of insurgents in each sector is given by Table 3.115 and
the following week by Table 3.12.

sector 1 sector 2 sector 3 sector 4 sector 5 sector 6
137.78 164.32 187.35 115.35 153.79 257.59

Table 3.11: Number of insurgents in each sector the next week

sector 1 sector 2 sector 3 sector 4 sector 5 sector 6
121.090 141.926 158.194 104.288 140.914 213.601

Table 3.12: Number of insurgents in each sector the following week

Definition 2 For each n, we define an (n× n)-matrix, In, called the identity matrix of
dimension n by

In =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


Sometimes, when the dimension of an identity matrix is obvious from the context, we

simply write I rather than In.

5Notice that mathematically we have fractional insurgents. In practice, of course, fractional people are
not realistic.
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Question 3 Write the matrix I3.

Question 4 Compute

I3

 1 2 3
4 5 6
7 8 9

 .
Question 5 Compute

 1 2 3
4 5 6
7 8 9

 I3.
Question 6 Suppose that A is an (n× n)-matrix. What is InA? What is AIn?

Question 7 Suppose that A is an (n × k)-matrix. What is InA? What is IkA? What is
AIn? What is AIk?

In the problems above you should have noticed that if A is an (n × k)-matrix then
InA = A and AIk = A but that IkA and AIn are undefined unless n = k.

Question 8 Suppose that X is the matrix

X =

 0 1 0
1 0 0
0 0 1


and that A is any (3× 3)-matrix. Describe XA. Describe AX.

Question 9 Suppose that X is the matrix

X =

 1 0 0
0 0 1
0 1 0


and that A is any (3× 3)-matrix. Describe XA. Describe AX.
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Question 10 Suppose that X is the matrix

X =

 1 0 0
0 1 0
0 1 1


and that A is any (3× 3)-matrix. Describe XA. Describe AX.

Question 11 Suppose that X is the (n× n)-matrix

X =


x1 0 · · · 0
0 x2 · · · 0
...

...
...

0 0 · · · xn

 .

A matrix like X that has zeros every place but on the diagonal is called a diagonal matrix.
Suppose that A is an (n× n)-matrix. Describe XA. Describe AX.

Definition 3 It is often useful to write a vector ~x = 〈x1, x2, . . . , xn〉 as a matrix. We can
do this in two ways – as a row-vector:

[
x1 x2 · · · xn

]
or as a column-vector:


x1

x2
...
xn

 .
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Question 12 Consider the system of equations

3x+ 5y + 2z = 2
2x− 5y + 6z = 5
5x+ 3y − 3z = 3.

Show that this system of equations can be written as the single equation below by carrying
out the multiplication

 3 5 2
2 −5 6
5 3 −3

 x
y
z

 =

 2
5
3

 .
Question 13 Consider the system of n equations in k unknowns

a11x1 + a12x2 + · · ·+ a1kxk = b1

a21x1 + a22x2 + · · ·+ a2kxk = b2
...

an1x1 + an2x2 + · · ·+ ankxk = bn.

Show that this system of equations can be written as the following single equation by carrying
out the multiplication


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank



x1

x2
...
xk

 =


b1
b2
...
bn

 .

Writing a system of equations as a single equation using matrices is extremely powerful.
This form for a system of equations is called the matrix form. The matrix
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A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank


is called the coefficient matrix for this system of equations and the matrix or column-
vector

B = ~b =


b1
b2
...
bn


is called the constant matrix or sometimes the constant vector for this system of
equations.

Although matrix multiplication has many of the properties we might expect, it lacks
one property that we might expect. In most cases, it is not commutative. In fact, if A and
B are two matrices, then there are many different possibilities:

• The product AB is defined but the product BA is not defined.

• Both products AB and BA are defined but they have different dimensions.

• Both products AB and BA are defined and they have the same dimensions but they
are different.

• Both products AB and BA are defined and they are the same.

Question 14 Give examples showing that each of the possibilities above can occur.

Fortunately many of the properties we have come to expect do carry over to matrix
multiplication.

• If A is an (n× k)-matrix, B is a (k × p)-matrix, and C is a (p× q)-matrix, then,

A(BC) = (AB)C.

We say that matrix multiplication is associative.
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• If A is an (n× k)-matrix and B and C are (k × p)-matrices, then,

A(B + C) = (AB) + (AC).

If A and B are (n× k)-matrices and C is a (k × p)-matrix, then,

(A+B)C = (AC) + (BC).

We say that matrix multiplication is distributive.

• If A is an (n× k)-matrix, then,

AIk = A and InA = A.

• If A is an (n× k)-matrix, B is a (k × p)-matrix, and c is a real number, then,

c(AB) = (cA)B = A(cB).

Question 15 Illustrate each of the properties above with an example.



CHAPTER 3. VECTORS, MATRICES, AND SYSTEMS OF LINEAR EQUATIONS 264

3.5 The Inverse of a Matrix

Figure 3.21: A photograph of Washington DC from Google Earth

The world is awash in digital imagery. Millions of people post photographs on the Web.
Anyone with Internet access can obtain those photographs as well as aerial photographs
like the one shown in Figure 3.21 from Google Earth. We are interested not just in the
photographs themselves but in the reality that was photographed – for example, we are less
interested in the fact that two features shown on a photograph are six centimeters apart
on the photograph than in the fact that they are 2 kilometers apart on the ground.

We can measure the location of features in a photograph directly using a ruler but
we need to translate its coordinates on the photograph to its coordinates on the ground.
Matrices and vectors are exactly the tools we need to transform photograph coordinates
to ground coordinates or ground coordinates to photograph coordinates. In this section,
we develop some of the ideas involved for features that are on the ground. We continue to
develop these ideas later in this chapter.

We keep track of the location of a particular feature in two ways – first, its location on
the ground and, second, its location on the photograph. On the ground we pick a point as
the origin and measure every other point by its relationship with the origin. For example,
in Washington, D.C. we might choose the Washington Monument as the origin.

When we look at an aerial photograph, we usually choose the center of the photograph
as the origin and describe points in terms of how many centimeters they are above or below
and left or right of this origin. Figure 3.22 on page 265 shows coordinate axes added to
Figure 3.21. Notice the origin is in the center of the photograph.
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Figure 3.22: Axes added to a photograph of Washington D.C. from Google Earth

In summary, if we are looking at a particular object, we can describe its location using
a vector, ~x = 〈x1, x2〉, that corresponds to its location on the ground or using a vector,
~y = 〈y1, y2〉, that corresponds to the location of its image on the photograph – for example,

• My favorite mountain is located at the point (10, 20) – 10 kilometers east and 20
kilometers north of City Hall in Smithtown.

• My favorite mountain is located 6 centimeters below and 4 centimeters to the right
of the center of a particular aerial photograph of Smith County.

Because troops on the ground want to use the information from aerial photographs, we
need to be able to translate back-and-forth between these two descriptions. The way in
which this translation is done depends on the location and position of the camera when it
took the picture and the lens that was used. We will be working with photographs that
were taken by a camera pointing directly downward toward a point on the ground. Using
geometry, one can show that in this situation the translation can always be described by a
pair of equations,

y1 = a11x1 + a12x2 + b1

y2 = a21x1 + a22x2 + b2
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or, using matrices and vectors,

[
y1

y2

]
=
[
a11 a12

a21 a22

] [
x1

x2

]
+
[
b1
b2

]
or, more compactly,

~y = A~x+~b

where we write the vectors ~x, ~y, and ~b as column-vectors –

~x =
[
x1

x2

]
~y =

[
y1

y2

]
~b =

[
b1
b2

]
.

Because the coordinates of the origin on the ground are ~x =< 0, 0 >, the vector ~b is
the location on the photograph of the origin on the ground. That is,

A

[
0
0

]
+
[
b1
b2

]
=
[
b1
b2

]
.

In Section 3.6 we will see how to determine the entries in the matrix A. We say that the
transformation ~y = A~x +~b enables us to translate ground coordinates into photograph
coordinates.

Example 1 An analyst is working from an aerial photograph of a mountainous area near
the Afghan-Pakistan border. An operative on the ground measures locations on the ground
in kilometers relative to a distinctive rock that is easily recognizable from the air. The
analyst measures locations on the photograph in centimeters relative to the center of the
photograph. The transformation from coordinates, ~x, on the ground as measured by the
operative to coordinates, ~y, on the photograph as measured by the analyst is given by

~y = A~x+~b

where

~b =
[

3
4

]
A =

[
2.5 −2.5
2.5 2.5

]
.
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For example, the distinctive rock that the operative is using as his origin is located on
the photograph at the point

~y =
[

2.5 −2.5
2.5 2.5

] [
0
0

]
+
[

3
4

]
=
[

3
4

]
.

Question 1 The operative on the ground reports suspicious activity at a cave located at
a point 2.5 kilometers north and 1.6 kilometers east of the distinctive rock. Where is this
cave on the analyst’s photograph?

Question 2 The operative has provided a list of locations that he considers suspicious.
Translate these locations into photograph coordinates.

a. 〈−2, 3〉 or, written as a column-vector,
[
−2
3

]
.

b. 〈3,−5〉.

c. 〈7,−2〉.

Notice that we use a variety of different notations to represent variations of the same
basic idea. For example, a point, (3, 4), might be represented by a vector, 〈3, 4〉, or a
row-vector, [3, 4], or a column-vector,

[
3
4

]
.

Now, suppose our analyst has spotted a point on the photograph that he believes is
suspicious. He wants to describe it to the operative on the ground. This problem is the
“inverse” or reverse of the problems we discussed above. Now we want to translate from
photograph coordinates to ground coordinates. Given our formula

~y = A~x+~b,

we want to find a formula that enables us to compute ~x if we know ~y.

This problem looks very much like problems we routinely solve involving numbers. If
we have an equation,
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y = 2x+ 3

we first subtract 3 from both sides to get

y − 3 = 2x

and then multiply both sides by 1
2 to get

(
1
2

)
(y − 3) = x.

This works for any equation of the form

y = mx+ b.

A little algebra shows that

x =
(

1
m

)
(y − b).

This enables us to determine x given a value for y.

We often say that the function

x =
(

1
m

)
(y − b)

is the inverse of the function

y = mx+ b.

Our goal is to find an inverse for the function, or transformation,

~y = A~x+~b.
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We can start by trying to mimic the algebra we used above to find the inverse of the
function y = mx+ b. We begin with

~y = A~x+~b

and we subtract ~b from both sides to get

~y −~b = A~x

but now for the next step we need something like 1
A . Unfortunately, however, 1

A doesn’t
make sense because we can’t divide the real number 1 by a matrix. If “something” like 1

A
exists then we call it the inverse of the matrix A. We do not use the notation 1

A for the
inverse of a matrix. We use A−1 instead. This terminology mirrors the terminology we use
for numbers – the number 1

2 is called the multiplicative inverse of the number 2 because

1
2
× 2 = 1.

and we sometimes write 2−1 instead of 1
2 .

The only matrices that can possibly have inverses are square matrices – that is matrices
with the same number of rows and columns. Even if a matrix is square, it might not have
an inverse. We use the following terminology.

Definition 1 Suppose that A is an (n×n)-matrix, or a square matrix. If there is another
(n× n)-matrix B such that

AB = BA = I,

then we say that the matrix A is invertible, or nonsingular, and call the matrix B the
inverse of the matrix A. Recall that I represents the identity matrix. We write

B = A−1.

The words “invertible” and “nonsingular” are synonyms. If a matrix does not have an
inverse then we say it is “noninvertible” or “singular.”
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Question 3 Show that the matrix

A =
[

2 0
0 3

]
is invertible and that its inverse is the matrix

B =

 1
2 0

0 1
3

 .
Question 4 Show that the matrix

[
1 2
3 4

]
is invertible and its inverse is the matrix

 −2 1

3
2 −1

2

 .
Question 5 Recall that we said a matrix B was the inverse of a matrix A if AB = BA = I.
We said that a matrix could have an inverse only if it was square. Explain why a matrix
that is not square cannot have an inverse.

Question 6 Consider a matrix of the form

A =
[
a11 0
0 a22

]
.

Show that this matrix has an inverse and find the inverse. Do you need to make any
assumptions to show that this matrix has an inverse?



CHAPTER 3. VECTORS, MATRICES, AND SYSTEMS OF LINEAR EQUATIONS 271

Question 7 Consider a matrix of the form

A =

 a11 0 0
0 a22 0
0 0 a33

 .
Show that this matrix has an inverse and find the inverse. Do you need to make any
assumptions to show that this matrix has an inverse?

Question 8 Suppose that A is a diagonal matrix – that is, that the only nonzero entries
in A are on the diagonal.

A =


a11 0 · · · 0
0 a22 · · · 0
...

...
...

0 0 ann


Show that if all of the diagonal entries in A are nonzero then A is invertible and find its
inverse. Why must we assume that all the diagonal entries are nonzero?

Question 9 Suppose that

A =
[
a11 a12

a21 a22

]
is a (2× 2)-matrix and that

a11a22 − a12a21 6= 0.

Show that the matrix

B =


a22

a11a22−a12a21
− a12

a11a22−a12a21

− a21

a11a22−a12a21

a11

a11a22−a12a21

 .
is the inverse of A. This formula for the inverse of a (2× 2) is called Cramer’s Rule.
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Question 10 Why do we have to assume that a11a22 − a12a21 6= 0?

Definition 2 The quantity

a11a22 − a12a21

is called the determinant of A.

As we have seen, some square matrices have inverses and others do not. For example,
a (2 × 2)-matrix has an inverse if and only if its determinant is nonzero. Recall that if a
square matrix does not have an inverse we say that it is noninvertible, or singular.

Question 11 Does the matrix

A =
[

2 1
1 2

]
have an inverse? If so, find its inverse.

Question 12 Does the matrix

A =
[

2 −4
1 −2

]
have an inverse? If so, find its inverse.

Question 13 Does the matrix

A =
[

2 6
3 7

]
have an inverse? If so, find its inverse.

Now, we can solve the problem that started this discussion of inverses. We begin with
the formula

~y = A~x+~b
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and we subtract ~b from both sides to get

A~x = ~y −~b.

Now, if the matrix A is invertible, we multiply both sides of this equation by A−1 to get

A−1A~x = A−1(~y −~b)
I~x = A−1(~y −~b)
~x = A−1(~y −~b)

and this formula is exactly what we need to transform coordinates, ~y, on the aerial photo-
graph to coordinates, ~x, on the ground.

The following example continues Example 1.

Example 2 An analyst is working from an aerial photograph of a mountainous area near
the Afghan-Pakistan border. An operative on the ground measures locations on the ground
in kilometers relative to a distinctive rock that is easily recognizable from the air. The
analyst measures locations on the photograph in centimeters relative to the center of the
photograph. The transformation from coordinates, ~x, on the ground as measured by the
operative to coordinates, ~y, on the photograph as measured by the analyst is given by

~y = A~x+~b

where

~b =
[

3
4

]
A =

[
2.5 −2.5
2.5 2.5

]
.

The analyst spots a particular feature on the photograph that he believes might be an
IED. It is located on the photograph at the point ~y = 〈5, 6〉. He wants to tell the operative
on the ground where it is located on the ground.

Using the work above we know that the transformation from photograph coordinates
~y to ground coordinates ~x is given by

~x = A−1(~y −~b).
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Using Cramer’s Rule we see that

A−1 =
[

2.5 −2.5
2.5 2.5

]−1

=
[

0.2 0.2
−0.2 0.2

]
.

So the possible IED is located on the ground at the point

[
0.2 0.2
−0.2 0.2

]([
5
6

]
−
[

3
4

])
=
[

0.2 0.2
−0.2 0.2

] [
2
2

]
=
[

0.8
0.0

]
.

Question 14 The analyst spots suspicious activity at a cave whose photograph coordinates
are 〈5.25, 14.25〉. Where is this cave on the ground? Compare this question with Question 1.

Question 15 The analyst has a list of the photograph coordinates of locations that he
considers suspicious. Transform the photograph coordinates into ground coordinates.

a. 〈−9.5, 6.5〉.

b. 〈23,−1〉.

c. 〈25.5, 16.5〉.

Compare this question with Question 2.

Question 16 The analyst has identified three points on the aerial photograph that are
suspicious. He wants to send the operative the ground coordinates of those three points.
Their coordinates on the aerial photograph are given below. Find the corresponding ground
coordinates.

a. 〈3, 2〉.

b. 〈−4, 7〉.

c. 〈−7,−8〉.

Question 17 Look back at Question 4 in Section 3.3. Can you answer that question now
using the work we’ve done in this section?
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Question 18 You might wonder what would happen if the matrix A was not invertible.
Explore this question by looking at the equation

~y = A~x+~b

with

A =
[

1 1
2 2

]
and ~b =

[
2
3

]
.

a. First show that A is not invertible.

b. Try to find ~x given

~y =
[

1
−1

]
.

c. Try to find ~x given

~y =
[

3
5

]
.

d. From your experience with photographs do you believe that in a real problem the
matrix A can be non-invertible?
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3.6 Solving Systems of Linear Equations

In Section 3.5 we discussed how matrices and vectors could be used for translating back-
and-forth between ground coordinates, ~x, and coordinates, ~y, on a photograph using a
transformation of the form

~y = A~x+~b.

The vector ~b was easy to determine. It was just the location on the photograph (in pho-
tograph coordinates) of the origin on the ground. We promised to show how to determine
the matrix A in this section. We will fulfill that promise but, first, we begin with a sim-
pler example and develop skills that will enable us to solve a large number of important
problems including the problem of determining the matrix A from Section 3.5.

Example 1 You are preparing 10 gallons of a rust retarding spray made up of 4 gallons of
agent P and 6 gallons of agent Q. You can order the spray to be custom made but it would
be very expensive and there are two much cheaper pre-mixed sprays that can be bought in
bulk. One is called mixture X and has 25% agent P and 75% agent Q. The other is called
mixture Y and has 80% agent P and 20% agent Q. Can you save money by buying these
pre-mixed sprays? If so, how many gallons of each should you buy?

As we discuss this problem, it is worthwhile to use the steps that that were discussed
at the end of Section 3.3.

• Identify the quantities that are known.

• Identify the quantities that are unknown.

• Identify the relationships between the unknown quantities and the known quantities.

• Identify additional quantities or data whose determination would be useful.

We follow these four steps explicitly below.

• This problem provides us with a great deal of known information. We know that we
want “10 gallons of a rust retarding spray made up of 4 gallons of agent P and 6
gallons of agent Q.” We also know that “mixture X has 25% agent P and 75% agent
Q” and that “mixture Y has 80% agent P and 20% agent Q.”
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• We need to determine how many gallons of mixture X and how many gallons of
mixture Y to buy. We use the notation x for the unknown number of gallons of
mixture X we should buy and y for the unknown number of gallons of mixture Y we
should buy.

• If we purchase x gallons of mixture X and y gallons of mixture Y, then the amounts
of agents P and Q that we get are given by the equations

p = 0.25x+ 0.80y
q = 0.75x+ 0.20y

where p represents the number of gallons of agent P and q represents the number of
gallons of agent Q. Because we want 4 gallons of agent P and 6 gallons of agent Q
we need to solve the equations

0.25x+ 0.80y = 4
0.75x+ 0.20y = 6

These equations are the key relationships between our unknown and known quanti-
ties. We can write these equations very compactly using matrices and vectors

A~x = ~b

where A is the matrix

A =
[

0.25 0.80
0.75 0.20

]
and ~x and ~b are the vectors

~x =
[
x
y

]
~b =

[
4
6

]
.

• Although there are additional quantities of interest, for example, the prices of the
two mixtures, this particular problem asks only for the values of x and y.
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Now, if the matrix A is invertible, we can solve this system of equations using its inverse
as follows.

A~x = ~b

A−1A~x = A−1~b

I~x = A−1~b

~x = A−1~b.

Question 1 Use Cramer’s Rule from page 271, Section 3.5, to find the inverse of the
matrix A in Example 1 above. Then, complete the solution of the problem in Example 1.

If you have solved these kinds of equations before, this may seem like a new and
unnecessarily complicated way to do something that is easy. This new way, however,
enables us to work with systems of hundreds of equations with hundreds of unknowns as
easily as systems of two equations with two unknowns.

Definition 1 A system of n linear equations with k unknowns is a system of equations of
the form

a11x1 + a12x2 + · · ·+ a1kxk = b1

a21x1 + a22x2 + · · ·+ a2kxk = b2
...

an1x1 + an2x2 + · · ·+ ankxk = bn.

Using vectors and matrices we can write a system of n linear equations in k unknowns
more compactly as follows:

A~x = ~b

where
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A =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank

 ~x =


x1

x2
...
xk

 ~b =


b1
b2
...
bn


The technique we developed to solve the example can be applied in this more general

situation.

Theorem 4 Suppose that we have a system of n linear equations in n unknowns.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

a12x1 + an2x2 + · · ·+ annxn = bn

Notice that the coefficient matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


is a square matrix. If this matrix has an inverse, then the solution of this system of
equations is given by

~x = A−1~b

where

~x =


x1

x2
...
xk

 ~b =


b1
b2
...
bn


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Proof

A~x = ~b

A−1A~x = A−1~b

I~x = A−1~b

~x = A−1~b

Figure 3.23: Solving a system of linear equations visually

We can gain some insight into these kinds of problems by looking at them visually –
see Figure 3.23 and click here6 to open a new window with a live copy of Figure 3.23. The
small blue dot represents a possible purchase that you might make of the two mixtures
from Example 1. In Figure 3.23 the blue dot is at the point (1, 2) representing a purchase
of one gallon of mixture X and 2 gallons of mixture Y. The larger red dot is at the point
that represents the amounts of agents P and Q in this purchase – 1.85 gallons of agent P
and 1.15 gallons of agent Q.

Notice that Figure 3.23 uses different notation than was used in Example 1. You can
translate between the two notations as follows.

6http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/solve-
visually.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/solve-visually.html
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• The two unknowns are the numbers of gallons of mixture X and mixture Y to be
purchased. In Example 1 we used the notation x and y for these two unknowns. In
Figure 3.23 we use the notation x1 and x2 for these same unknowns.

• In Example 1 we used the notation p and q for the number of gallons of agents P and
Q that we receive if we purchase x gallons of mixture x and y gallons of mixture Y .
in Figure 3.23 we use the notation y1 and y2 for these same quantities.

• Our goal is 4 gallons of agent P and 6 gallons of Agent Q. We used the notation
b1 = 4 and b2 = 6 for this goal in both Example 1 and Figure 3.23.

In the live diagram that you just opened, you can drag the blue dot around, trying
out different possible purchases graphically. As you move the blue dot, the red dot will
also move, indicating the resulting amounts of agents P and Q of each possible purchase
of mixtures X and Y. Try to hit the target result – four gallons of agent P and 6 gallons
of agent Q, represented by the black square. You should get roughly the same answer we
obtained earlier. You probably won’t be able to get exactly the same answer because of
the limited resolution of the screen as seen in Figure 3.24.

Figure 3.24: Solving a system of linear equations visually with limited resolution

The words “input” and “output” are often used in this situation. Your “input” is your
order or purchase – x gallons of mixture X and y gallons of mixture Y. The “output” of
your input or purchase is the resulting amounts of agents P and Q.
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Question 2 Use Theorem 4 on page 279 and Cramer’s Rule to solve the following system
of linear equations.

2x1 + 3x2 = 5
3x1 − x2 = 2

Question 3 Write the following system of equations in the form A~x = ~b.

x1 − 2x2 + x3 − 4x4 + x5 = 10
2x1 + 3x2 − x3 − x4 + x5 = 8
−x1 + x2 − 2x3 + x4 − x5 = 6
3x1 − 3x2 + x3 + x4 + x5 = 12

−2x1 − 3x2 − x3 + x4 − 4x5 = −3

Question 4 Write the following system of equations in the form A~x = ~b.

x1 − 2x2 − 4x4 + x5 = 10
2x1 + 3x2 − x3 − x4 + x5 = 8
−x1 + x2 − 2x3 + x4 = 6
−3x2 + x3 + x4 + x5 = 12

−2x1 − 3x2 − x3 + x4 − 4x5 = −3

Click here7 to open the live diagram we used earlier. You can change the entries for
the matrix A and for the vector ~b by clicking on the entry that you want to change and
then editing it in the usual way. Use this live diagram for the questions below.

7http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/solve-
visually.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/solve-visually.html
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Question 5 Try to solve graphically the system of equations

2x1 + 3x2 = 4
4x1 + 6x2 = 7.

Describe what happens. Then try to solve this same system of equations using Theorem 4
on page 279. What happens?

Question 6 Try to solve graphically the system of equations

2x1 + 3x2 = 4
4x1 + 6x2 = 8.

Describe what happens. Then try to solve this same system of equations using Theorem 4
on page 279. What happens?

Question 7 Try to solve graphically the system of equations

4x1 − 3x2 = 7
2x1 + x2 = 11.

Question 8 Try to solve graphically the system of equations

4x1 − 3x2 = 3
2x1 + x2 = 2.

We are now prepared for the promised solution of our problem from Section 3.5. We
have some information from an operative on the ground and we have some aerial imagery
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and we want to be able to convert back-and-forth between ground coordinates and coordi-
nates on a photograph. Because our photograph was made from a point directly overhead
the area of interest with the camera pointing straight downward toward the ground, we
know that this conversion can be based on a transformation of the form

~y = A~x+~b

where ~y represents coordinates on the photograph and ~x represents coordinates on the
ground. In Section 3.5, we saw that the vector ~b was the location on the photograph of
the landmark used as the origin for the ground coordinates. In order to find the entries in
the matrix A, we need two additional landmarks that appear in the photograph and whose
ground coordinates are known. We begin with an example.

Example 2 You are part of a team of analysts supporting a local group based in an area
with high insurgent activity and in which it is difficult to distinguish friend from foe. The
local group describes its territory using a large monument as their origin. You have a
detailed, large high resolution photograph of the area in which this group is operating. The
monument is easily distinguishable on the photograph. You have placed a transparent grid
on top of the photograph and identify points on the photograph using grid coordinates

~y =
[
y1

y2

]
.

On the photograph the grid coordinates of the monument are

~y =
[

1.34
2.42

]
.

Because the local group is using this monument as its origin, the local group describes
the monument as having ground coordinates

~x =
[

0
0

]
.

There are two bridges crossing a large river that flows through the area. One bridge is a
railroad bridge and is located 2.3 kilometers east and 1.2 kilometers north of the monument.
Thus, its ground coordinates are

~x =
[

2.3
1.2

]
.
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This rail bridge is easily identifiable on your photograph and its grid coordinates on the
photograph are

~y =
[

5.079
3.499

]
.

The second bridge carries a road and is located 1.6 kilometers west and 1.9 kilometers
north of the monument. Thus, its ground coordinates are

~x =
[
−1.6

1.9

]
.

This road bridge is easily identifiable on your photograph and its grid coordinates on
the photograph are

~y =
[
−0.446

5.690

]
.

Based on this information, we need to determine how to translate from ground coordi-
nates to grid coordinates on the photograph using a formula of the form

~y = A~x+~b.

That is, we must determine the vector, ~b, and the matrix, A. Note that once we have solved
this problem we can also translate from grid coordinates on the photograph to local ground
coordinates using the formula

~x = A−1(~y −~b).

We summarize the available information in the table below.

Landmark Ground Photograph

x1 x2 y1 y2
Monument 0 0 1.34 2.42

Rail bridge 2.3 1.2 5.079 3.499

Road bridge -1.6 1.9 -0.446 5.690

Table 3.13: Known information
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In Section 3.5, we saw that the vector ~b was the location on the photograph of the
landmark used as the origin for the ground coordinates. Thus,

~b =
[

1.34
2.42

]
.

Our job is to find the entries in the matrix

A =
[
a11 a12

a21 a22

]
.

We refer back to this example in the following paragraphs. In general, here is our
situation.

• We know the vector ~b. In our example

~b =
[

1.34
2.42

]
.

• We know the ground coordinates ~p and ~q of two additional landmarks. We can locate
these landmarks on the photograph and we measure their (grid) coordinates on the
photograph. Call these measured (grid) coordinates ~u for the landmark at ~p and ~v
for the landmark at ~q.

In our example,

~p =
[

2.3
1.2

]
, ~u =

[
5.079
3.499

]
; ~q =

[
−1.6

1.9

]
, ~v =

[
−0.446

5.690

]
.

• We have four unknowns – the entries: a11, a12, a21, and a22 in the matrix

A =
[
a11 a12

a21 a22

]
.

We need to adjust our thinking a bit here. Notice there are four unknowns – the entries:
a11, a12, a21, and a22 in the matrix A. We usually use letters like x and y for unknowns
but in this case we are using the letter a because our unknowns also happen to be elements
of the matrix A.

Now, we are ready to look at our system of equations. Using matrix and vector opera-
tions we get two equations
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~u = A~p+~b

~v = A~q +~b

If we carry out the matrix operations, we obtain

u1 = a11p1 + a12p2 + b1

u2 = a21p1 + a22p2 + b2

from the first equation and

v1 = a11q1 + a12q2 + b1

v2 = a21q1 + a22q2 + b2

from the second equation. Note again that the unknowns are the entries: a11, a12, a21, and
a22 in the matrix A. That is, our four equations with the unknowns marked are

u1 = a11︸︷︷︸
unknown

p1 + a12︸︷︷︸
unknown

p2 + b1

u2 = a21︸︷︷︸
unknown

p1 + a22︸︷︷︸
unknown

p2 + b2

v1 = a11︸︷︷︸
unknown

q1 + a12︸︷︷︸
unknown

q2 + b1

v2 = a21︸︷︷︸
unknown

q1 + a12︸︷︷︸
unknown

q2 + b2.

All the other symbols in the system of equations above represent known quantities.
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With a little rearranging, we obtain

a11︸︷︷︸
unknown

p1 + a12︸︷︷︸
unknown

p2 = u1 − b1

a21︸︷︷︸
unknown

p1 + a22︸︷︷︸
unknown

p2 = u2 − b2

a11︸︷︷︸
unknown

q1 + a12︸︷︷︸
unknown

q2 = v1 − b1

a21︸︷︷︸
unknown

q1 + a12︸︷︷︸
unknown

q2 = v2 − b2

or, using matrix and vector notation,


p1 p2 0 0
0 0 p1 p2

q1 q2 0 0
0 0 q1 q2


︸ ︷︷ ︸

known


a11

a12

a21

a22


︸ ︷︷ ︸
unknown

=


u1 − b1
u2 − b2
v1 − b1
v2 − b2


︸ ︷︷ ︸

known

.

Hence,


a11

a12

a21

a22

 =


p1 p2 0 0
0 0 p1 p2

q1 q2 0 0
0 0 q1 q2


−1 

u1 − b1
u2 − b2
v1 − b1
v2 − b2

 ,
and if the matrix

W =


p1 p2 0 0
0 0 p1 p2

q1 q2 0 0
0 0 q1 q2


is invertible, we have fulfilled our promise from Section 3.5.
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If we apply this procedure to our example we obtain8


a11

a12

a21

a22

 =


2.3 1.2 0 0

0 0 2.3 1.2
−1.6 1.9 0 0

0 0 −1.6 1.9


−1 

3.739
1.079
−1.806

3.270

 =


1.473970
0.290715
−0.297917

1.470170


and, thus, the matrix A is

A =
[

1.473970 0.290715
−0.297917 1.470170

]
.

8We used Mathematica to find the inverse of the matrix W . The code is Inverse[W] // MatrixForm
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3.7 Row Reduction - Solving Systems of Linear Equations

In Questions 5 and 6 in Section 3.6, we looked at the following two systems of linear
equations

2x1 + 3x2 = 4
4x1 + 6x2 = 7

and

2x1 + 3x2 = 4
4x1 + 6x2 = 8

and tried to solve them as discussed in the last section using the inverse of the coefficient
matrix

A =
[

2 3
4 6

]
.

You should have discovered that this coefficient matrix has no inverse. Thus, the
method we developed in the previous section fails. What does this mean for the two
systems of equations? In the following pages we develop a way to analyze systems of
equations like these and answer this question.

We can gain some insight into this question by looking at the basic problem of solving
a system of two linear equations in two unknowns graphically. We use the two systems of
equations above as examples.

Example 1 We begin by writing the system of equations from Question 5 in Section 3.6,

2x1 + 3x2 = 4
4x1 + 6x2 = 7,

using the letters x and y instead of x1 and x2 for our two unknowns.

2x+ 3y = 4
4x+ 6y = 7
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With a bit of algebra we can rewrite these as

y = −2
3
x+

4
3

y = −2
3
x+

7
6

These are the equations of two straight lines. The solution(s) of these equations are
points where the two straight lines intersect. The two lines are parallel since their slopes
are the same. That means that the two lines either lie on top of each other or they never
meet. Because their y-intercepts are different the two lines are parallel and never intersect.
See the left side of Figure 3.25. Thus, this system of equations has no solutions.

−5 5

−5

5

2x+ 3y = 4
4x+ 6y = 7

−5 5

−5

5

2x+ 3y = 4
4x+ 6y = 8

Figure 3.25: Graphs for two systems of equations

Example 2 Next we write the system of equations from Question 6 in Section 3.6,

2x1 + 3x2 = 4
4x1 + 6x2 = 8,
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using the letters x and y instead of x1 and x2 for our two unknowns.

2x+ 3y = 4
4x+ 6y = 8

With a bit of algebra we can rewrite these as

y = −2
3
x+

4
3

y = −2
3
x+

4
3

These are the equations of two straight lines. The solution(s) of these equations are
points where the two straight lines intersect. The two lines are parallel since their slopes
are the same. That means that the two lines either lie on top of each other or they never
meet. Because their y-intercepts are the same the two lines lie on top of each other. See
the right side of Figure 3.25 on page 291. This system of equations has an infinite number
of solutions.

The method we developed in the last two examples works for any system of two linear
equations in two unknowns. Suppose that we have two linear equations in two unknowns

a11x+ a12y = b1

a21x+ a22y = b2.

With a bit of algebra we can rewrite these equations as

y = −
(
a11

a12

)
x+

b1
a12

y = −
(
a21

a22

)
x+

b2
a22

.
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Figure 3.26: Three possibilities for two straight lines

Each of these equations is a linear equation whose graph is a straight line. Figure 3.26
shows three possibilities for a pair of straight lines:

• The two lines intersect in a single point. This point is the solution of the two equa-
tions.

• The two lines are parallel and do not intersect. In this case the two equations do not
have a solution.

• The two lines are actually the same line. That is, the system of equations is redun-
dant. In this case there are an infinite number of solutions. Any point on the single
line is a solution.

Notice that the two lines

y = −
(
a11

a12

)
x+

b1
a12

y = −
(
a21

a22

)
x+

b2
a22

are parallel if they have the same slope – that is, if and only if

−
(
a11

a12

)
= −

(
a21

a22

)
a11a22 = a21a21

a11a22 − a12a21 = 0
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Thus, we see again the importance of the determinant, a11a22 − a21a21. The two lines
are not paralllel and, thus, intersect in a unique solution if and only if the determinant is
nonzero. Recall also that the coefficient matrix is singular, or noninvertible, if and only if
its determinant is zero. In summary, when the coefficient matrix of a system of 2 equations
in 2 unknowns is singular, or noninvertible, then there are two possibilities.

• The system has no solutions.

• The system has an infinite number of solutions.

Graphing equations helps to understand systems of two linear equations in two un-
knowns but it does not help for systems with more linear equations and more unknowns.
In this section, we develop a more powerful method that works for systems with many
linear equations and many unknowns. We illustrate this technique using the same systems
of equations we have been discussing.

One way to solve the first system of equations,

2x1 + 3x2 = 4
4x1 + 6x2 = 7,

is to multiply the first equation by 2. This gives us the pair of equations

4x1 + 6x2 = 8
4x1 + 6x2 = 7.

Now if we subtract the second equation from the first equation we get

0 = 1.

Of course, 0 6= 1, so the original two equations are contradictory. This means that the
original two equations cannot have any solutions.

If we apply the same procedure to the second system of equations,

2x1 + 3x2 = 4
4x1 + 6x2 = 8,
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first multiplying the first equation by 2 to obtain

4x1 + 6x2 = 8
4x1 + 6x2 = 8

and then subtracting the second equation from the first equation we get

0 = 0.

In this case, our two equations are not contradictory – they are redundant. The second
equation, 4x1 + 6x2 = 8, is just twice the first equation, 2x1 + 3x2 = 4, and doesn’t give
us any new information.

In this situation, not only is there a solution, there are infinitely many solutions – for
example,

x1 = 2
x2 = 0

is one solution and

x1 = −1
x2 = 2

is another.

We can determine any number of these infinite solutions by rewriting our single equa-
tion,

2x1 + 3x2 = 4,

and solving for x2 as

x2 =
4
3
− 2

3
x1.
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x1

x2

line of solutions

Figure 3.27: Infinitely many solutions

If x1 is any number, we can use this equation to compute the corresponding value of x2

that gives us another solution. For example, if x1 = 6 then

x2 =
4
3
− 2

3
x1

x2 =
4
3
− 2

3
(6) = −8

3

and x1 = 6, x2 = −8/3 is another solution.

The thick line in Figure 3.27 shows all the possible solutions for the original system of
equations,

2x1 + 3x2 = 4
4x1 + 6x2 = 8.

The Method of Row Reduction

The method of row reduction systematically applies a series of steps to change (or
reduce) a system of equations like

2x1 + 3x2 = 8
3x1 − x2 = 1
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to a form like

x1 = 1
x2 = 2

Each step is the result of applying one of three basic operations to a system of equations.
These basic operations are

• We can multiply any equation by a non-zero constant.

• We can interchange any two equations (change their order).

• We can add or subtract a multiple of any equation to any other equation.

These operations are called elementary operations.

Each of these operations changes a system of equations into a new system of equations
that has exactly the same solutions.

Example 3 Suppose we start with the system of equations

x1 − x2 + x3 = 2 (E1)
2x1 + 3x2 + 4x3 = 5 (E2)
x1 − 2x2 + 3x3 = 1 (E3)

The first operation allows us to multiply any equation by any nonzero constant. Like
all elementary operations, this operation does not change the solutions of the system of
equations. For example, if we multiply the second equation by 3 we would obtain

x1 − x2 + x3 = 2
6x1 + 9x2 + 12x3 = 15
x1 − 2x2 + 3x3 = 1.

We use the notation 3E2 → E2 as shorthand for this elementary operation. In words,
this says “Replace Equation E2 with three times Equation E2.”
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Example 4 Suppose we start with the system of equations

x1 − x2 + x3 = 2 (E1)
2x1 + 3x2 + 4x3 = 5 (E2)
x1 − 2x2 + 3x3 = 1 (E3)

The second operation allows us to interchange any two equations. Like all elementary
operations, this operation does not change the solutions of the system of equations. For
example, if interchange the first and third equations we would obtain

x1 − 2x2 + 3x3 = 1
2x1 + 3x2 + 4x3 = 5

x1 − x2 + x3 = 2.

We use the notation E1 ↔ E3 as shorthand for this elementary operation. In words,
this says “Replace Equation E3 with Equation E1 and replace Equation E1 with Equation
E3.”

Example 5 Suppose we start with the system of equations

x1 − x2 + x3 = 2 (E1)
2x1 + 3x2 + 4x3 = 5 (E2)
x1 − 2x2 + 3x3 = 1 (E3)

The third operation allows us to add any multiple of one equation to another. Like
all elementary operations, this operation does not change the solutions of the system of
equations. For example, if we add −2 times the first equation to the third equation we
obtain

x1 − x2 + x3 = 2
2x1 + 3x2 + 4x3 = 5
−x1 + x3 = −3
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Note that this operation changes the third equation and leaves the first equation unchanged.

We use the notation −2E1 + E3 → E3 as shorthand for this elementary operation.
In words, this says, “Replace Equation E3 with the sum of −2 times Equation E1 and
Equation E3.”

Recall that our goal is to use these elementary operations to change (or reduce) a system
of equations like

2x1 + 3x2 = 8
3x1 − x2 = 1

to a form like

x1 = something
x2 = something.

For the system of equations

2x1 + 3x2 = 8
3x1 − x2 = 1

we would use the following steps to reach our goal.

1. Start

2x1 + 3x2 = 8
3x1 − x2 = 1.

2. Because we want the first equation to begin with x1, we multiply the first equation
by 1

2 . (1
2E1 → E1)

x1 +
3
2
x2 = 4

3x1 − x2 = 1.
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3. Because we do not want the variable x1 to appear in the second equation, we subtract
three times the first equation from the second equation. (E2 − 3E1 → E2)

x1 +
3
2
x2 = 4

−11
2
x2 = −11.

4. Because we want the second equation to begin with x2, we multiply the second
equation by − 2

11 . (− 2
11E2 → E2)

x1 +
3
2
x2 = 4

x2 = 2.

5. Because we do not want the variable x2 to appear in the first equation, we subtract
3
2 times the second equation from the first equation. (E1 − 3

2E2 → E1)

x1 = 1
x2 = 2.

These same steps can be written in a more compact form using matrices. We use
“augmented matrices” to represent systems of equations. The left side of each augmented
matrix represents the coefficients of the equations and the right side represents the constant
term on the right side of each equation. For example, the pair of equations

2x1 + 3x2 = 4
5x1 + 6x2 = 7

is written as the augmented matrix
[

2 3 4
5 6 7

]
.

Many people, including us, draw a vertical bar between the two sides. In this compact
form we call the elementary operations elementary row operations. Notice we use
almost the same notation to abbreviate elementary row operations as we used earlier to
abbreviate elementary (equation) operations. We just use R to abbreviate “row” instead of
E to abbreviate “equation.” In this compact form we write the same series of elementary
operations we wrote earlier as –

1.
[

2 3 8
3 −1 1

]
.
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2.

 1 3
2 4

3 −1 1

 1
2R1 → R1.

3.

 1 3
2 4

0 −11
2 −11

 R2 − 3R1 → R2.

4.

 1 3
2 4

0 1 2

 − 2
11R2 → R2.

5.
[

1 0 1
0 1 2

]
R1 − 3

2R2 → R1.

Notice the last matrix above represents the system of equations

x1 = 1
x2 = 2.

The method we have developed in this section is called row reduction. Although we
can write this method using equations, we usually write it using augmented matrices as
shown above.

Question 1 Use the augmented matrix form of row reduction to solve the following systems
of equations. Once you have your solution in augmented matrix form, convert the output
back into a system of equations. If the system has one solution find that solution. If it has
an infinite number of solutions find two example solutions.

a. x1 − x2 = 0 b. x1 + x2 = 2
x1 + x2 = 4 2x1 + 2x2 = 5

c. 2x1 + 3x2 = 3 d. 2x1 + 3x2 = 3
4x1 + 6x2 = 6 6x1 + 9x2 = 6
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Question 2 Use the augmented matrix form of row reduction to solve the following systems
of equations. Once you have your solution in augmented matrix form, convert the output
back into a system of equations. If the system has one solution find that solution. If it has
an infinite number of solutions find two example solutions.

a. x1 − x2 + x3 = 0 b. x1 − x2 + x3 = 0
x1 + x2 + x3 = 4 x1 + x2 + x3 = 4

3x1 − x2 + 3x3 = 6 3x1 − x2 + 3x3 = 8

c. x1 + x2 + x3 = 3 d. x1 + x2 + x3 = 3
2x1 + 2x2 + 2x3 = 6 2x1 + 2x2 + 2x3 = 6
3x1 + 3x2 + 3x3 = 8 3x1 + 3x2 + 3x3 = 9

Question 3 One of the most important questions in homeland security is distinguishing
rapidly, accurately, and non-intrusively between friends and foes. For example, in crowd sit-
uations there may be uniformed friends, undercover friends, innocent bystanders, and foes.
We have some control over the attire of uniformed and undercover friends but no control
over the attire of innocent bystanders and foes. Foes, in particular, might be wearing copies
of uniforms or of the clothes of innocent bystanders. Copies are normally designed to look
like the originals but they are sometimes made using different dyes and can be distinguished
from the originals using multi-spectral analysis. We look for color characteristics at dif-
ferent wavelengths. Two pieces of material that look alike to the human eye may look very
different using multi-spectral analysis.

Suppose that we are looking at two particular wavelengths of light – A and B, and
that neither wavelength is visible to the naked eye. Light flow is commonly measured in
lumens (lm), or lux (lumens per square meter). A piece of material will reflect percentages
p1 and p2 of wavelength A and B light, respectively. As spectators at a sporting event
pass through a security checkpoint, they are illuminated by two brief, invisible flashes of
light. The first flash has 30 lumens of wavelength A and 60 lumens of wavelength B. The
second flash has 75 lumens of wavelength A and 25 lumens of wavelength B. The total
amount of light from the first flash reflected by the shirt worn by a particular spectator is
15 lumens. The total amount of light reflected by the same shirt from the second light is
20 lumens. Determine what percentage of wavelength A light is reflected by the shirt and
what percentage of wavelength light B is reflected by the shirt. These percentages would
then be compared with known characteristics of different fabrics and dyes to determine if
the spectator poses a risk to the rest of the crowd.
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Figure 3.28: The RowReduce command in Mathematica

3.8 Mathematica’s RowReduce and How Many Solutions?

Mathematica has a built in procedure RowReduce that performs row reduction with just
a few keystrokes. You may have seen a similar procedure using the terminology Row
Reduced Echelon Form on a graphing calculator. See Figure 3.28, which shows the
Mathematica procedure applied to three of the systems of equations from the previous
section.

2x1 + 3x2 = 8
3x1 − x2 = 1

2x1 + 3x2 = 4
4x1 + 6x2 = 7

and

2x1 + 3x2 = 4
4x1 + 6x2 = 8.
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First, notice that when we apply row reduction to the system of equations

2x1 + 3x1 = 8
3x1 − x2 = 1

we get the result

[
1 0 1
0 1 2

]
,

which corresponds to the solution

x1 = 1
x2 = 2

Next, notice that when we apply row reduction to the system of equations

2x1 + 3x2 = 4
4x1 + 6x2 = 7

we get the result

 1 3
2 0

0 0 1

 ,
and the second row of this augmented matrix corresponds to the equation

0 = 1.
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This is obviously false – a contradiction!! If you look back at the original equations

2x1 + 3x2 = 4
4x1 + 6x2 = 7

and multiply the first equation by 2 you obtain

4x1 + 6x2 = 8,

which contradicts the second equation

4x1 + 8x2 = 7.

This means that the original equations contained contradictory information and have
no solutions.

Whenever the augmented matrix produced by RowReduce has a row with
all zeros on the left side and a nonzero entry in the rightmost column, then
the system of equations is contradictory and does not have a solution.

Finally, notice that when we apply row reduction to the system of equations

2x1 + 3x2 = 4
4x1 + 6x2 = 8

we get the result  1 3
2 2

0 0 0

 .
The second row in this augmented matrix corresponds to the equation

0 = 0.
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This is obvious and provides no substantive information. If you look back at the original
equations

2x1 + 3x2 = 4
4x1 + 6x2 = 8

and multiply the first equation by two you get

4x1 + 6x2 = 8,

which is the second equation. Thus, these two equations are really slight variations of the
same equation. In this situation we say the equations are redundant, or repetitious.

Whenever the matrix produced by RowReduce has a row with all zeros,
then some of the equations are redundant.

It is possible for a system of equations to be both redundant and contra-
dictory. In this case, it will not have any solutions. For example, the system of
equations

x+ y + z = 1
2x+ 2y + 2z = 2

x+ y + z = 2

is both redundant and contradictory. The first two equations are redundant but the first
and third equations are contradictory. This system of equations has no solutions. See
Figure 3.29 on page 308. Notice the second row of the result produced by RowReduce
corresponds to the equation

0 = 1,

indicating that this system of equations is contradictory. The third line corresponds to the
equation

0 = 0,
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Figure 3.29: The RowReduce command in Mathematica

indicating that this system of equations is redundant. Because this system of equations is
contradictory it has no solutions even though it is also redundant.

If a system of n equations in n unknowns is redundant and is not contradic-
tory, then it has an infinite number of solutions.

Example 1 Use RowReduce to determine whether the system of equations

2x+ 3y − z = 4
x− 2y + z = 5

3x− 3y + 4z = 7

has one solution, no solutions, or an infinite number of solutions. If it has one solution
find that solution. If it has an infinite number of solutions find two example solutions.

From Figure 3.30 on page 309 we see that this system has one solution

x =
29
8

y = −15
8

z = −19
8
.

Note that we used the letters x, y, and z for the unknowns instead of x1, x2, and x3. We
can use whichever letters are most convenient.
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Figure 3.30: Example 1

Question 1 Use RowReduce to attempt to solve the system of equations

2x1 + x2 − 3x3 = 4
x1 − 2x2 + 2x3 = 2
3x1 − x2 − x3 = 5.

Interpret the result of applying RowReduce.

Example 2 Use RowReduce to determine whether the system of equations

2x1 + x2 − 3x3 = 4
x1 − 2x2 + 2x3 = 2
3x1 − x2 − x3 = 6

has one solution, no solutions or an infinite number of solutions. If it has one solution
find that solution. If it has an infinite number of solutions find two example solutions.

From Figure 3.31 on page 310 we see that this system has an infinite number of solutions.
The three rows of the result of RowReduce shown in Figure 3.31 correspond to the three
equations
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Figure 3.31: Example 2

x1 −
(

4
5

)
x3 = 2

x2 −
(

7
5

)
x3 = 0

0 = 0.

The third equation is redundant and of no use. We can rewrite the first two equations
as

x1 = 2 +
(

4
5

)
x3

x2 =
(

7
5

)
x3

Now, we can let x3 have any value and compute x1 and x2 from these two equations to
get a solution of the original set of equations – for example, if x3 = 1, the computations

x1 = 2 +
(

4
5

)
x3 = 2 +

(
4
5

)
(1) =

14
5

x2 =
(

7
5

)
x3 =

(
7
5

)
(1) =

7
5

give us the solution
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x1 =
14
5

x2 =
7
5

x3 = 1

We can get another solution by letting x3 = 2 as follows

x1 = 2 +
(

4
5

)
x3 = 2 +

(
4
5

)
(2) =

18
5

x2 =
(

7
5

)
x3 =

(
7
5

)
(2) =

14
5

giving us the solution

x1 =
14
5

x2 =
7
5

x3 = 1.

We can repeat these calculations as often as we want to get as many solutions as we
want.

Question 2 Use RowReduce to attempt to solve the system of equations

x1 + x2 − x3 − x4 = 2
x1 + x2 + x3 + x4 = 4

x1 + x2 = 3
x3 + x4 = 1.

Interpret the result of RowReduce.
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We often describe the solutions for the system of equations in Example 2 as a one
parameter family of solutions because in Example 2 any value for the one parameter
x3 gives us a solution. The solutions of the system of equations in Question 2 are often
described as a two parameter family of solutions because we get a solution for any choice
of values for two parameters.

Question 3 Use RowReduce to solve the following systems of equations. Once you have
your RowReduce output, convert the output back into a system of equations. If the
system has one solution find that solution. If it has an infinite number of solutions find
two example solutions.

a. x1 + 2x2 + 3x3 − x4 = 1 b. x1 − x2 + x3 − x4 = 0
2x1 − x2 + 2x3 − x4 = 2 x1 + x2 + x3 + x4 = 4
x1 − 2x2 − 3x3 + x4 = -1 x1 − x2 − x3 + 3x4 = 2
2x1 − 2x2 − x3 + 5x4 = 1 x1 − 2x2 − x3 + 5x4 = 3

c. x1 − x2 + x3 = 0 d. x1 − x2 + x3 = 0
x1 + x2 + x3 = 4 x1 + x2 + x3 = 4

3x1 − x2 + 3x3 = 6 3x1 − x2 + 3x3 = 8

e. x1 + x2 + x3 = 3 f. x1 + x2 + x3 = 3
2x1 + 2x2 + 2x3 = 6 2x1 + 2x2 + 2x3 = 6
3x1 + 3x2 + 3x3 = 8 3x1 + 3x2 + 3x3 = 9

g. x1 + 6x2 + 2x4 = 23 h. x1 + 6x2 + 2x4 = 23
2x1 + 4x2 + 2x3 = 20 2x1 + 4x2 + 2x3 = 20

2x1 + x2 + 5x3 + 2x4 = 23 2x1 + x2 + 5x3 + 2x4 = 23
x1 + x2 + x3 + x4 = 11 x1 + 2x2 + x3 = 11

i. x1 + 5x2 − 9x3 = -64 j. x1 + 6x2 + 2x4 = 23
2x1 + 4x2 − 2x3 + x4 = -22 2x1 + 4x2 + 2x3 = 20
3x1 + 4x2 − x3 + x4 = -16 2x1 + x2 + 5x3 + 2x4 = 23
x2 + 5x3 + 4x3 − 8x4 = -16 x1 + 2x2 + x3 = 10

Question 4 An important issue in homeland security is distinguishing rapidly, accurately,
and non-intrusively between friends and foes. For example, in crowd situations there may
be uniformed friends, undercover friends, innocent bystanders, and foes. We have some
control over the attire of uniformed and undercover friends but no control over the attire
of innocent bystanders and foes. Foes, in particular, might be wearing copies of uniforms
or of the clothes of innocent bystanders. Copies are normally designed to look like the
originals but they are sometimes made using different dyes and can be distinguished from
the originals using multi-spectral analysis. We look for color characteristics at different
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wavelengths. Two pieces of material that look alike to the human eye may look very different
using multi-spectral analysis.

Suppose that we are looking at two particular wavelengths of light – A and B, and
that neither wavelength is visible to the naked eye. Light flow is commonly measured in
lumens (lm), or lux (lumens per square meter). A piece of material will reflect percentages
p1 and p2 of wavelength A and B light, respectively. As spectators at a sporting event
pass through a security checkpoint, they are illuminated by two brief, invisible flashes of
light. The first flash has 30 lumens of wavelength A and 60 lumens of wavelength B. The
second flash has 75 lumens of wavelength A and 25 lumens of wavelength B. The total
amount of light from the first flash reflected by the shirt worn by a particular spectator is
15 lumens. The total amount of light reflected by the same shirt from the second light is
20 lumens. Determine what percentage of wavelength A light is reflected by the shirt and
what percentage of wavelength light B is reflected by the shirt. These percentages would
then be compared with known characteristics of different fabrics and dyes to determine if
the spectator poses a risk to the rest of the crowd.

This problem appeared at the end of the previous section but now we are solving it using
RowReduce.
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3.9  Networks 
  
 Today’s world is heavily impacted by the use of networks.  The food we eat was 
brought from the field or farm that the ingredients were grown to a manufacturing plant 
to the Mess Hall via a transportation network.  We communicate each day through a 
communication network, known as the Internet.  Many people transmit text and data 
messages through a communication network with cell phones.  You interact each day 
inside a social network. 
 
 Through understanding what networks are and how they may be used, we gain a 
greater understanding of the world around us.  In fact, knowledge of networks is being 
used today for military purposes in the Global War on Terrorism.  Research done by 
1LT Julie Paynter (Jorgenson), a 2006 USMA graduate and math department alumnus, 
is currently contributing to understanding terrorist networks and determining whether 
or not an unknown author is violent or non-violent. 1  To lay the groundwork for our 
exploration of networks, let us define our terms. 
 
 

3.9.1  Basic Definitions 
 
 
A graph or network is made up of nodes and arcs. 
 
Definition 1 A node (also called a vertex) is a transfer point within a network, such 

as a facility or intersection. 
 
Definition 2 An arc consists of an ordered pair of nodes and is a representation of 

possible flow between nodes or vertices.  The initial node is the first node in the pair, 
representing the start point of the flow.  The terminal node is the final node in the pair, 
representing the end of the arc.  Arc xj,k denotes flow on arc x from node j to node k. 

 
 
Example 1 The following network diagram contains nodes N = {1, 2, 3, 4, 5}.   
 
 
 
 
 
 
 
 
 
The corresponding arcs are A = {(1, 2), (2, 3), (2, 5), (3, 5), (5, 4), (4, 1)}.  Notice 

that the arrowhead on the arc shows the direction of flow and corresponds to the order 
that the vertices occur within the label of each arc.  The label on arc (2, 3) denotes flow 
from node 2 to node 3.  The arrowhead points from node 2 to node 3. 

 

                                                 
1 “West Point Cadet Interns at the Hugh Downs School,” Communication Matters, 2006, Available from 
http://www.asu.edu/clas/communication/about/news/newsletter/documents/NewsletterMar06.pdf; Internet, Accessed 
April 1, 2008.   

3

4 5

1 2
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 3.9.2 Flow Within a Network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.32:  A Y-intersection 
 
 

Figure 3.32 shows a diagram of a Y-intersection of three roads —one road enters the 
intersection from the west and two roads leave it, one toward the northeast and one 
toward the southeast. All three roads are one way roads, as indicated by the arrows. 
Suppose that, on the average during each morning’s commute, 500 vehicles enter the 
intersection from the west; X2,3 vehicles leave it toward the northeast; and X2,4 vehicles 
leave it toward the southeast. 
 
 
Question 1 Write an equation that describes the relationship between X2,3 and X2,4. 
 
 
Question 2 Is it possible to have a correct mathematical solution to the equation you 
developed in the preceding question that does not make intuitive sense? Explain your 
answer. 
 
 
 
 The answer to Question 1 is the basic relationship upon which network flow analysis 
is based:  what comes in must come out.  If your conjecture to question 1 was that 
  

X1,2 = X2,3 + X2,4 (or, 500 = X2,3 + X2,4) 
you were correct! 
 

 
Figure 3.33 on page 326 shows the junctions and one way roads in a town center.  

The average number of vehicles entering and leaving the town center each hour has 
been determined by data collection devices and is shown by the numbers in Figure 3.33. 
 

2
500

1

3

4

X1,2

X2,3

X2,4

2
500

1

3

4

X1,2

X2,3

X2,4
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Figure 3.33:  One way roads in the town center 
 
 
Example 2  Determine the average number of vehicles traveling each hour along each 
of the four one way roads in the town center — that is, the road from Junction 1 to 
Junction 4; the road from Junction 4 to Junction 3; the road from Junction 3 to 
Junction 2; and the road from Junction 2 to Junction 1.  Explain your response.  If you 
could recommend the city collect some more data (so that you could complete your 
answer to this question), where would you recommend they collect the data? 
 
 The first step in solving this problem is to transform the word problem into a 
mathematical model that we can solve.  We must set up a system of equations that will 
enable the solution for each of the unknown variables.  We begin by establishing one 
equation for each node:  what goes in must come out. 
 

420540:4
400470:3

590450:2
430380:1

3,44,1

2,33,4

1,22,3

4,11,2

+=+

+=+

+=+

+=+

XXNode
XXNode

XXNode
XXNode

 

 
 A goal in solving a system of equations with many variables should be to put the 
system of equations in matrix-vector form to solve using the inverse method or row 
reduction.  To do that, put the above system of equations in standard form, with all the 
variables on one side, with each variable in its own column. 
 

120540420:4
70470400:3

140450590:2
50380430:1

3,44,1

3,42,3

2,31,2

1,24,1

−=−=−

−=−=+−

=−=+−

=−=+−

XXNode
XXNode

XXNode
XXNode

 

 
 The system of equations in standard form enables us to put the equations in matrix-
vector form: 
 

21

34

X2,1

X4,3

X3,2
X1,4

21

34

X2,1

X4,3

X3,2
X1,4
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⎡
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−

120
70

140
50

1001
1100
0110
0011

3,4

2,3

1,2

4,1

X
X
X
X

 

  
 With our system of equations in matrix-vector form, a quick check of the 
determinant in Mathematica (Figure 3.34) shows that the coefficient matrix is singular, 
therefore we cannot use the inverse method to solve the system of equations.  There are 
either infinite or no solutions; row reduction is the next solution technique to try. 
 
 
 
 
 
 
 
 
 
 

Figure 3.34:  Use of Mathematica to Check Singularity of a Coefficient Matrix 
 
 

 After forming the augmented matrix from the above system of equations, the use of 
Mathematica’s RowReduce command provides the output in Figure 3.35, showing that 
there are an infinite number of solutions to the problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.35:  Mathematica Row Reduction output 
 
 

   We see that each of the variables can be found by using simple algebra, if we know 
(or assume) a value for X4,3.  Therefore, I would suggest that the city collect more data, 
specifically the number of vehicles that transit road X4,3.  When this number is 
established, the flow across all other roads can be found using substitution. 
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Question 3  Suppose that the city must complete some repairs on a bridge that is 
immediately to the south of intersection 4. During the repairs, only half of the normal 
traffic will be able to pass. What impact, if any, will that have on the traffic exiting the 
city north of intersection 2? What advice would you give to the town to help them cope 
with traffic while this road is closed? 
 
 
Question 4 Observe the following diagram of the flow of customers through a 
Department store.  Assume 1500 customers enter the Mall, 725 go to the Women’s 
Clothing Department, 575 to the Shoe Department, and 200 to the Men’s Clothing 
Department.  Let the variable adjacent to each arrow represent the number of 
customers walking along that arrow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

a. Using the variables x1, x2, x3, and x4, set up a system of equations that models the 
flow of customers through the department store above.   

 
 

b. How many customers pass along each of the internal arcs above?  Clearly indicate 
the process used in determining your answers.  If there are no solutions, explain why; if 
there is one solution, provide it; and if there are infinitely many solutions, give two.   

 

c. Why might management be interested in knowing the number of customers that are 
travelling along these paths? 
 
 

Women’s 
Clothing 

Shoes  

M
A
L
L 

x1

x4 

x2

1500 

725 

575 200 
x3

Men’s 
Clothing 



CHAPTER 3. VECTORS, MATRICES, AND SYSTEMS OF LINEAR EQUATIONS   319 

Question 5  Assume now that the diagram in Question 5 is a simplified model of what 
actually exists.  The following diagram is more realistic.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

How many customers pass through each of the points indicated with a variable (x1, x2, 
x3, x4, x5 and x6)?  Clearly indicate the process used and interpret your results.  If there 
are no solutions explain why, if there is one solution, provide it and if there are infinite 
solutions, give two.   

Shoe 
Department 

Women’s 
Clothing 

M
A
L
L 

x1

x6 

x3

1500 

725 

575 
200 

x2

125 

x4

x5

Men’s 
Clothing 
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3.10 Images – Transformations and Animations

3.10.1 Transformations of Still Images

Vectors and matrices are often used to manipulate images and create special effects in
movies like Star Wars. At the end of this section, you will be able to move and rotate
images and reflect (or flip) them, as in mirrors. You will also be able to make them larger
or smaller or stretch them horizontally and vertically by different factors. You will even
be able to create animations or movies involving these same effects. Figure 3.32 shows a
simple example – flipping an image upside down – of what we will be able to do. We start
with an image like the one on the left side of Figure 3.32 and manipulate it in some way,
producing a new image like the one on the right side of Figure 3.32.

Figure 3.32: Flipping an image upside down

The key to all of this is representing points in an original image by column-vectors,

~x =
[
x1

x2

]
,

and points on a television, movie or computer screen, or on a page where the new image
will appear, by column-vectors,

~y =
[
y1

y2

]
.
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Then each point, represented by a vector ~x, from the original image is placed at the
point represented by the vector ~y = A~x on the computer screen where A is a matrix

A =
[
a11 a12

a21 a22

]
.

Notice that we can also write this as shown below.

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

In the example shown in Figure 3.32, the matrix A is

A =
[

1 0
0 −1

]
,

so that

y1 = x1

y2 = −x2.

Thus the x-coordinate (the first coordinate), denoted x1, of a point in the original image
is unchanged in the new image and the y-coordinate (the second coordinate), denoted x2,
of a point in the original image is multiplied by −1 before it is placed in the new image.
In effect, this flips the original image upside-down.

Click here9 to open a new window with a live version of Figure 3.33 on page 322. The
two axes in this live figure run from -4 to 4. You can change the entries (highlighted in
salmon) in the matrix A in the usual way by selecting them with your mouse and editing
them. After you’ve changed the entries, press the Play button, and notice the effect on
the image on the right side of the figure.

Question 1 Produce the image shown in Figure 3.34 on page 323 by changing the entries
in matrix A. Note that you can see Figure 3.34 on the left side of the screen by clicking
the Question 1 button in the upper right corner.

9http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/image-
transformations-1/imageAnimation.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/image-transformations-1/imageAnimation.html
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Figure 3.33: Screenshot of a live figure

Question 2 Produce the image shown in Figure 3.35 on page 323 by changing the entries
in matrix A. Note that you can see Figure 3.35 on the left side of the screen by clicking
the Question 2 button in the upper right corner.

Question 3 Produce the image shown in Figure 3.36 on page 324 by changing the entries
in matrix A. Note that you can see Figure 3.36 on the left side of the screen by clicking
the Question 3 button in the upper right corner.
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Figure 3.34: Question 1

Figure 3.35: Question 2

To produce different effects, we need to know a bit more about how the image manip-
ulation

~y = A~x or
[
y1

y2

]
=
[
a11 a12

a21 a22

] [
x1

x2

]
affects the image at ~y of each point ~x in the original image. First, notice that these image
manipulations always leave the point (0, 0) unchanged. Two additional good points to look
at from the original image are the points (1, 0) and (0, 1), which we write as column-vectors

[
1
0

]
and

[
0
1

]
.
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Figure 3.36: Question 3

Notice that when

~x =
[

1
0

]
then

~y = A~x becomes ~y =
[
a11 a12

a21 a22

] [
1
0

]
=
[
a11

a21

]
.

So, whatever part of the original image was located at the point (1, 0) =
[

1
0

]
is now

placed at the point given by the first column of the matrix A in the new image.

Similarly, when

~x =
[

0
1

]
then

~y = A~x becomes ~y =
[
a11 a12

a21 a22

] [
0
1

]
=
[
a12

a22

]
.
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So whatever part of the original image was located at the point (0, 1) =
[

0
1

]
is now

placed at the point given by the second column of the matrix A in the new image.

Figure 3.37: Two key points

You can produce any image transformation that you want by determining the new
coordinates of the point (1, 0) and using these new coordinates as the first column of the
matrix A and then determining the new coordinates of the point (0, 1) and using these new
coordinates as the second column of the matrix A. The two key points (1, 0) and (0, 1) are
marked on the left side of Figure 3.37. The point (1, 0) is marked by a white dot and the
point (0, 1) is marked by a red dot on both pictures. Recall that the axes run from −4 to
4. In the example shown on the right side of Figure 3.37 the point (1, 0) goes to the point
(−1, 0) and the point (0, 1) goes to the point (1, 1). Thus, the required matrix is

A =
[
−1 1
0 1

]
.

Question 4 Using the usual live figure,10 produce the image shown in Figure 3.38 on
page 326 by changing the entries in matrix A. Note that you can see Figure 3.38 on the
left side of the screen by clicking the Question 4 button in the upper right corner.

10http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/image-
transformations-1/imageAnimation.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/image-transformations-1/imageAnimation.html
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Figure 3.38: Question 4

Question 5 Produce the image shown in Figure 3.39 by changing the entries in matrix A.
Note that you can see Figure 3.39 on the left side of the screen by clicking the Question
5 button in the upper right corner.

Figure 3.39: Question 5
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3.10.2 Rotation of Images

One very common image manipulation is rotation – for example, Figure 3.40 shows a
rotation of 30 degrees (π/6 radians) in the counterclockwise direction.

Figure 3.40: Rotation by 30 degrees counterclockwise

We can use Figure 3.41 to see how to accomplish a rotation counterclockwise by an
angle θ. First look at what happens to the point (1, 0). After it is rotated by the angle θ it
is still 1 unit away from the origin and by looking at the shaded triangle in Figure 3.41 we
see that its coordinates are (cos θ, sin θ) and, thus, the first column of the matrix we seek
is

[
cos θ
sin θ

]
.

Similarly, by looking at the cross-hatched triangle in Figure 3.41 on page 328 we see
that the new coordinates of the point (0, 1) are (− sin θ, cos θ) and, thus the second column
of the matrix we seek is

[
− sin θ

cos θ

]
.

Thus, we can rotate an image counterclockwise by an angle of θ by using the matrix
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(1, 0)

(0, 1)

θ

θ

Figure 3.41: Counterclockwise rotation by θ radians

A =
[

cos θ − sin θ
sin θ cos θ

]
.

Use the following rules when you enter algebraic expressions in our live figures.

• Use * to denote multiplication.

• Use pi to denote π.

• Use cos for cosine and sin for sine.

• To take the square root of a number use something like sqrt(2).

So far, we have changed images in various ways while keeping them in the center of the
screen. If we want to move an image as well, we need to use transformations given by

~y = A~x+~b or
[
y1

y2

]
=
[
a11 a12

a21 a22

] [
x1

x2

]
+
[
b1
b2

]
,

where the vector

~b =
[
b1
b2

]
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determines where the center of the original image is placed on the screen, since

[
a11 a12

a21 a22

] [
0
0

]
+
[
b1
b2

]
=
[
b1
b2

]
.

Figure 3.42 shows how we can move an image and reflect it about the independent axis.
Click here11 to open the usual live figure. Recall that the axes run from −4 to 4. The
matrix A and the vector ~b can be changed by editing their entries in the usual way. After
you change them click the Play button to see the effect on the new image. Figure 3.43
shows another example.

Figure 3.42: Moving an image and reflecting it about the independent axis.

11http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/image-
transformations-1/imageAnimation.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/image-transformations-1/imageAnimation.html
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Figure 3.43: Moving an image and rotating it

Question 6 Using the usual live figure,12 produce the image shown in Figure 3.44 by
changing the entries in the matrix A and the vector ~b.

Figure 3.44: Question 6

Question 7 As an in-class exercise, break into teams. Each team should create an inter-
esting image manipulation and then challenge the other teams to reproduce it.

12http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/image-
transformations-1/imageAnimation.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/image-transformations-1/imageAnimation.html
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3.10.3 Animations

So far we have manipulated static, or still, images. Now we want to create animations. In
the usual live figure13 enter the matrix

A =
[

1− t 0
0 1− t

]
and click the Play button.

This matrix is a bit different from the matrices we have used so far. Two of the entries
in this matrix are algebraic expressions involving the variable t rather than numbers. When
you click the green Play button, the variable t increases from 0 to 1 in small steps. As
it does, the values of the entries in the matrix A change and this causes the new image
to change as well. The result is an animation showing the original image full-sized (when
t = 0) and then fading away to nothing (when t = 1).

Click here14 to open a new window with another live figure. This window has a series of
questions that challenge you to produce various animations. Click on each of the buttons
on the upper right corner and then click the Play button to see the animations you are to
reproduce. The challenges are shown in the left side of the window. Your challenge is to
reproduce them on the right side by changing the entries in the matrix A and the vector ~b.

Question 8 As an in-class exercise, break into teams. Each team should create an inter-
esting animation and then challenge the other teams to reproduce it.

13http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/image-
transformations-1/imageAnimation.html

14http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block III/image-
transformations-2/imageAnimation.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/image-transformations-1/imageAnimation.html
http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_III/image-transformations-2/imageAnimation.html


Chapter 4

Discrete Dynamical Systems with
Many Variables

4.1 Discrete Dynamical Sytems with Many Variables

We begin this section with an example.

Example 1 You are in charge of a fleet of humvees during an extended engagement. The
first week you have 150 humvees, all of which are fully operational. At the end of each
week, 15% of the humvees that were operational at the beginning of the week are in the
shop for repairs and 5% are so damaged that they can only be used for spare parts. At the
end of each week, 75% of the humvees that were in the shop for repairs at the beginning
of the week are now fully operational and 25% are only good for spare parts. Each week
you receive five fully operational humvees from Supply. Make a table showing how many
humvees are in each of the following three categories each week for the first 40 weeks – fully
operational, in the shop for repairs, only good for spare parts.

We keep track of three different classes of humvees – fully operational humvees, humvees
that are in for repairs, and humvees that are good only for parts. We use the notation
wn for fully operational humvees (working); the notation rn for humvees that are in for
repairs; and sn for humvees that are good only for spare parts. Since we have 150 humvees
the first week and they are all fully operational, the initial values of these sequences are

w0 = 150, r0 = 0, and s0 = 0.

332
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We use the letter n for the domain and note that n = 0, 1, 2, 3, . . . with n = 1 the end
of the 1st week of the engagement.

The following recursion equations describe how the situation changes from one week to
the next.

wn = 0.80wn−1 + 0.75rn−1 + 5
rn = 0.15wn−1

sn = 0.05wn−1 + 0.25rn−1 + sn−1

Using matrices and vectors, we can write this as

 wn

rn
sn

 =

 0.80 0.75 0
0.15 0 0
0.05 0.25 1

 wn−1

rn−1

sn−1

+

 5
0
0

 .
300

200

100

0
0 10 20 30 40

Fully operational

Spare parts

In for repairs

Figure 4.1: Humvees

Figure 4.1 and, on page 334, Table 4.1 show the predictions made by this model for the
first 40 weeks. Click here1 for a spreadsheet with this same model.

Question 1 Describe the long term behavior of this model.
1http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block IV/humvees.xls

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_IV/humvees.xls
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Week Fully Operational In for Repairs Parts

0 150.00 0.00 0.00

1 125.00 22.50 7.50

2 121.88 18.75 19.38

3 116.56 18.28 30.16

4 111.96 17.48 40.55

5 107.68 16.79 50.52

6 103.74 16.15 60.11

7 100.11 15.56 69.33

8 96.76 15.02 78.23

9 93.67 14.51 86.82

10 90.82 14.05 95.13

11 88.19 13.62 103.18

12 85.77 13.23 111.00

13 83.54 12.87 118.60

14 81.48 12.53 125.99

15 79.58 12.22 133.20

16 77.83 11.94 140.23

17 76.22 11.67 147.11

18 74.73 11.43 153.84

19 73.36 11.21 160.43

20 72.10 11.00 166.90

21 70.93 10.81 173.26

22 69.85 10.64 179.51

23 68.86 10.48 185.66

24 67.95 10.33 191.72

25 67.11 10.19 197.70

26 66.33 10.07 203.61

27 65.61 9.95 209.44

28 64.95 9.84 215.21

29 64.34 9.74 220.91

30 63.78 9.65 226.57

31 63.26 9.57 232.17

32 62.79 9.49 237.72

33 62.35 9.42 243.24

34 61.94 9.35 248.71

35 61.57 9.29 254.14

36 61.22 9.23 259.54

37 60.90 9.18 264.91

38 60.61 9.14 270.25

39 60.34 9.09 275.57

40 60.09 9.05 280.86

Table 4.1: Humvees
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Question 2 What would be the long term behavior of starting with 300 humvees instead
of 150?

Question 3 What would be the long term behavior of starting with 150 humvees and re-
ceiving ten new humvees each week instead of five?

We will leverage the matrix and vector description of this model,

 wn

rn
sn

 =

 0.80 0.75 0
0.15 0 0
0.05 0.25 1

 wn−1

rn−1

sn−1

+

 5
0
0

 .
First, we introduce some notation.

~Hn =

 wn

rn
sn

 ,

M =

 0.80 0.75 0
0.15 0 0
0.05 0.25 1

 , and

~b =

 5
0
0

 .
With this notation we can express this model as

~Hn = M ~Hn−1 +~b.

Question 4 In Example 1 we kept track of fully operational humvees, humvees in for
repairs, and humvees being used for parts. How would you modify this model to keep track
of only fully operational humvees and humvees in for repairs? Express your model using
two sequences and also using matrices and vectors.

Question 5 Find an equilibrium for the model in Question 4. What do we mean by an
equilibrium in this situation?
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Question 6 The population of a particular country is divided into two groups. One group
lives in cities and the other group lives in the countryside. Currently, there are 10,000,000
people living in the countryside and 5,000,000 living in the cities. Suppose each year 75%
of the people living in the countryside remain there, 20% move to the cities and 5% die.2

Suppose each year 90% of the people living in the cities remain in the cities, 5% move to
the countryside and 5% die. Suppose each year 20,000 people immigrate into this country
and all move into the countryside. Build a model for this situation and describe the long
term population for this country. Express your model with two sequences and also with
matrices and vectors.

Question 7 Two pizzerias – Tony’s and Mario’s – supply all the pizzas to the students
living in Collegetown. Suppose each week each of the students orders one pizza or some
other fast food. Suppose the first week of the semester 2,000 pizzas are ordered from Tony’s
and 2,000 pizzas are ordered from Mario’s. Suppose each week 75% of Mario’s customers
from the previous week remain faithful to Mario and order a pizza from Mario, 15% switch
to Tony’s and 10% switch to some other fast food. Suppose each week 85% of Tony’s
customers remain loyal to Tony, 10% switch to Mario’s, and 5% switch to some other
fast food. Suppose each week 50 new students move into Collegetown and they all buy
their first pizza from Tony’s. If the semester is 15 weeks long, how many customers does
each pizzeria have in the 15th week? Use sequence notation to express this situation and
answer the questions. Express the same model using matrices and vectors. What is the
total number of pizzas sold by each pizzeria during the 15 week semester?

Now we are ready to continue the example with which we started this section.

Example 2 You are in charge of a fleet of humvees during an extended engagement. The
first week of the engagement you have 150 humvees, all of which are fully operational. At
the end of each week, 15% of the humvees that were operational at the beginning of the week
are in the shop for repairs and 5% are so damaged that they can only be used for spare
parts. At the end of each week, 75% of the humvees that were in the shop for repairs at the
beginning of the week are now fully operational and 25% are only good for spare parts. Each
week you receive five fully operational humvees from Supply. Predict how many humvees
are in each of the three categories – fully operational, in the shop for repairs, only good for
spare parts – each week over the long term .

If we keep track of only fully operational humvees and humvees that are in for repairs,
we obtain the following model.

25% is actually the difference between the birth rate and the death rate.
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w0 = 150
r0 = 0
wn = 0.80wn−1 + 0.75rn−1 + 5
rn = 0.15wn−1

The recursion equations for this model can be written

[
wn

rn

]
=
[

0.80 0.75
0.15 0

] [
wn−1

rn−1

]
+
[

5
0

]
.

150

100

50

0

0 10 20 30 39

Fully operational

In for repairs

Figure 4.2: Humvees

Table 4.2 on page 338 and Figure 4.2 show the predictions made by this model for the
first 40 weeks of the engagement. Notice that the number of fully operational humvees
appears to be settling down at about 60 and the number of humvees that are in for repairs
seems to be settling down at about 9. This might lead us to guess that there is an
equilibrium point for this model.
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Week Fully Operational In for Repairs

0 150.00 0.00

1 125.00 22.50

2 121.88 18.75

3 116.56 18.28

4 111.96 17.48

5 107.68 16.79

6 103.74 16.15

7 100.11 15.56

8 96.76 15.02

9 93.67 14.51

10 90.82 14.05

11 88.19 13.62

12 85.77 13.23

13 83.54 12.87

14 81.48 12.53

15 79.58 12.22

16 77.83 11.94

17 76.22 11.67

18 74.73 11.43

19 73.36 11.21

20 72.10 11.00

21 70.93 10.81

22 69.85 10.64

23 68.86 10.48

24 67.95 10.33

25 67.11 10.19

26 66.33 10.07

27 65.61 9.95

28 64.95 9.84

29 64.34 9.74

30 63.78 9.65

31 63.26 9.57

32 62.79 9.49

33 62.35 9.42

34 61.94 9.35

35 61.57 9.29

36 61.22 9.23

37 60.90 9.18

38 60.61 9.14

39 60.34 9.09

Table 4.2: Humvees
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Definition 1 An equilibrium point for a model with two variables described by recursion
equations,

xn = f(xn−1, yn−1)
yn = g(xn−1, yn−1),

is a pair of values x∗ and y∗ such that

x∗ = f(x∗, y∗)
y∗ = g(x∗, y∗).

In other words, if the sequences xn and yn start at these values, then they stay there.

For our example, we look for equilibrium values by solving the pair of equations

w∗ = 0.80w∗ + 0.75r∗ + 5
r∗ = 0.15w∗

Substituting the second equation into the first equation, we obtain

w∗ = 0.80w∗ + 0.75(0.15w∗) + 5
w∗ = 0.80w∗ + 0.1125w∗ + 5

0.0875w∗ = 5
w∗ = 57.1429

and, using the second of our two original equations,
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r∗ = 0.15w∗ = 8.5714.

Recall that for linear recursion equations,

pn = mpn−1 + b,

we showed that, if m 6= 1, there is a unique equilibrium point given by the equation

p∗ =
b

1−m
.

Our example gives us reason to hope that there might be a similar theorem for a system
of linear equations. There is.

Theorem 1 Suppose that

~pn = M~pn−1 +~b

is a linear system and that the matrix I − M is non-singular.3 Then there is unique
equilibrium point

~p∗ = (I −M)−1~b.

Proof

We must solve the equation

~p∗ = M~p∗ +~b

I~p∗ = M~p∗ +~b

I~p∗ −M~p∗ = ~b

(I −M)~p∗ = ~b

~p∗ = (I −M)−1~b

3Recall a square matrix is non-singular if it has an inverse.
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Notice how similar this theorem is to the theorem for single linear recursion equations.
Figure 4.3 shows how this theorem may be used with Mathematica to find equilibrium
points for linear systems. Also note that these are the same equilibrium points that we
found earlier.

Figure 4.3: A Mathematica notebook for finding the equilibrium point

Question 8 Look for an equilibrium point for our original humvee model in which we kept
track of vehicles that were only good for parts as well as fully operational vehicles and
vehicles that were in for repairs. Think about this model, its long term behavior, and its
equilibrium point.

Question 9 Look for an equilibrium point for the model you developed for Question 7 on
page 336.

Question 10 Look for an equilibrium point for the model you developed for Question 6 on
page 336.

It is worthwhile introducing some terminology to describe the kinds of models we have
been developing in the section.

Definition 2 A discrete dynamical system, or initial value problem, with many
variables consists of

• A set of initial conditions describing the initial or starting value for each variable of
interest. In our first example these were

w0 = 150, r0 = 0, and s0 = 0.
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• A set of recursion equations describing how the variables of interest change. In our
first example these were

wn = 0.80wn−1 + 0.75rn−1 + 5
rn = 0.15wn−1

sn = 0.05wn−1 + 0.25rn−1 + sn−1

Definition 3 A linear discrete dynamical system with many variables is a dis-
crete dynamical system with many variables that can be described using matrix and vector
notation in the form

~p0 = ~r

~pn = A~pn−1 +~b

Our first example was a linear discrete dynamical system with many variables and could
be described in the form

~p0 =

 w0

r0
s0

 =

 150
0
0



~pn =

 wn

rn
pn

 =

 0.80 0.75 0
0.15 0 0
0.05 0.25 1

 wn−1

rn−1

pn−1

+

 5
0
0



Definition 4 A linear discrete dynamical system with the recursion equation

~pn = A~pn−1 +~b

is said to be

• homogeneous if

~b =


0
0
...
0





CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 343

• nonhomogenous if

~b 6=


0
0
...
0


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Figure 4.4: A roulette wheel

4.2 Roulette and Markov Chains

4.2.1 Roulette – A Question of Strategy

Figure 4.4 shows a roulette wheel. It has a total of 38 slots – 18 are red, 18 are black, and
two are green. A player often bets on either black or red. These bets are “even money”
bets. The player places the amount he wishes to bet on the table. If the ball lands in a slot
whose color matches the color on which the player bet, then the croupier puts an amount
equal to the player’s bet on top of his bet and pushes the pile to the player. If the ball
lands in a slot of a different color, then the croupier rakes in the player’s bet. For example,
if the player starts with $30.00 and bets $10.00 on one spin of the wheel on black or red
then after that spin he will have either $40.00 if he wins or $20.00 if he loses. The player’s
chances of winning on each spin of the wheel are 18/38 because 18 of the slots match the
color on which the bet was placed.

Suppose that a player has $30.00 and wants to win an additional $30.00 to give himself
a total of $60.00. We want to examine and contrast two of his many possible strategies.

• The aggressive strategy: The player strides confidently up to the table and places
a single bet of $30.00 on the first spin of the wheel. He either wins or loses. If he loses
he smiles bravely and leaves. If he wins he smiles triumphantly, pockets his $60.00,
and leaves. With this strategy his chances of winning are 18/38 or 47.37%.

• The conservative strategy: The player walks hesitantly up to the table and places
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a bet of $10.00 on the first spin of the wheel. Whatever happens, he places another
bet of $10.00 on the next spin of the wheel. He continues in this way, betting $10.00
on each spin of the wheel, until he either reaches his goal of $60.00 or he goes broke.

This is an example of a common kind of choice that people often face. For example,
investors must often decide whether to place all their money in a single investment or to
diversify their holdings, placing smaller amounts in each of several investments.

Answer the questions below based on your intuition.

Question 1 Do you think the player is more likely to win using the aggressive strategy or
more likely to win using the conservative strategy?

Question 2 Do you think it makes much difference which strategy the player uses?

We already know that the probability that the player wins with the aggressive strategy
is 18/38, or roughly 47%. Thus, our real problem is determining the probability that the
player wins with the conservative strategy.

One way you might attack this question is by experimentation. You could try the
conservative strategy many times and keep track of how often you win. We will do this
in class for this lesson before looking at other, more efficient, and more effective ways of
tackling these questions.

While the player is playing the conservative strategy, there are seven possible situations
or states in which he might find himself – according to how much money he has.

• State 1: $0.00. He is broke and has lost the game. He is no longer playing.

• State 2: $10.00. He is still playing.

• State 3: $20.00. He is still playing.

• State 4: $30.00. He is still playing.

• State 5: $40.00. He is still playing.

• State 6: $50.00. He is still playing.

• State 7: $60.00. He has reached his goal and has won. He is no longer playing.
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This situation involves uncertainty and probability – we cannot determine whether the
player will win or lose with the conservative strategy but we can determine how likely he
is to win or lose. Similarly, we cannot determine how much money the player will have
after two spins of the roulette wheel (that is, what state he is in) but we can determine
how likely he is to be in each state. We use a number, p, between zero and one to describe
the likelihood or probability of an event. If p = 1 then the event is certain – that is,
it has already occurred or it is certain that it will occur. If p = 0 then the event either
did not occur or it is certain that it will not occur. If, for example, p = 0.25, then the
event will occur 1/4 of the time. For example, if you flip a fair (or balanced) coin then the
probability of heads is 1/2, or if you roll a six-sided die then the probability of coming up
with a four is 1/6.

In our situation, we need to keep track of seven probabilities – the probability of each
of the seven states. For this purpose, we use seven-dimensional vectors, called probability
vectors,

~p = 〈p1, p2, p3, p4, p5, p6, p7〉.

Each of the seven entries in this vector is a number between zero and one indicating the
probability of the corresponding state. Because there are only seven possible states,

p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1.

When the player starts playing he has $30.00 and is in state 4. Thus, the initial or
starting probability vector is

~p0 = 〈0, 0, 0, 1, 0, 0, 0〉.

Notice the subscript 0 in the notation ~p0. This subscript indicates that we are talking
about the probability after zero spins of the wheel. We will use the notation ~p1 for the
probability vector after one spin of the wheel; the notation ~p2 for the probability vector
after two spins of the wheel; and ~pn for the probability vector after n spins of the wheel.
Don’t confuse the notation p1 and ~p1. In this discussion the notation ~p1 refers to the
specific vector of probabilities after one spin of the wheel. We used the notation p1 above
to denote the first element of a general probability vector, ~p.

Question 3 Find the probability vector ~p1 that describes what we can expect after one spin
of the wheel.

Question 4 Find the probability vector ~p2 that describes what we can expect after two
spins of the wheel.
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Question 5 Find the probability vector ~p3 that describes what we can expect after three
spins of the wheel.

Figure 4.5 on page 348 is the key to analyzing the conservative strategy. It describes
how a player moves from one state to another on each spin of the wheel. It is called a
transition diagram. The circles on the left side of this transition diagram show the
states that the player might be in before the spin and the circles on the right side show the
states that the player might be in after the spin. The arrows indicate the possible changes
and their probabilities. As one example, if a player is in state 1 then he is broke and no
longer playing, so he will remain in that state. Notice there is only one arrow leading from
state 1 and that arrow goes to the same state, state 1, and has probability 1. As another
example, suppose that a player is in state 3 and has $20.00. Then he will either win or lose
$10.00 when the wheel is spun. Thus, after the spin he will be in either state 2 ($10.00)
or state 4 ($30.00). There are two arrows leading from state 3 on the left and they go to
states 2 and 4. Because the probability of winning on one spin of the wheel is 18/38, the
probability on the arrow going from state 3 to state 4 is 18/38. Because the probability of
losing on each spin is 20/38, the probability on the arrow going from state 3 to state 2 is
20/38. This same information is shown in Table 4.3. This table is called the transition
table.

from state 1 from state 2 from state 3 from state 4 from state 5 from state 6 from state 7
to state 1 1 20/38 0 0 0 0 0
to state 2 0 0 20/38 0 0 0 0
to state 3 0 18/38 0 20/38 0 0 0
to state 4 0 0 18/38 0 20/38 0 0
to state 5 0 0 0 18/38 0 20/38 0
to state 6 0 0 0 0 18/38 0 0
to state 7 0 0 0 0 0 18/38 1

Table 4.3: The transition table for the conservative strategy

We can capture the same information in the transition matrix

T =



1 20/38 0 0 0 0 0
0 0 20/38 0 0 0 0
0 18/38 0 20/38 0 0 0
0 0 18/38 0 20/38 0 0
0 0 0 18/38 0 20/38 0
0 0 0 0 18/38 0 0
0 0 0 0 0 18/38 1


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Before Spin After Spin

Figure 4.5: Transition diagram for one spin of the wheel
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Vectors, matrices, and matrix multiplication were designed to handle this kind of prob-
lem. Suppose that

~p = 〈p1, p2, p3, p4, p5, p6, p7〉

denotes the probability vector before a particular spin of the wheel and that

~q = 〈q1, q2, q3, q4, q5, q6, q7〉

denotes the probability vector after the same spin of the wheel.

Notice that

q1 = p1 + (20/38)p2

q2 = (20/38)p3

q3 = (18/38)p2 + (20/38)p4

q4 = (18/38)p3 + (20/38)p5

q5 = (18/38)p4 + (20/38)p6

q6 = (18/38)p5

q7 = (18/38)p6 + p7

This is exactly what we get if we perform the matrix multiplication

~q = T~p

where we think of the vectors ~p and ~q as column-vectors.

Recall that we use the notation ~pn for the probability vector after n spins of the wheel
playing the conservative strategy. Using this notation, we can write this information as

~pn = T~pn−1

with our starting condition

~p0 = 〈0, 0, 0, 1, 0, 0, 0〉.
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Question 6 Compute ~p1 using matrix multiplication (use Mathematica) as described above.
Compare your answer with your answer to Question 3.

Question 7 Compute ~p2 using matrix multiplication (use Mathematica) as described above.
Compare your answer with your answer to Question 4.

Question 8 Find the probability vector ~p20 that describes what we can expect after 20
spins of the wheel playing the conservative strategy. What is the probability that a player
playing the conservative strategy will have won after twenty spins of the wheel? What is the
probability that a player playing the conservative strategy will have lost after twenty spins
of the wheel? What is the probability that a player playing the conservative strategy will
still be playing after twenty spins of the wheel?

Question 9 Compare the conservative and aggressive strategies.

Question 10 Another player has $50.00. She plans to bet $50.00 on either red or black
on each spin of the wheel until she either goes broke or reaches $150.00. What is her
probability of winning? Before answering this question using the techniques above, make a
rough guess. When you are done, compare your rough guess with your answer.

Question 11 Another player has $50.00. She plans to bet $50.00 on either red or black
on each spin of the wheel until she either goes broke or reaches $200.00. What is her
probability of winning? Before answering this question using the techniques above, make a
rough guess. When you are done, compare your rough guess with your answer.

4.2.2 Markov Chains

Our analysis of the roulette question was based on a powerful mathematical idea called
Markov Chains. The following definition summarizes the elements of a Markov Chain.

Definition 1 A Markov Chain consists of the following.

• A set S of n states. In the roulette problem the set S had seven states.
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• An n× n transition matrix

T =


t11 t12 · · · t1n

t21 t22 · · · t2n
...

...
...

tn1 tn2 · · · tnn


The element tij gives the probability of moving from state j to state i on each turn
or play.

• An initial probability vector

~p0 = 〈p1, p2, . . . pn〉

that we think of as a column vector.

With this information we define a sequence of probability vectors ~p0, ~p1, ~p2, . . . ~pn, . . .
by

~pn = T~pn−1.

Notice that ~pn is the probability vector that describes the probability of being in each state
after n turns or plays.

The following observations are important.

• Because the vectors ~pn are all probability vectors, their entries are all between zero
and one and the sum of their entries is always one.

• Because each column of the transition matrix T gives the probability of moving on
one turn from one state to each of the other states, the entries in T are all between
zero and one and the sum of the entries in each column is one.

Notice that a Markov Chain is also a homogeneous linear discrete system with many
variables. See page 342.
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Cell 1 Cell 2 Cell 3 Cell 4

Figure 4.6: A four-celled organism

Example 1 Figure 4.6 shows a diagram of a four-celled organism. A chemical is injected
into the leftmost cell – the cell labeled “Cell 1.” The molecules of this chemical move
randomly between adjacent cells. Every second the probability that a given molecule moves
from one cell to each of the adjacent cells is 1/5. Determine the distribution of the chemical
in this organism after ten seconds. Determine the distribution of the chemical in this
organism after 100 seconds.

We can set this up as a Markov Chain problem. There are four states, corresponding to
Cells 1, 2, 3, and 4. The initial probability vector is ~p0 = 〈1, 0, 0, 0〉 because the chemical
is injected initially into Cell 1. The transition matrix is

T =


0.80 0.20 0 0
0.20 0.60 0.20 0

0 0.20 0.60 0.20
0 0 0.20 0.80


Figure 4.7 on page 353 shows a Mathematica notebook used to study this problem.

Notice that after ten seconds roughly 37.4% of the chemical is in Cell 1; roughly 29.9% is
in Cell 2; roughly 19.8% is in Cell 3 and roughly 12.9% is in Cell 4. After 100 seconds,
roughly 25% of the chemical is in each cell.

Question 12 Figure 4.8 on page 354 shows another four-celled organism. A chemical is
injected into Cell 1. The molecules of this chemical move randomly between cells that share
a side. Every second the probability that a given molecule moves from one cell to each of the
cells with which it shares a side is 1/5. Determine the distribution of the chemical in this
organism after ten seconds. Determine the distribution of the chemical in this organism
after 100 seconds.
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Figure 4.7: Using Mathematica to study a four-celled organism

Question 13 Collegetown has three pizza restaurants – Tony’s, Maria’s, and Papa Dave’s.
At the beginning of the year they each have 1/3 of the students as customers. Each week
during the year 1/5 of Tony’s customers switch to Maria’s and 1/5 switch to Papa Dave’s.
The remainder stay with Tony’s. Each week during the year 1/6 of Maria’s customers
switch to Tony’s; 1/10 switch to Papa Dave’s and the remainder stay with Maria’s. Each
week during the year 1/2 of Papa Dave’s customers switch to Tony’s; 1/3 switch to Maria’s
and the remainder stay with Papa Dave’s. What percentage of of the students are customers
at each pizza restaurant after ten weeks? What percentage of of the students are customers
at each pizza restaurant after 25 weeks?

4.2.3 A Closed Form Solution for a Homogeneous Linear Discrete Dy-
namical System with Many Variables

We have seen several examples of homogeneous linear discrete dynamical systems with
many variables. If we use the notation

~pn = A~pn−1, ~p0 = ~c
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Cell 1 Cell 2

Cell 3Cell 4

Figure 4.8: Another four-celled organism

then notice that

~p1 = A~p0 = A~c

~p2 = A~p1 = A(A~c) = A2~c

~p3 = A~p2 = A(A2~c)) = A3~c

...
~pn = An~c

giving us a closed from solution

~pn = An~c.

Note that

An = A ·A · · ·A︸ ︷︷ ︸
n−times

.

and ~c is the initial value – that is, ~p0 = ~c.

Later in this chapter we will develop closed form solutions that make it easier to under-
stand long term behavior. For now, however, note that one way to gain some understanding
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of long term behavior is by looking at the matrices An for very large values of n. Although
this involves lots of matrix multiplication, the combination of computer power and a bit of
cleverness can make the calculations easy. Consider the transition matrix

T =



1 20/38 0 0 0 0 0
0 0 20/38 0 0 0 0
0 18/38 0 20/38 0 0 0
0 0 18/38 0 20/38 0 0
0 0 0 18/38 0 20/38 0
0 0 0 0 18/38 0 0
0 0 0 0 0 18/38 1


from our analysis of the conservative roulette strategy. We can compute

T 2 = T · T
T 4 = (T 2) · (T 2)
T 8 = (T 4) · (T 4)

...
T 1024 = (T 512) · (T 512)

so with just ten matrix multiplications we can compute T 1024 instead of the 1023 matrix
multiplications it would take it we computed T · T · T · · ·T · T︸ ︷︷ ︸

1024 factors

. The result is

T 1024 =



1.000000 0.873977 0.733952 0.578369 0.405499 0.213420 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.126023 0.266048 0.421631 0.594501 0.786580 1.000000


This matrix can be used to determine what happens after 1024 spins of the wheel, since

~p1024 = T 1024~p0
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Recall that our gambler started with $30.00 and was in state 4 with probability 1. Thus

~p0 =



0
0
0
1
0
0
0


and after 1024 spins

~p1024 =

2666666664

1.000000 0.873977 0.733952 0.578369 0.405499 0.213420 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.126023 0.266048 0.421631 0.594501 0.786580 1.000000

3777777775

2666666664

0
0
0
1
0
0
0

3777777775
=

2666666664

0.578369
0.000000
0.000000
0.000000
0.000000
0.000000
0.421631

3777777775
.

Thus, with probability 57.8% our gambler is broke and with probability 42.2% our
gambler has won and now has $60.00.

Question 14 Suppose the gambler starts with $20.00. What is the probability that after
many spins of the wheel the gambler has won and what is the probability that after many
spins of the wheel the gambler has lost?

Question 15 Suppose the gambler starts with $40.00. What is the probability that after
many spins of the wheel the gambler has won and what is the probability that after many
spins of the wheel the gambler has lost?
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4.3 Age Dependent Population Models and Leslie Matrices

4.3.1 A Simple Example

We begin this section with a simple example.

Example 1 You are advising the mayor of a small town that was formerly under enemy
control. Retreating enemy forces poisoned a lake on which the town depended for food. You
have neutralized the poisons in the lake and now need to restock the lake to replace the fish
that were killed.

You have consulted with biologists and have learned that one good way to model the
population for this particular species of fish is to divide the population into two groups –
fish under one year old and fish that are one year or more in age. Each year starting with
the year 2008 we will use a two-dimensional column-vector to represent the fish population.
We will use the notation ~p2008 for the vector representing the population in the current
year, ~p2009 for the vector representing the population in the year 2009, and so forth. You
have stocked the lake with six tons of fish, all very young and under the age of one year.
Thus,

~p2008 =
[

6
0

]
.

Notice the first entry in this vector represents the fact that there are 6 tons of fish under
the age of one year and the second entry represents the fact that there are no fish that are
aged one year or more.

Your advisor reports that each year the reproduction rate for fish under the age of one
year is 0.50. This means that next year you can expect to have 3 tons of fish under the
age of one year. She also reports that each year the survival rate for fish that are under
one year is 0.60. This means that next year you can expect to have 3.6 tons of fish that
are one year old or more. Thus,

~p2009 =
[

3.0
3.6

]
For subsequent years you also need to know the reproduction and survival rates for fish

that are one year or more old. Your biologist reports that the reproduction rate for fish in
this age group is 0.60 and the survival rate is 0.40. Thus, we can model this situation by
letting
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A =
[

0.50 0.60
0.60 0.40

]
and

~pn = A~pn−1.

Question 1 Express the recursion equation above using a pair of equations and the nota-
tion

~pn = 〈an, bn〉 and ~pn−1 = 〈an−1, bn−1〉.

Question 2 Explain where each entry in the matrix A comes from. Be careful. Notice
that two of the entries, a12 and a21, are the same, namely 0.60. This is because the survival
rate for age group 1 is the same as the fertility rate for age group 2. Which of these two
entries represents the survival rate for age group 1 and which represents the fertility rate
for age group 2?

Notice that this is a homogeneous linear discrete dynamical system with many variables
and

~p2009 = A~p2008

~p2010 = A~p2009 = A(A~p2008) = A2~p2008

~p2011 = A~p2010 = A(A2~p2008) = A3~p2008

...
~pn = An−2008~p2008,

giving us a closed-form solution for this problem.

Figure 4.9 on page 360 can provide some visual insight into the long term behavior of
this model. Each dot in this figure represents the fish population for one year. Each dot
has two coordinates – an x-coordinate and a y-coordinate. The x-coordinate is the fish
population under age one year and the y-coordinate is the fish population aged one year
and above. Thus, ~p2008 is represented by the point (6, 0) and p2009 by the point (3.0, 3.6).

Looking at Figure 4.9, we see that after the first few years the populations appear to
be marching out along a straight line. We can also look at this model using Table 4.4 on
page 360. You can modify this spreadsheet4 to produce graphs like Figure 4.9 and tables

4http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block IV/age-
dependent-population.xls

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_IV/age-dependent-population.xls
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Tons of fish age one year and above

~p2008 = 〈6, 0〉

~p2010~p2009

5 10
Tons of fish age under one year

5

10

Figure 4.9: Representing the Fish Population Visually

Year Age < 1 1 ≤ Age

2008 6.00000 0.00000

2009 3.00000 3.60000

2010 3.66000 3.24000

2011 3.77400 3.49200

2012 3.98220 3.66120

2013 4.18782 3.85380

2014 4.40619 4.05421

2015 4.63562 4.26540

2016 4.87705 4.48753

2017 5.13104 4.72124

2018 5.39827 4.96712

2019 5.67941 5.22581

2020 5.97519 5.49797

2021 6.28638 5.78430

2022 6.61377 6.08555

2023 6.95821 6.40248

2024 7.32060 6.73592

2025 7.70185 7.08673

2026 8.10296 7.45580

2027 8.52496 7.84410

Table 4.4: Twenty Years
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like Table 4.4. Now, look at the population for three consecutive years after a few years
have passed,

~p2016 =
[

4.87705
4.48753

]
~p2017 =

[
5.13105
4.72124

]
~p2018

[
5.39827
4.96712

]
.

A little arithmetic shows that

~p2017 = 1.05208 ~p2016 and ~p2018 = 1.05208 ~p2017.

If you look at the next few years, you will see that this pattern appears to continue.

~pn = 1.05208~pn−1

This is why the vectors seem to be marching out along a straight line in Figure 4.9. This
gives us a lot of information about the long term behavior of the fish population in this
lake. According to this model, the total fish population will continue to rise at the rate of
roughly 5.21% per year and the percentage of the population that is one year or younger
will stabilize at about 52%. In practice, of course, this model cannot continue to predict the
population forever because the lake is finite and can only support a finite fish population.

4.3.2 Real People and Real Countries

Figure 4.10 on page 362 shows the estimated United States population in the year 2000
and predictions for the year 2025 broken down by age and gender. This data was obtained
from the International Data Base maintained by the United States Census Bureau. Figure
4.11 on page 363 shows the same information for India obtained from the same source.
These figures are called population pyramids. Information like this can be tremendously
important for public policy decisions. For example, if you compare the percentage of the
population aged 70 and over in the year 2000 with the same percentage in the year 2025 you
will see immediately why people are worried about skyrocketing costs for Social Security
and Medicare.

The population pyramid for India in the year 2000 is a typical example of a population
pyramid for an underdeveloped country. Because survival rates are so low, the population
drops rapidly as age increases. The population pyramid for India for the year 2025 is
a typical population pyramid for a developing country. As the public health improves,
survival rates improve and we see smaller population decreases as age increases. You can

http://www.census.gov/ipc/www/idb/pyramids.html
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Figure 4.10: Population Pyramids for the United States 2000 and 2025

see this effect clearly by comparing the population pyramids for India for the years 2000
and 2025. Note that the population pyramids for the United States and India for the year
2025 are based on predictions not on actual facts. So demographers are predicting that
over the next twenty years India will develop rapidly.

As we build population models we consider many factors. The two most important fac-
tors are fertility rates and survival rates. Immigration and emigration are also important.
In this section we build models that include survival rates and fertility rates but not immi-
gration and emigration. Thus, our models will be better for countries that have low rates
of immigration and emigration than for countries that have higher rates of immigration
and emigration. We will also simplify our models by breaking population down by age but
not by gender.
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Figure 4.11: Population Pyramids for India 2000 and 2025

Our models will have 17 age groups. The first age group has everyone from birth
through just before their 5th birthday. We write this as age group 0–4. The second age
group has everyone from their 5th birthday through just before their 10th birthday. This
age group is written as age group 5–9. The last age group has everyone whose has passed
their 80th birthday and is written as age group 80+. For each year we write the population
as a 17-dimensional vector. For example, Table 4.5 on page 364 has the population figures
for the United States in midyear 2008 and the same information is represented by the
vector

~p2008 = 〈21, 009, 914, 20, 155, 574, 19, 981, 256, . . . 11, 409, 264〉.
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0-4 21,009,914

5-9 20,155,574

10-14 19,981,265

15-19 21,728,978

20-24 21,186,421

25-29 21,161,376

30-34 19,531,264

35-39 20,909,399

40-44 21,428,750

45-49 22,858,209

50-54 21,463,268

55-59 18,580,896

60-64 15,139,163

65-69 11,321,863

70-74 8,732,349

75-79 7,226,693

80+ 11,409,264

Table 4.5: 2008 United States Total Midyear Population by Age Group

We will build a model that looks like

~pn+5 = A~pn or ~pn+5 =


a1,1 a1,2 · · · a1,17

a2,1 a2,2 · · · a2,17
...

...
...

a17,1 a17,2 · · · a17,17

 ~pn

where the vectors ~pn and ~pn+5 are written as column vectors. Instead of estimating the
population for every year, we will work with five year intervals. That is why we write
~pn+5 = A~pn instead of ~pn+1 = A~pn.

The first entry (age group 0-4) in the vector ~pn+5 is based on the first row of the matrix
A and the vector ~pn. Because we are building a model with no immigration or emigration,
the people in age group 0-4 will come from births. The entries in the first row of the matrix
A are birth rates. Because we are working with five year intervals, these are birth rates
per person for five years. Recall also that we are lumping males and females together. In
the first row the entry a1,k is the average number of children born in each five year period
to each person. For example, if every female in age group 5 (that’s 20-24 years old) had
three children in five years and if the percentage of women in that age group was 50% then
a1,5 would be 1.5. Usually a1,1 is zero because people aged 0-4 years are too young to have
children within five years. Usually a1,2 is small but not zero because some of the women
who start in that age group will be 14 years old after five years and will have had some
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children. Toward the end of the first row the entries a1,k are smaller because older people
tend to have fewer children. The largest entries in the first row are in the middle of the
row.

Most of the remaining entries in the matrix are zero. The only nonzero entries are the
entry a17,17 and the entries ak+1,k, for k = 1, 2, . . . 16. The entry a17,17 is the five year
survival rate for people aged 80+. People in that age group who survive remain in the
same age group. The entries ak+1,k for k = 1, 2, . . . 16 are the five year survival rates for
age group k because all the people in those age groups who survive for five years move up
one age group. Thus our matrix looks like

A =



0 a1,2 a1,3 a1,4 · · · a1,15 a1,16 a1,17

a2,1 0 0 0 · · · 0 0 0
0 a3,2 0 0 · · · 0 0 0
0 0 a4,3 0 · · · 0 0 0
0 0 0 a5,4 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 a17,16 a17,17


.

The matrix A is called a Leslie matrix.

Because demographers work with computers they can handle 81-dimensional vectors
and (81 × 81)−dimensional matrices easily. Thus, they usually use 81 age groups rather
than 17 age groups. To save paper they often report their results using 17 age groups.
Some countries break populations into different age groups. For example, Figure 4.11 on
page 363 has 21 age groups.

To save paper we will continue this section with a simpler model, using five age groups:
0-19, 20-39, 40-59, 60-79, and 80+. We will use a plausible but made-up initial population
vector ~p2008 = 〈10, 000, 000, 9, 800, 000, 9, 600, 000, 9, 000, 000, 8, 400, 000〉 and made
up but plausible fertilty rates and survival rates to give us the Leslie matrix

A =


0.00 0.1 0.4 0.5 0.1
0.95 0 0 0 0

0 0.96 0 0 0
0 0 0.90 0 0
0 0 0 0.85 0.50


and the model
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~pn+20 = A~pn, ~p2008 =


10, 000, 000
9, 800, 000
9, 600, 000
9, 000, 000
8, 400, 000

 .

Question 3 Describe the recursion equation above using five equations and the notation

~pn+20 = 〈an+20, bn+20, cn+20, dn+20, en+20〉 and ~pn = 〈a,bn, cn, dn, en〉.

Question 4 Using the same model predict the population in the year 2028. Find the
percentage of the population in each age group in that year.

Question 5 Using the same model predict the population in the year 2048. Find the
percentage of the population in each age group in that year.

Question 6 Using the same model predict the population in the year 2068. Find the
percentage of the population in each age group in that year.

Question 7 Using the same model predict the population in the year 2208. Find the
percentage of the population in each age group in that year.

Question 8 Using the same model predict the population in the year 2228. Find the
percentage of the population in each age group in that year.

Question 9 Using the same model predict the total population in the year 2028.

Question 10 Using the same model predict the percentage rise in total population in each
20 year period starting in the year 2008.

Question 11 Use the techniques we developed in subsection 4.2.3 to investigate the long
term behavior of this model.

The age dependent population models we have developed in this section are homo-
geneous linear discrete dynamical systems with many variables. See page 342 for this
definition.
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Tons of fish age one year and above

~p2008 = 〈6, 0〉

~p2010~p2009

5 10
Tons of fish age under one year

5

10

Figure 4.12: Representing the Fish Population Visually

4.4 Eigenvalues and Eigenvectors, I

In this section we begin the development of one of the most powerful tools for understanding
systems like the ones we’ve been studying. This tool goes by the name of “eigenvalues and
eigenvectors.” We begin by recalling Example 1 from Section 4.3 on page 358. You may
want to look back at that example to recall the context. In this section we focus on the
mathematics. Look at Figure 4.12 above and Table 4.6 on page 369. Both of these refer
to the model

~pn =
[

0.50 0.60
0.60 0.40

]
~pn−1, ~p2008 =

[
6
0

]
.

Notice that in Figure 4.12 the sequence of vectors ~p2008, ~p2009, ~p2010, . . . appears, after
a somewhat shaky start, to be marching out along a straight line. That is, except for the
first few vectors in this sequence, they all seem to have about the same direction and the
only thing that is changing is their magnitude. We can also see this from Table 4.6 on page
369. Notice that, for example,

~p2027 =
[

8.52496
7.84410

]
= 1.05208

[
8.10296
7.45580

]
= 1.05208~p2026.
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Year Age < 1 1 ≤ Age

2008 6.00000 0.00000

2009 3.00000 3.60000

2010 3.66000 3.24000

2011 3.77400 3.49200

2012 3.98220 3.66120

2013 4.18782 3.85380

2014 4.40619 4.05421

2015 4.63562 4.26540

2016 4.87705 4.48753

2017 5.13104 4.72124

2018 5.39827 4.96712

2019 5.67941 5.22581

2020 5.97519 5.49797

2021 6.28638 5.78430

2022 6.61377 6.08555

2023 6.95821 6.40248

2024 7.32060 6.73592

2025 7.70185 7.08673

2026 8.10296 7.45580

2027 8.52496 7.84410

Table 4.6: Twenty Years

Since

~pn = A~pn−1

where

A =
[

0.50 0.60
0.60 0.40

]
,

this means that

~p2027 = A~p2026 = 1.05208~p2026.

This vector, ~p2026 and the number 1.05208, give us an example of an associated eigen-
vector and eigenvalue – multiplying ~p2026 by the matrix A (on the left) is the same as
multiplying it by the scalar 1.05208. Here is a more formal definition.
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Definition 1 If we have an (n × n)-matrix A and there is a nonzero vector ~v and a
constant5 λ such that

A~v = λ~v,

then we say that ~v is an eigenvector for the matrix A and λ is its associated eigenvalue.

If ~v is an eigenvector for a matrix A then multiplying ~v by A (on the left) has the same
effect as multiplying it by the associated eigenvalue λ – that is stretching or shrinking it by
λ.6 Click here7 to open a new window with a live diagram that you can use to see what
eigenvalues and eigenvectors mean visually. This diagram will enable you to explore the
possible eigenvalues and eigenvectors of any (2× 2)-matrix. It is initially set up to explore
the matrix

A =
[

0.50 0.60
0.60 0.40

]
.

You should start by exploring this matrix but later on you may want to explore other
matrices by editing the entries in the usual way. Notice the blue dot at the point

~x =
[

6.00
0.00

]
and the red dot at the point

~y = A~x =
[

0.50 0.60
0.60 0.40

] [
6.00
0.00

]
=
[

3.00
3.60

]
.

Question 1 Click and drag the blue dot to try different possible values for the vector ~x.
The red dot will automatically move to show the new vector ~y = A~x. Play with this for a
bit, moving the vector ~x around to see what happens to the vector ~y. See if you can find
a vector ~x such that the vector ~y points in the same direction as the vector ~x. See if you
can find a vector ~x such that the vector ~y points in the opposite direction of the vector ~x.
Congratulations!! You’ve just found your first two eigenvectors.

5it is traditional to use the Greek letter “lambda” in this situation.
6If λ is negative the direction of ~v is also reversed.
7http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block IV/population-

growth.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_IV/population-growth.html


CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 371

When the vector ~y points in the same direction as the vector ~x, then

~y = A~x = λ~x,

where λ is a positive number. That is, ~y is a positive multiple of ~x.

When the vector ~y points in the opposite direction of the vector ~x, then

~y = A~x = λ~x,

where λ is a negative number. That is, ~y is a negative multiple of ~x.

This is the geometric idea underlying eigenvalues and eigenvectors. If ~x is an eigenvector
of the matrix A and its associated eigenvalue is positive, then the vector ~y = A~x points
in the same direction as the vector ~x. If ~x is an eigenvector and its associated eigenvalue
is negative, then the vector ~y = A~x points in the opposite direction. The magnitude of
the eigenvalue tells us how much the eigenvector is stretched or shrunk. Use the same live
diagram to estimate the eigenvalues of the matrix

A =
[

0.50 0.60
0.60 0.40

]
.

Example 1 We closed section 4.3 with a slightly more complicated age dependent popula-
tion model. We used five age groups: 0-19, 20-39, 40-59, 60-79, and 80+. This example
is similar to that example but with different numbers. We use the same initial population
vector


10, 000, 000
9, 800, 000
9, 600, 000
9, 000, 000
8, 400, 000


and the Leslie matrix
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A =


0.00 0.20 0.50 0.60 0.20
0.95 0.00 0.00 0.00 0.00
0.00 0.96 0.00 0.00 0.00
0.00 0.00 0.90 0.00 0.00
0.00 0.00 0.00 0.85 0.70

 .

This gives us the model

~pn+20 = A~pn, ~p2008 =


10, 000, 000
9, 800, 000
9, 600, 000
9, 000, 000
8, 400, 000

 .

Beware that this model has a twist that might be confusing – we are working with 20
year intervals. Calculating predicted population through the year 2428 we see that

~p2408 =


10, 997, 900
9, 328, 600
7, 994, 750
6, 423, 990

13, 001, 100

 and ~p2428 =


12, 317, 700
10, 448, 000
8, 955, 460
7, 195, 270

14, 561, 200

 .

If we divide each entry in the vector ~p2428 by the corresponding entry in the vector
~p2408 we see that

12, 317, 700
10, 997, 900

= 1.120

10, 448, 000
9, 328, 600

= 1.120

8, 955, 460
7, 994, 750

= 1.120

7, 195, 270
6, 423, 990

= 1.120

14, 561, 200
13, 001, 100

= 1.120



CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 373

and

~p2428 =


12, 317, 700
10, 448, 000
8, 955, 460
7, 195, 270

14, 561, 200

 = A~p2408 = A


10, 997, 900
9, 328, 600
7, 994, 750
6, 423, 990

13, 001, 100

 = 1.120


10, 997, 900
9, 328, 600
7, 994, 750
6, 423, 990

13, 001, 100

 .

This gives us another example of an associated eigenvalue and eigenvector

λ = 1.120, ~v =


10, 997, 900
9, 328, 600
7, 994, 750
6, 423, 990

13, 001, 100

 .

The following theorem has important practical implications for these kinds of models.

Theorem 2 If A is an (n × n)-matrix and ~v is an eigenvector for A with associated
eigenvalue, λ, then if c is any constant, the vector c~v is also an eigenvector and has the
same associated eigenvalue.

Proof

A(c~v) = cA~v = c(λ~v) = λ(c~v)

Example 2 The vector ~v = 〈1, 1〉 is an eigenvector of the matrix

A =
[

1 2
2 1

]
with an associated eigenvalue 3, since

A

[
1
1

]
=
[

3
3

]
= 3

[
1
1

]
.
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The scalar multiple 〈20, 20〉 of 〈1, 1〉 is also an eigenvector with the same associated
eigenvalue since

A

[
20
20

]
=
[

60
60

]
= 3

[
20
20

]
.

Recall the significance of equilibrium points – when you start at an equilibrium point
you stay there. As a consequence of the preceding theorem, eigenvectors have a similar
property. When you start at an eigenvector, each subsequent term is also an eigenvector and
is obtained by multiplying the preceding term by the associated eigenvalue. For example,
we began this section with the model

~pn =
[

0.50 0.60
0.60 0.40

]
~pn−1, ~p2008 =

[
6
0

]
that described the fish population in a particular lake.

We saw that

~p2026 =
[

8.10296
7.45580

]

was an eigenvector8 with associated eigenvalue λ = 1.05208. This implies that

~p2027 = λ~p2026

~p2028 = λ~p2027 = λ2~p2026

~p2029 = λ~p2028 = λ3~p2026

...
~p2026+n = λn~p2026,

since by Theorem 2 the vectors λ~p2025, λ
2~p2026 . . . are all eigenvectors with the same eigen-

value.
8This might not be exactly an eigenvector but it is very, very close. Close enough so the difference is

less than rounding error.
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Remember this discussion is focused on long term behavior. The formula

~p2026+n = λn~p2026

only applies when n is positive and we are looking at the long term results for our original
model. We cannot, for example, use this formula to compute ~p2008 by using n = −18.

This associated eigenvector and eigenvalue tell us two things about the long term be-
havior of this particular fish population.

• Because the eigenvalue is λ = 1.05280, the population increases by 5.280% each year.
This increase is the same in both age groups.

• Because the eigenvector is (8.10296, 7.45580) the age distribution in the long term is

age group 1 =
8.10296

8.10296 + 7.45580
= 52.08%

age group 2 =
7.45580

8.10296 + 7.45580
= 47.92%

This kind of information is very important. The rate at which the population is
growing determines how quickly food and energy supplies, for example, must grow.
The age distribution impacts how much the expenses associated with certain age
groups – school for young children, for example, and health care for the elderly –
affect the working population.

If an eigenvector has the associated eigenvalue λ = 1 then it is an equilibrium point
because multiplying a vector by 1 leaves it unchanged.

Question 2 Analyze the long term behavior of Example 1 using eigenvectors and eigen-
values as we did in our discussion of the two age fish population model.

Question 3 Consider the model

~pn =
[

0.60 0.70
0.75 0.35

]
~pn−1, ~p0 =

[
1
0

]
Compute the first 20 terms. Based on your computations find an eigenvector and eigen-
value. Describe the long term behavior using the eigenvector and eigenvalue that you found.
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Question 4 Consider the model

~pn =
[

0.60 0.60
0.75 0.35

]
~pn−1, ~p0 =

[
1
0

]
Compute the first 20 terms. Based on your computations find an eigenvector and eigen-
value. Describe the long term behavior using the eigenvector and eigenvalue that you found.

Question 5 Consider the model

~pn =
[

0.60 0.50
0.75 0.35

]
~pn−1, ~p0 =

[
1
0

]
Compute the first 20 terms. Based on your computations find an eigenvector and eigen-
value. Describe the long term behavior using the eigenvector and eigenvalue that you found.

Question 6 Consider the model

~pn =
[

0.60 0.40
0.75 0.35

]
~pn−1, ~p0 =

[
1
0

]
Compute the first 20 terms. Based on your computations find an eigenvector and eigen-
value. Describe the long term behavior using the eigenvector and eigenvalue that you found.

Question 7 Consider the model

~pn =
[

0.60 0.40
0.75 0.20

]
~pn−1, ~p0 =

[
1
0

]
Compute the first 20 terms. Based on your computations find an eigenvector and eigen-
value. Describe the long term behavior using the eigenvector and eigenvalue that you found.



CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 377



CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 378

4.5 Eigenvalues and Eigenvectors, II

In this section we see how to find eigenvectors and eigenvalues “by hand” and look at
examples with (2 × 2)-matrices. In the next section we see how to find eigenvalues and
eigenvectors using Mathematica.

Notice that in our discussion of eigenvalues and eigenvectors we have been writing
vectors as column-vectors. Also, recall the idea of an identity matrix. An identity matrix
is an (n× n)-matrix of the form

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 .

Recall that if ~x is an n-dimensional column-vector and I is an (n× n) identity matrix,
then

I~x = ~x.

In addition, recall that if

A =
[
a11 a12

a21 a22

]
is a (2×2)-matrix then we can compute its determinant, a11a22−a12a21, and that the matrix
A is invertible (non-singular) if its determinant is nonzero and non-invertible (singular) if
its determinant is zero. For (n × n)-matrices the determinant is harder to compute but
serves the same function. Thus, we can tell if an (n× n)-matrix,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 ,

is invertible by computing its determinant and seeing if it is nonzero. In practice, deter-
minants are usually computed using a computer or calculator rather than by hand.
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Now, we develop two methods for finding eigenvalues and eigenvectors. The first method
is “by hand” and is developed in this section. We will develop this method for (2 × 2)-
matrices, although it can be used for larger matrices with some difficulty. The second
method uses Mathematica and is developed in the next section. This method can find
eigenvalues and eigenvectors of very large (n× n)-matrices with ease.

Suppose that we are interested in the long term behavior of a particular model and
want to find the eigenvalues of a (2× 2)-matrix,

A =
[
a11 a12

a21 a22

]
.

We are looking for numbers, λ, and nonzero vectors, ~v, such that

A~v = λ~v.

Suppose that we want to determine if a particular number, λ, is an eigenvalue. If it is
an eigenvalue, then there is a nonzero vector ~v such that

A~v = λ~v.

Now, we can use a little matrix algebra to rewrite the above equation as

A~v = λ~v

A~v = λ(I~v)
A~v = (λI)~v

A~v − (λI)~v = ~0
(A− λI)~v = ~0,

where

~0 =
[

0
0

]
.

The equation (A− λI)~v = ~0 always has at least one solution, namely ~0. But, because
by definition eigenvectors are nonzero, we need a nonzero solution. If the matrix (A− λI)
had an inverse then we could write
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(A− λI)~v = ~0
(A− λI)−1(A− λI)~v = (A− λI)−1~0

I~v = ~0
~v = ~0

and, since the only solution is the zero vector, there would be no eigenvectors corresponding
to the number λ. That is, the number, λ, would not be an eigenvalue. Thus, in order to have
an eigenvector with eigenvalue λ, the matrix (A− λI) must be singular (or noninvertible).
Recall that a matrix is singular if and only if its determinant is zero. Thus, we are looking
for numbers λ such that

det(A− λI) = 0.

This gives us the equation

det(A− λI) =
[
a11 − λ a12

a21 a22 − λ

]
= (a11 − λ)(a22 − λ)− a12a21 = 0.

This equation,

(a11 − λ)(a22 − λ)− a12a12 = 0,

is called the characteristic equation of the matrix A.

Solving the characteristic equation is the first step in finding eigenvalues and eigenvec-
tors. This step gives us the eigenvalues. We still must find the eigenvectors. Let’s look at
an example.

Example 1 Find the eigenvectors and eigenvalues of the matrix

A =
[

1 2
2 1

]
.

First, we look at and solve the characteristic equation for this matrix.
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det(A− λI) = 0

det
([

1− λ 2
2 1− λ

])
(1− λ)(1− λ)− 4 = 0

(1− λ)2 = 4
1− λ = ±2

λ = 1± 2

and we see that there are two solutions, λ = −1 and λ = 3. These are the eigenvalues of
the matrix A.

To find the eigenvectors associated with the first eigenvalue, λ = −1, we must solve the
equation

A~v = (−1)~v = −~v

[
1 2
2 1

] [
v1
v2

]
= −

[
v1
v2

]
[
v1 + 2v2
2v1 + v2

]
=

[
−v1
−v2

]

giving us the pair of equations

v1 + 2v2 = −v1
2v1 + v2 = −v2.

These equations are both equivalent to v1 = −v2.9 Thus, our two original equations were
redundant and we see that any vector of the form ~v =< t,−t > is an eigenvector associated
with the eigenvalue −1.

9For example, to show that the first equation, v1 + 2v2 = −v1 is equivalent to the equation v1 = −v2
subtract 2v2 from both sides of the first equation get the equation v1 = −v1 − 2v2, then add v1 to both
sides to get the equation 2v1 = −2v2, and finally divide both sides by 2 to get v1 = −v2.



CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 382

To find the eigenvectors associated with the second eigenvalue, λ = 3, we must solve
the equation

A~v = 3~v

[
1 2
2 1

] [
v1
v2

]
= 3

[
v1
v2

]
[
v1 + 2v2
2v1 + v2

]
=

[
3v1
3v2

]

giving us the pair of equations

v1 + 2v2 = 3v1
2v1 + v2 = 3v2.

But these equations are again redundant and are both equivalent to v1 = v2. Thus, we see
that any vector of the form ~v =< t, t > is an eigenvector associated with the eigenvalue 3.

We have now determined the eigenvalues and eigenvectors of the matrix

A =
[

1 2
2 1

]
.

We often report these results by saying – “There are two eigenvalues. One is λ = −1
and is associated with the eigenvector < 1,−1 >. The other is λ = 3 and is associated with
the eigenvector < 1, 1 >. Because any multiple of an eigenvector is another eigenvector
(see Theorem 2) with the same eigenvalue, we understand from this sentence that every
vector of the form < t,−t > is an eigenvector associated with the eigenvalue −1 and that
every vector of the form < t, t > is an eigenvector associated with the eigenvalue 3. For
example, < 1, 1 >, < 2, 2 >, < 25, 25 > are all eigenvectors associated with the eigenvalue
3 and < 1,−1 >, < 2,−2 >, and < 25,−25 > are all eigenvectors associated with the
eigenvalue −1.

Question 1 Verify that any vector of the form ~v =< t, t > really is an eigenvector of the
matrix A and its associated eigenvalue is 3 in the example above by computing A~v.
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Also, verify that any vector of the form ~v =< t,−t > really is an eigenvector of the
matrix A and its associated eigenvalue is −1 in the example above by computing A~v.

The example we have just worked is a prototype for finding the eigenvalues and eigen-
vectors of a (2 × 2)-matrix. You should be able to solve the following problems using the
process from that example. You may, however, be in for some surprises. If you’ve closed
the window with the live diagram that we used earlier, you can click here10 to reopen
it. You may want to use this live diagram to explore eigenvalues and eigenvectors of the
matrices in Questions 3-6. Match your solutions to what you see when you explore each
matrix using this live graph.

For each of the following questions, verify your eigenvectors ~v and eigenvalues λ by
computing A~v.

Question 2 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.50 0.60
0.60 0.40

]
.

Question 3 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.50 0.60
0.50 0.40

]
.

Question 4 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.50 0.60
−0.60 0.50

]
.

Question 5 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.60 0.00
0.00 0.60

]
.

10http://www.dean.usma.edu/departments/math/courses/MA103/MRCW text/Block IV/population-
growth.html

http://www.dean.usma.edu/departments/math/courses/MA103/MRCW_text/Block_IV/population-growth.html
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Figure 4.13: Finding Eigenvectors and Eigenvalues with Mathematica

4.6 Eigenvalues and Eigenvectors, III

4.6.1 Using Mathematica to Find Eigenvalues and Eigenvectors

Because eigenvalues and their associated eigenvectors are so important, Mathematica has
a procedure, Eigensystem, that computes the eigenvectors of an (n×n)-matrix and their
associated eigenvalues. Figure 4.13 shows how this procedure is used to find the eigenvalues
and eigenvectors of the matrix

A =
[

0.50 0.60
0.60 0.40

]
.

The output of Eigensystem is a list with two items. The first item is a list of the
eigenvalues. Notice in Figure 4.13 the list of eigenvalues is {1.05208,−0.15208}, the same
two eigenvalues you should have found in Question 2 of the preceding section. The second
item in the output of Eigensystem is another list – containing the eigenvectors associated
with the eigenvalues in the first list. Notice in Figure 4.13 that the two vectors may
be different from the ones that you found because any multiple of an eigenvector is an
eigenvector with the same associated eigenvalue. Recall Theorem 2 on page 373. For
example, suppose that for a particular problem you found an eigenvector < 1, 2, 3 > and
Mathematica found an eigenvector (with the same eigenvalue) < 3, 6, 9 >. These two
answers are really the same since

< 3, 6, 9 > = 3< 1, 2, 3 > .

There is a subtle difference between “numbers” like 0.60 and 3/5. Numbers that are
written with decimals are subject to round-off error but numbers that are written as frac-
tions are not. For example, the number 0.33 is different from the number 1/3. Even when
round-off error appears to be absent, using computers can introduce round-off error. For
example, there is no error when we write 3/5 as 0.60 in the decimal system but computers
use the binary system and 1/5 is not exact in the binary system. Because fractions are
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exact and decimals may not be exact it is sometimes better to use fractions instead of
decimals in Mathematica when that is possible.

Question 1 Check that the eigenvectors you found for the matrix

[
0.50 0.60
0.60 0.40

]
are multiples of the eigenvectors found by Mathematica.

The first three questions below ask you to find the eigenvalues and eigenvectors for the
same matrices as the questions at the end of the preceding section. This time you should
use the Mathematica procedure Eigensystem.

Question 2 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.50 0.60
0.50 0.40

]
.

Question 3 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.50 0.60
−0.60 0.50

]
.

Question 4 Find the eigenvalues and eigenvectors of the matrix

A =
[

0.60 0
0 0.60

]
.

Question 5 Find the eigenvalues and eigenvectors of the matrix

A =

 1 2 3
2 1 −1
3 −1 2

 .
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We conclude this section with an example and a series of questions that will lead to a
powerful tool for understanding the long term behavior of systems.

Example 1 This example involves a fish population model with three age groups – age
under one year, age between one year and two years, and age over two years. Suppose
these fish are introduced into a lake in the hope that they will thrive and eventually provide
a food source for a nearby village. We use the notation an, bn, and cn for the number of
thousands of fish in each age group in the lake during year n, starting with n = 0 being the
year in which the fish are introduced into the lake. Suppose that the initial population in
each age group is given by

a0 = 5, b0 = 0, and c0 = 0.

Based on experience with the same species in other lakes, scientists believe that the
survival rates for each age group are:

• Each year 70% of the population in the first age group will survive and reach the
second age group the next year.

• Each year 90% of the population in the second age group will survive and reach the
third age group the next year.

• Each year 40% of the population in the third age group will survive and remain in the
third age group the next year. This estimate is based on allowing villagers to catch
and keep 20% of the fish in the third age group. They will not be allowed to keep any
fish they catch in either of the first two age groups.

Based on the same experience, scientists also believe that the reproduction rates will be:

• On average, each year 10% of the fish in the first age group will have a child.

• On average, each year 80% of the fish in the second age group will have a child.

• On average, each year 30% of the fish in the third age group will have a child.
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This information can be expressed as the following model

an = 0.10an−1 + 0.80bn−1 + 0.30cn−1

bn = 0.70an−1

cn = 0.90bn−1 + 0.40cn−1

We can also express this model using vectors and matrices as

~pn =

 an

bn
cn



~pn =

 0.10 0.80 0.30
0.70 0.00 0.00
0.00 0.90 0.40

 ~pn−1

with the initial condition

~p0 =

 5
0
0

 .
Using the Mathematica procedure Eigensystem we find the following eigenvalues and

associated eigenvectors.

λ1 = 0.989686 ~v1 =

 0.612497
0.433216
0.661190

 ,
λ2 = 0.553571 ~v2 =

 −0.498544
0.630418
−0.595002

 ,
λ3 = 0.0638848 ~v3 =

 −0.031913
−0.349681

0.936325

 .
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Question 6 Predict the fish population in this lake by computing ~p1, ~p2, . . . ~p20. Do you
notice any relationship between your results and the eigenvalues and eigenvectors of the
matrix.

Question 7 Suppose that the initial fish population in the lake was ~v1. Describe what
would happen over the long term.

Question 8 Suppose that the initial fish population in the lake was ~v2. Describe what
would happen over the long term.

Question 9 Suppose that the initial fish population in the lake was ~v3. Describe what
would happen over the long term.

Question 10 Suppose that the initial fish population in the lake was ~v1 +~v2 +~v3. Describe
what would happen over the long term.
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Year 0 ≤ age < 1 1 ≤ age < 2 2 ≤ age Total Total Population Ratio

0 5.000000 0.000000 0.000000 5.000000

1 0.500000 3.500000 0.000000 4.000000 0.800000

2 2.850000 0.350000 3.150000 6.350000 1.587500

3 1.510000 1.995000 1.575000 5.080000 0.800000

4 2.219500 1.057000 2.425500 5.702000 1.122441

5 1.795200 1.553650 1.921500 5.270350 0.924298

6 1.998890 1.256640 2.166885 5.422415 1.028853

7 1.855267 1.399223 1.997730 5.252220 0.968613

8 1.904224 1.298687 2.058393 5.261303 1.001730

9 1.846889 1.332957 1.992175 5.172021 0.983030

10 1.848707 1.292823 1.996531 5.138061 0.993434

11 1.818088 1.294095 1.962153 5.074336 0.987597

12 1.805731 1.272662 1.949546 5.027939 0.990857

13 1.783566 1.264011 1.925214 4.972792 0.989032

14 1.767130 1.248496 1.907696 4.923322 0.990052

15 1.747819 1.236991 1.886725 4.871535 0.989481

16 1.730392 1.223473 1.867982 4.821847 0.989800

17 1.712212 1.211275 1.848319 4.771806 0.989622

18 1.694736 1.198549 1.829475 4.722760 0.989722

19 1.677155 1.186316 1.810484 4.673954 0.989666

20 1.659913 1.174008 1.791877 4.625799 0.989697

Table 4.7: Three Age Group Fish Model

4.7 Analytic Solutions of Systems of Recursion Equations

As you worked on Questions 6 - 10 in the preceding section, you may have constructed a
table like Table 4.7. This table computes the population in each age group for twenty years
and also looks at the total population each year. In addition, it computes the ratio of each
year’s total population to the previous year’s total population. Notice, after twenty years,
this ratio is very close to the eigenvalue λ1. Furthermore, if we look at the population in
the 20th year,

p20 =

 1.659913
1.174008
1.791877

 ,
and compare this vector term-by-term with the eigenvector associated with λ1,
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~v1 =

 0.612497
0.433216
0.661190

 ,
we see that

1.659913
0.612497

= 2.710075
1.174008
0.433216

= 2.709983
1.791877
0.661190

= 2.710079.

These ratios are all roughly the same. If we round off to three digits past the decimal point,
we get 2.710. Thus, ~p20 is roughly 2.710 ~v1. Since ~v1 is an eigenvector associated with the
eigenvalue λ1 = 0.989686 and any multiple of an eigenvector is also an eigenvector with
the same associated eigenvalue, we see that, after a long time, each year the population
vector is very close to an eigenvector.

Based in part on this example, it looks as if eigenvalues and eigenvectors might help us
understand these kinds of models. We can explore this connection and answer some of the
questions we have been considering by using matrix-vector notation for this linear discrete
dynamical system with many variables,

~pn = A~pn−1

where

A =

 0.10 0.80 0.30
0.70 0.00 0.00
0.00 0.90 0.40

 .
We continue our exploration by asking what would happen if the initial condition was

one of the eigenvectors.

• Notice that, if p0 = ~v1 then

p1 = A~p0 = A~v1 = λ1~v1

p2 = A~p1 = A(λ1~v1) = λ2
1~v1

p3 = A~p2 = A(λ2
1~v1) = λ3

1~v1
...

pn = λn
1 ~v1
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• Notice that, if p0 = ~v2 then

p1 = A~p0 = A~v2 = λ2~v2

p2 = A~p1 = A(λ2~v2) = λ2
2~v2

p3 = A~p2 = A(λ2
2~v2) = λ3

2~v2
...

pn = λn
2 ~v2

• Notice that, if p0 = ~v3 then

p1 = A~p0 = A~v3 = λ3~v3

p2 = A~p1 = A(λ3~v3) = λ2
3~v3

p3 = A~p2 = A(λ2
3~v3) = λ3

3~v3
...

pn = λn
3 ~v3

Finally, for the last question at the end of the previous section we see that if p0 =
~v1 + ~v2 + ~v3, then

p1 = A~p0 = A(~v1 + ~v2 + ~v3) = A~v1 +A~v2 +A~v3 = λ1~v1 + λ2~v2 + λ3~v3

p2 = A~p1 = A(λ1~v1 + λ2~v2 + λ3~v3) = Aλ1~v1 +Aλ2~v2 +Aλ3~v3 = λ2
1~v1 + λ2

2~v2 + λ2
3~v3

...
pn = λn

1 ~v1 + λn
2 ~v2 + λn

3 ~v3

Thus, we have a closed-form solution to the IVP

~p0 = ~v1 + ~v2 + ~v3, ~pn = A~pn−1

namely,

~pn = λn
1 ~v1 + λn

2 ~v2 + λn
3 ~v3 = (0.989686)n~v1 + (0.553571)n~v2 + (0.0638848)n~v3.
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We can see the long term behavior of this IVP from this closed-form solution. Because

lim
n→∞

(0.989686)n = 0, lim
n→∞

(0.553571)n = 0, and lim
n→∞

(0.0638848)n = 0,

we see that

lim
n→∞

~pn = lim
n→∞

((0.989686)n~v1 + (0.553571)n~v2 + (0.0638848)n~v3) = ~0.

We can even be a bit more precise. Because the eigenvalues λ2 = 0.553571 and λ3 =
0.0638848 are so much smaller than the eigenvalue λ1 = 0.989686, the second and third
terms in ~pn die out much more quickly than the first term.

~pn = (0.989686)n︸ ︷︷ ︸
dies out slowly

~v1 + (0.553571)n︸ ︷︷ ︸
dies out quickly

~v2 + (0.0638848)n︸ ︷︷ ︸
dies out quickly

~v3.

This means that after many years the population is close to

~pn ≈ (0.989686)n~v1.

Notice that we use the symbol ≈ instead of the symbol = because this is only an
approximate formula for ~pn. Moreover, this formula only applies after many years.

Table 4.8 on page 394 compares the direct calculations for the IVP

~p0 = ~v1 +~v2 +~v3 =

24 0.612497
0.433216
0.661190

35 +

24 −0.498544
0.630418

−0.595002

35 +

24 −0.031913
−0.349681

0.936325

35 =

24 0.082040
0.713953
1.002513

35 , ~pn = A~pn−1

with the closed-form solution

~pn = λn
1 ~v1 + λn

2 ~v2 + λn
3 ~v3 = (0.989686)n~v1 + (0.553571)n~v2 + (0.0638848)n~v3

and the approximation

~pn ≈ (0.989686)n~v1.
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n Population by Age Group a = age

Original Model Closed Form Solution Approximation

0 ≤ a < 1 1 ≤ a < 2 2 ≤ a 0 ≤ a < 1 1 ≤ a < 2 2 ≤ a 0 ≤ a < 1 1 ≤ a < 2 2 ≤ a

0 0.082040 0.713953 1.002513 0.082040 0.713953 1.002513 0.612497 0.433216 0.661190

1 0.880120 0.057428 1.043563 0.328161 0.755390 0.384812 0.606180 0.428748 0.654370

2 0.447023 0.616084 0.469110 0.447023 0.616084 0.469110 0.599928 0.424326 0.647621

3 0.678303 0.312916 0.742120 0.509160 0.526800 0.540252 0.593740 0.419949 0.640942

4 0.540799 0.474812 0.578473 0.540799 0.474812 0.578472 0.587616 0.415618 0.634331

5 0.607471 0.378560 0.658720 0.555639 0.444102 0.596859 0.581555 0.411331 0.627789

6 0.561211 0.425230 0.604191 0.561211 0.425230 0.604191 0.575557 0.407089 0.621314

7 0.577562 0.392847 0.624384 0.561679 0.412932 0.605427 0.569621 0.402890 0.614905

8 0.559349 0.404294 0.603316 0.559350 0.404294 0.603316 0.563746 0.398735 0.608563

9 0.560365 0.391545 0.605191 0.555498 0.397699 0.599382 0.557931 0.394622 0.602286

10 0.550829 0.392255 0.594466 0.550830 0.392255 0.594467 0.552177 0.390552 0.596075

11 0.547227 0.385581 0.590816 0.545736 0.387467 0.589037 0.546482 0.386524 0.589927

12 0.540432 0.383059 0.583349 0.540432 0.383059 0.583349 0.540845 0.382537 0.583842

13 0.535495 0.378302 0.578093 0.535039 0.378881 0.577548 0.535267 0.378592 0.577820

14 0.529619 0.374847 0.571709 0.529620 0.374847 0.571710 0.529746 0.374687 0.571861

15 0.524352 0.370733 0.566046 0.524212 0.370911 0.565879 0.524283 0.370822 0.565963

16 0.518836 0.367046 0.560078 0.518836 0.367047 0.560079 0.518875 0.366998 0.560125

17 0.513544 0.363185 0.554373 0.513502 0.363240 0.554322 0.513523 0.363212 0.554348

18 0.508214 0.359481 0.548616 0.508215 0.359481 0.548616 0.508227 0.359466 0.548631

19 0.502991 0.355750 0.542979 0.502978 0.355767 0.542964 0.502985 0.355759 0.542972

20 0.497793 0.352094 0.537367 0.497794 0.352094 0.537367 0.497797 0.352089 0.537372

Table 4.8: Comparing the Model, the Closed-Form Solution, and an Approximation

Notice that, as expected, the calculations using the closed-form solution yield the same
results as the the direct calculations for the IVP but that the approximation is only a
reasonably good approximation after a number of years have passed.

Question 1 The model we have been using as an example was based on the assumption
that villagers would be allowed to catch and keep 20% of the fish in the third age group.
As we have seen so far, it looks like this is a recipe for long term disaster because the fish
population will slowly die out. Suppose that villagers are only allowed to catch and keep
15% of the fish in the third age group. Analyze this situation in the same way that we
analyzed the first situation. Notice that for this new situation, we will use the matrix
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B =

 0.10 0.80 0.30
0.70 0.00 0.00
0.00 0.90 0.45


instead of the matrix A. You may want to refer back to Example 1 which starts on Page
386 and to Questions 6 - 10 on Page 388. Note that this is the same example we discussed
at the beginning of this section.

In the last few pages we found a solution of the IVP

~p0 = ~v1 + ~v2 + ~v3, ~pn = A~pn−1

and you may have found a solution of the IVP

~p0 = ~v1 + ~v2 + ~v3, ~pn = B~pn−1

as you answered Question 1 – BUT we really want solutions for actual initial values, not
just for ones that are conveniently chosen – like the eigenvectors, ~v1, ~v2, and ~v3, and their
sum, ~v1 + ~v2 + ~v3. Now, we show how we can use the work we’ve done so far to find a
closed-form solution for real IVPs. We illustrate this by looking at our original IVP,

~p0 =

 5
0
0

 , ~pn = A~pn−1.

The key idea is to find numbers c1, c2, and c3 such that

~p0 =

 5
0
0

 = c1~v1 + c2~v2 + c3~v3.

This procedure is called “vector decomposition.”

Example 1 Suppose that

~p0 =
[

8
14

]
, ~v1 =

[
1
1

]
, and ~v2 =

[
2
4

]
.
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Then we have the vector decomposition

~p0 = 2~v1 + 3~v2.

If we can decompose our initial condition into a linear combination of eigenvectors,
then we can obtain a powerful closed-form solution by noticing that

~p0 = c1~v1 + c2~v2 + c3~v3

~p1 = A~p0

= A(c1~v1 + c2~v2 + c3~v3)
= c1A~v1 + c2A~v2 + c3A~v3

= c1λ1~v1 + c2λ2~v2 + c3λ3~v3

~p2 = A~p1

= A(c1λ1~v1 + c2λ2~v2 + c3λ3~v3)
= c1λ1A~v1 + c2λ2A~v2 + c3λ3A~v3

= c1λ
2
1~v1 + c2λ

2
2~v2 + c3λ

2
3~v3

...
~pn = (λ1)nc1~v1 + (λ2)nc2~v2 + (λ3)nc3~v3.

Now we want to find the vector decomposition of our initial condition. To do this we
must solve the equation

 5
0
0

 = c1~v1 + c2~v2 + c3~v3 = c1

 0.612497
0.433216
0.661190

+ c2

 −0.498544
0.630418
−0.595002

+ c3

 −0.031913
−0.349681

0.936325

 ,
which leads to the system of equations

0.612497c1 − 0.498544c2 − 0.031913c3 = 5
0.433216c1 + 0.630418c2 − 0.349681c3 = 0
0.661190c1 − 0.595002c2 + 0.936325c3 = 0



CHAPTER 4. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 397

This system of equations can easily be solved using Mathematica. We obtain

c1 = 3.33448
c2 = −5.55583
c3 = −5.8852.

Thus,

~p0 =

24 5
0
0

35 = 3.33448

24 0.612497
0.433216
0.661190

35− 5.55583

24 −0.498544
0.630418

−0.595002

35− 5.8852

24 −0.031913
−0.349681

0.936325

35 ,

Putting this all together, we see that

~pn = λn
1 (3.33448)~v1 − λn

2 (5.55583)~v2 − λn
3 (5.8852)~v3

= (0.989686)n(3.33448)

24 0.612497
0.433216
0.661190

35− (0.553571)n(5.55583)

24 −0.498544
0.630418

−0.595002

35−
(0.0638848)n(5.8852)

24 −0.031913
−0.349681

0.936325

35

Question 2 Use either Excel or Mathematica to check the closed-form solution above by
comparing the results of this closed-form solution to the direct calculations from the original
IVP. See Table 4.7 on page 390.

Recall Example 1 from Section 4.3 on page 358. You may want to look back at that
example to recall the context. Look at Figure 4.14 and Table 4.9 on page 398. Both of
these refer to the model

~pn = A~pn−1, ~p2008 =
[

6
0

]
,

where

A =
[

0.50 0.60
0.60 0.40

]
.

Now, we want to use the method we developed in the last example to solve this IVP.
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Tons of fish age one year and above

~p2008 = 〈6, 0〉

~p2010~p2009

5 10
Tons of fish age under one year

5

10

Figure 4.14: Representing the Fish Population Visually

Year Age < 1 1 ≤ Age

2008 6.00000 0.00000

2009 3.00000 3.60000

2010 3.66000 3.24000

2011 3.77400 3.49200

2012 3.98220 3.66120

2013 4.18782 3.85380

2014 4.40619 4.05421

2015 4.63562 4.26540

2016 4.87705 4.48753

2017 5.13104 4.72124

2018 5.39827 4.96712

2019 5.67941 5.22581

2020 5.97519 5.49797

2021 6.28638 5.78430

2022 6.61377 6.08555

2023 6.95821 6.40248

2024 7.32060 6.73592

2025 7.70185 7.08673

2026 8.10296 7.45580

2027 8.52496 7.84410

Table 4.9: Twenty Years
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Figure 4.15: Using Mathematica to find the Eigenvalues and Eigenvectors of A

Figure 4.15 shows the eigenvalues and eigenvectors of our matrix A using Mathematica,

λ1 = 1.05208 ~v1 =
[

0.735882
0.677109

]
, λ2 = −0.15208 ~v2 =

[
−0.677109

0.735882

]
.

Now, we want to write our initial condition in the form

~p2008 = c1~v1 + c2~v2.

That is, we want to find numbers c1 and c2 such that

[
6.0
0.0

]
= c1

[
0.735882
0.677109

]
+ c2

[
−0.677109

0.735882

]
.

This gives us the equations

0.735882c1 − 0.677109c2 = 6.0
0.677109c1 + 0.735882c2 = 0.

These equations are easily solved using Mathematica. We obtain

c1 = 4.4153
c2 = −4.06266.
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Putting this all together we see that

~pn = (λ1)(n−2008)c1~v1 + (λ2)(n−2007)c2~v2

= (1.05208)(n−2008)(4.4153)
[

0.735882
0.677109

]
+

(−0.15208)(n−2008)(−4.06266)
[
−0.677109

0.735882

]
.

Just as in our first example, this form tells us a lot about the long term behavior of
this population. Since |λ2| < 1, the term

(λ2)(n−2008)~v2 = (−0.15208)(n−2008)(−4.06266)
[
−0.677109

0.735882

]
becomes very small as n increases. Since |λ1| > 1, the term

(λ1)(n−2008)~v1 = (1.05208)(n−2008)(4.4153)
[

0.735882
0.677109

]
keeps growing as n increases. This explains the behavior we saw in Figure 4.14 and
Table 4.9.

Question 3 The village elders propose allowing the villagers to catch and keep 15% of the
fish that are aged one year and above each year. What advice would you give them?

Question 4 Recall that, for this example, we were given the information

• Each year the reproduction rate for fish under the age of one year is 0.50 and the
reproduction rate for fish aged one year or more is 0.60.

• Each year the survival rate for fish aged one year or less is 0.60 and the survival rate
for fish aged one year or more is 0.40.

Suppose that you are given a choice of stocking the lake with this fish or with another
species with the following characteristics.
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• Each year the reproduction rate for fish under the age of one year is 0.60 and the
reproduction rate for fish aged one year or more is 0.80.

• Each year the survival rate for fish aged one year or less is 0.50 and the survival rate
for fish aged one year or more is 0.20.

Develop a model for this species and use it to compare the two species. Which would you
choose?
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4.8 Eigenvalues, Eigenvectors, Closed-Form Solutions, and
Long Term Behavior

In this section we summarize the work we’ve done in the last few sections in the form of
some tools and theorems that collectively describe a procedure that can be used to study
the behavior, especially the long term behavior, of many models like the ones we’ve been
studying. We begin with a basic IVP of the form

~p0 = ~b, ~pk = A~pk−1

where the vectors are n-dimensional vectors and the matrix A is an (n × n)-matrix. The
vector ~b is called the initial value.

Our most important tool is the Mathematica procedure Eigensystem that we use to
find the eigenvalues and eigenvectors of the matrix A. In general, the subject of eigenvalues
and eigenvectors is somewhat complex. An (n × n)-matrix can have up to n eigenvalues
and some of them may be complex numbers.

Example 1 Let

A =
[

1 1
−1 1

]
.

We find the eigenvalues of this matrix by solving the equation

det(A− λI) = 0∣∣∣∣ 1− λ 1
−1 1− λ

∣∣∣∣ = 0

(1− λ)2 + 1 = 0
(1− λ)2 = −1

1− λ = ±i
λ = 1± i.

Thus, this matrix has two complex eigenvalues and no real eigenvalues. If you are
not familiar with complex numbers, then the real take-away from this example is that this
matrix has no real eigenvalues.
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Because time is short in this course, we study only situations in which the matrix A
has n distinct, real eigenvalues. Its eigenvalues and associated eigenvectors may be found
using the Mathematica procedure Eigensystem. Note that for each eigenvalue, any scalar
multiple of an associated eigenvector is also an associated eigenvector.

The following theorem summarizes what we have seen in the preceding two sections.

Theorem 3 Suppose that

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


has n distinct real eigenvalues and associated eigenvectors

λ1, ~v1; λ2, ~v2; . . . λn, ~vn.

Now, suppose that ~b is any vector. Then, there are numbers c1, c2, . . . cn such that

~b = c1~v1 + c2~v2 + · · ·+ cn~vn

and these numbers can be found using the Mathematica Solve procedure as shown in Figure
4.16 on page 404.

Figure 4.16 shows how we can use the Mathematica Eigensystem and Solve proce-
dures efficiently for the kinds of problems we have been discussing. In particular, this figure
illustrates some techniques that can be used to save some typing and to avoid the ugly
details of the way that Mathematica presents the results of the procedure Eigensystem.

• The line work = Eigensystem[A] computes and saves the eigenvalues and eigen-
vectors of the matrix A in the format that Mathematica uses to return these values.
The line Out[2] shows this format.

• The line lambda[i ] := work[[1]][[i]] defines a function that picks out the ith eigen-
value. The lines lambda[1], lambda[2], and lambda[3] then print out the three
eigenvalues.
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Figure 4.16: Using Mathematica

• The line v[i ] := work[[2]][[i]] defines a function that picks out the ith eigenvec-
tor, the one associated with λi. The lines v[1], v[2], and v[3] print out the three
eigenvectors.

• The line Solve[c1 v[1] + c2 v[2] + c3 v[3] == {5, 0, 0}, c1, c2, c3] solves the
equation

c1~v1 + c2~v2 + c3~v3 =< 5, 0, 0 > .

Notice that we use row-vector notation in the equation above and in Figure 4.16.

Putting this all together, if the (n × n)-matrix A has n distinct real eigenvalues, then
we have a step-by-step procedure for finding a closed-form solution of the IVP
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~pn = A~pn−1, ~p0 = ~b

given by

1. Find the eigenvalues and eigenvectors of the matrix A. Check to be sure that there are
n distinct, real eigenvalues. Let λ1, λ2, . . . λn denote the eigenvalues and ~v1, ~v2, . . . ~vn

denote the associated eigenvectors. Thus,

A~v1 = λ1~v1, A~v2 = λ2~v2, . . . , A~vn = λn~vn.

2. Solve the equation

c1~v1 + c2~v2 + · · ·+ cn~vn = ~b.

3. Now, we have

~p0 = ~b = c1~v1 + c2~v2 + · · ·+ cn~vn

~p1 = A~p0 = A(c1~v1 + c2~v2 + · · ·+ cn~vn) = λ1c1~v1 + λ2c2~v2 + · · ·+ λncc~vn

~p2 = A~p1 = A(λ1c1~v1 + λ2c2~v2 + · · ·+ λncn~vn) = (λ1)2c1~v1 + (λ2)2c2~v2 + · · ·+ (λn)2cn~vn

...
~pk = (λ1)kc1~v1 + (λ2)kc2~v2 + · · ·+ (λn)kcn~vn.

The next theorem is the first step in understanding the long term behavior of an IVP.

Theorem 4 Consider the IVP

~pk = A~pk−1, ~p0 = ~b

If the matrix A has n distinct real eigenvalues all of which have absolute value less than
one, then

lim
k→∞

~pk = ~0.

This means that the populations in each of the three age groups go to zero.
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Proof

lim
k→∞

~pk = lim
k→0

((λ1)kc1~v1 + (λ2)kc2~v2 + · · ·+ (λn)kcn~vn).

and, since all the eigenvalues have absolute values less than one,

lim
k→∞

(λ1)k = 0

lim
k→∞

(λ2)k = 0

...
lim

k→∞
(λn)k = 0

and we see that

lim
k→∞

~pk = ~0.

Example 2 This example is another population model with three age groups. We are
interested in a particular species in a particular habitat and we divide the population into
three groups – those aged less than one year; those whose age is greater than or equal to
one year but less than two years; and those whose age is greater than or equal to two years.
Suppose the initial population is 5 million individuals in age group 1 and none in either of
the other two age groups. Thus,

~p0 =

 5
0
0

 .
Notice that the entries in the vector ~p0 give the number of millions of individuals in each
age group.

Suppose that the fertility rates are 0.40 for age group 1; 0.70 for age group 2; and 0.20
for age group 3 and that the survival rates are 0.60 for age group 1; 0.50 for age group 2;
and 0.20 for age group 3. Thus,

~pk = A~pk−1,
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where

A =

 0.40 0.70 0.20
0.60 0 0

0 0.50 0.20

 .
Using Mathematica (See Figure 4.16) we see that the eigenvalues and eigenvectors are

λ1 = 0.93589, ~v1 =

24 0.790383
0.506715
0.344288

35 ; λ2 = −0.4, ~v2 =

24 −0.455842
0.683763

−0.569803

35 ; λ3 = 0.0641101, ~v3 =

24 −0.0280122
−0.2621630

0.9646170

35 .

Also, using vector decomposition, we see that

~p0 = 3.74104 ~v1 − 4.24595 ~v2 − 3.84334 ~v3

and obtain the closed-form solution

~pk = (0.93589)k 3.74104 ~v1 − (−0.4)k 4.24595 ~v2 − (0.0641101)k 3.84334 ~v3.

Since all of the eigenvalues have absolute value less than 1, we see that

lim
k→∞

~pk = ~0.

We can say a bit more. Looking more closely at the closed-form solution, we see that
the second and third terms die out more quickly than the first term

~pk = (0.93589)k︸ ︷︷ ︸
dies out slowly

3.74104 ~v1 − (−0.4)k︸ ︷︷ ︸
dies out quickly

4.24595 ~v2 − (0.0641101)k︸ ︷︷ ︸
dies out very quickly

3.84334 ~v3.

This means that after some years we can approximate the population by

~pk ≈ (0.93589)k 3.74104 ~v1.
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n Population by Age Group (a = age)

Original Model Closed Form Solution Approximation

0 ≤ a < 1 1 ≤ a < 2 2 ≤ a 0 ≤ a < 1 1 ≤ a < 2 2 ≤ a 0 ≤ a < 1 1 ≤ a < 2 2 ≤ a

0 5.00000 0.00000 0.00000 5.00000 0.00000 0.00000 2.95685 1.89564 1.28800

1 2.00000 3.00000 0.00000 2.00000 3.00000 0.00000 2.76729 1.77411 1.20542

2 2.90000 1.20000 1.50000 2.90000 1.20000 1.50000 2.58988 1.66037 1.12814

3 2.30000 1.74000 0.90000 2.30000 1.74000 0.90000 2.42384 1.55393 1.05582

4 2.31800 1.38000 1.05000 2.31800 1.38000 1.05000 2.26845 1.45430 0.98813

5 2.10320 1.39080 0.90000 2.10320 1.39080 0.90000 2.12302 1.36107 0.92478

6 1.99484 1.26192 0.87540 1.99484 1.26192 0.87540 1.98691 1.27381 0.86549

7 1.85636 1.19690 0.80604 1.85636 1.19690 0.80604 1.85953 1.19215 0.81001

8 1.74158 1.11382 0.75966 1.74159 1.11382 0.75966 1.74032 1.11572 0.75808

9 1.62824 1.04495 0.70884 1.62824 1.04495 0.70884 1.62875 1.04419 0.70948

10 1.52453 0.97694 0.66424 1.52453 0.97694 0.66424 1.52433 0.97725 0.66399

11 1.42652 0.91472 0.62132 1.42652 0.91472 0.62132 1.42660 0.91460 0.62142

12 1.33517 0.85591 0.58162 1.33517 0.85591 0.58162 1.33514 0.85596 0.58158

13 1.24953 0.80110 0.54428 1.24953 0.80110 0.54428 1.24955 0.80109 0.54430

14 1.16944 0.74972 0.50941 1.16944 0.74972 0.50941 1.16944 0.74973 0.50940

15 1.09446 0.70167 0.47674 1.09446 0.70167 0.47674 1.09447 0.70166 0.47675

16 1.02430 0.65668 0.44618 1.02430 0.65668 0.44618 1.02430 0.65668 0.44618

17 0.95863 0.61458 0.41757 0.95863 0.61458 0.41758 0.95863 0.61458 0.41758

18 0.89717 0.57518 0.39080 0.89717 0.57518 0.39081 0.89717 0.57518 0.39081

19 0.83965 0.53830 0.36575 0.83966 0.53830 0.36575 0.83966 0.53830 0.36575

20 0.78582 0.50379 0.34230 0.78583 0.50379 0.34230 0.78583 0.50379 0.34230

Table 4.10: Comparing the Model, the Closed Form Solution, and an Approximation

Table 4.10 compares the results of direct calculations using the original model, cal-
culations using the closed-form solution, and calculations using the approximate model
~vk ≈ (0.93589)k 3.74104 ~v1. As expected, the first two sets of calculations yield the same
results (except for an occasional small round-off error) and the third set of calculations is
close to the others only after some years have passed.

The next theorems continue our list of deductions11 that can be made from our work
so far.

11By “deductions” we mean conclusions that follow from this work. This is an example of “deductive
reasoning,” which can be contrasted with “inductive reasoning” in which conclusions are based on examples
and experiments.
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Theorem 5 Consider the IVP

~pk = A~pk−1, ~p0 = ~b.

If the matrix A has n distinct real eigenvalues, one of which is 1 and the rest of which have
absolute value less than one, then

lim
k→∞

~pk = ~v

where ~v is an eigenvector associated with the eigenvalue 1.

Proof

We will assume that λ1 = 1. If this wasn’t true, we could just renumber the eigenvalues
and eigenvectors. Now using our closed form solution,

~pk = λk
1c1~v1 + λk

2c2~v2 + · · ·+ λk
ncn~vn,

we see that

lim
k→∞

~pk = lim
k→0

(λk
1c1~v1 + λk

2c2~v2 + · · ·+ λk
ncn~vn),

and, since λ1 = 1 and all the remaining eigenvalues have absolute value less than one,

lim
k→∞

λk
1 = 1

lim
k→∞

λk
2 = 0

...
lim

k→∞
λk

n = 0

and we see that

lim
k→∞

~pk = c1~v1.

Since any multiple of an eigenvector is an eigenvector, this completes the proof.
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Theorem 6 Consider the IVP

~pk = A~pk−1, ~p0 = ~b.

If the matrix A has n distinct, real eigenvalues, one of which is bigger than 1 and the rest
of which have absolute value less than 1, then, as usual, we can find a closed-form solution

~pk = c1λ
k
1~v1 + c2λ

k
2~v2 + · · ·+ cnλ

k
n~vk.

Suppose that λ1 is the eigenvalue that is bigger than 1. Notice that, after many years,
we see

~pk = c1 λk
1︸︷︷︸

grows

~v1 + c2 λk
2︸︷︷︸

dies out

~v2 + · · ·+ cn λk
n︸︷︷︸

dies out

~vk.

So, the vectors pk will continue to grow and look more and more like c1λk
1~v1 after many

years12.

Proof

The proof is left to the reader.

Although we haven’t covered all of the possibilities (For example, there might be several
eigenvalues that are bigger than one.), we have covered the possibilities that occur most
frequently. The other possibilities can be analyzed using the same ideas we used to analyze
the possibilities that we did cover.

Question 1 Using the techniques we’ve developed in the last few sections, determine the
long term behavior of the IVP

~pk =
[

0.4 0.2
0.6 0.8

]
~pk−1, ~p0 =

[
0.80
0.20

]
.

Question 2 Using the techniques we’ve developed in the last few sections, determine the
long term behavior of the IVP

~pk =
[

0.4 0.3
0.6 0.8

]
~pk−1, ~p0 =

[
0.80
0.20

]
.

12Note that if c1 = 0 then limk→∞ ~pk = 0.



“Experience with mathematical models of thought builds mathematical 
power – a capacity of mind of increasing value in the technological age

that enables one to read critically, to identify fallacies, to detect bias, to 
assess risk, and to suggest alternatives.  Mathematics empowers us to 

understand better the information-laden world in which we live.”
National Research Council, 1989

“Mathematics is the door and the key to the sciences.” Roger Bacon

“Difficulties strengthen the mind, as labor does the body.” Seneca

“All wish to possess knowledge, but few, comparatively speaking, are 
willing to pay the price.” – Juvenal

“The mind, when stretched by a new idea, never returns to its original 
shape.” Oliver Wendell Homes

“In the end, though, the success of the National Security Agency -- and by 
extension, the national security of the United States -- hinges on the 

health of American math education.”-James R. Schatz, National Security 
Agency

“There are no shortcuts to any place worth going.” – Unknown
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