
Introduction to Mathematica: Graphics in 2 Dimensions
Bob Bradshaw, Ohlone College

Simple Plots

The standard Plot command has the form Plot[expression,{x,start,end},PlotStyle->{settings}]

In[8]:= Plot@x^2, 8x, -2, 2<D;

-2 -1 1 2

1

2

3

4

You can also set the y values using the PlotRange option.

In[9]:= Plot@x^2, 8x, -2, 2<, PlotRange Ø 8-3, 10<D;

-2 -1 1 2

-2

2

4

6

8

10

The PlotRange option also allows you to show a graph on a large region than is actually used in the plot.

graphics_2d.nb 1

In[10]:= Plot@x^2, 8x, -2, 2<, PlotRange Ø 88-5, 5<, 8-3, 10<<D;

-4 -2 2 4

-2

2

4

6

8

10

Unlike Maple, Mathematica requires you to enter the options within the command, not after the graph is drawn.

In[11]:= Plot@x^2, 8x, -2, 2<, PlotStyle Ø 8Hue@0.5D<D;

-2 -1 1 2

1

2

3

4

Colors

Colors can be declared either by the Hue[#] or RGB[#,#,#] commands. Alternatively, loading the following package
allows you to use the name of the color.

In[12]:= << Graphics`Colors`

graphics_2d.nb 2

In[13]:= AllColors

Out[13]= 8AliceBlue, AlizarinCrimson, Antique, Apricot, Aquamarine, AureolineYellow, Azure, Banana, Beige, Bisque, Black,
BlanchedAlmond, Blue, BlueViolet, Brick, Brown, BrownMadder, BrownOchre, Burlywood, BurntSienna,
BurntUmber, CadetBlue, CadmiumLemon, CadmiumOrange, CadmiumYellow, Carrot, Cerulean, Chartreuse,
Chocolate, ChromeOxideGreen, CinnabarGreen, Cobalt, CobaltGreen, ColdGray, Coral, CornflowerBlue, Cornsilk,
Cyan, CyanWhite, DarkGoldenrod, DarkGreen, DarkKhaki, DarkOliveGreen, DarkOrange, DarkOrchid, DarkSeaGreen,
DarkSlateBlue, DarkSlateGray, DarkTurquoise, DarkViolet, DeepCadmiumRed, DeepCobaltViolet, DeepMadderLake,
DeepNaplesYellow, DeepOchre, DeepPink, DeepSkyBlue, DimGray, DodgerBlue, Eggshell, EmeraldGreen,
EnglishRed, Firebrick, Floral, ForestGreen, Gainsboro, GeraniumLake, Ghost, Gold, Goldenrod, GoldOchre,
Gray, Green, GreenishUmber, GreenYellow, Honeydew, HotPink, IndianRed, Indigo, Ivory, IvoryBlack, Khaki,
LampBlack, Lavender, LavenderBlush, LawnGreen, LemonChiffon, LightBeige, LightBlue, LightCadmiumRed,
LightCadmiumYellow, LightCoral, LightGoldenrod, LightGray, LightPink, LightSalmon, LightSeaGreen,
LightSkyBlue, LightSlateBlue, LightSlateGray, LightSteelBlue, LightViridian, LightYellow, LimeGreen, Linen,
Magenta, ManganeseBlue, Maroon, MarsOrange, MarsYellow, MediumAquamarine, MediumBlue, MediumOrchid,
MediumPurple, MediumSeaGreen, MediumSlateBlue, MediumSpringGreen, MediumTurquoise, MediumVioletRed,
Melon, MidnightBlue, Mint, MintCream, MistyRose, Moccasin, Navajo, Navy, NavyBlue, Oak, OldLace, Olive,
OliveDrab, Orange, OrangeRed, Orchid, PaleGoldenrod, PaleGreen, PaleTurquoise, PaleVioletRed, PapayaWhip, Peach,
PeachPuff, Peacock, PermanentGreen, PermanentRedViolet, Peru, Pink, Plum, PowderBlue, PrussianBlue, Purple,
Raspberry, RawSienna, RawUmber, Red, RoseMadder, RosyBrown, RoyalBlue, SaddleBrown, Salmon, SandyBrown,
SapGreen, SeaGreen, Seashell, Sepia, Sienna, SkyBlue, SlateBlue, SlateGray, Smoke, Snow, SpringGreen, SteelBlue,
TerreVerte, Thistle, Titanium, Tomato, Turquoise, TurquoiseBlue, Ultramarine, UltramarineViolet, VanDykeBrown,
VenetianRed, Violet, VioletRed, WarmGray, Wheat, White, Yellow, YellowBrown, YellowGreen, YellowOchre, Zinc<

To see what these colors are, see the colors.nb notebook http://online.ohlone.edu/math/bbradshaw/math111/colors.nb

Options

Mathematica has a full set of options for controlling every characteristic of your graph. For full details, see plot_options.nb
(http://online.ohlone.edu/math/bbradshaw/math111/plot_options.nb) and plot_style.nb
(http://online.ohlone.edu/math/bbradshaw/math111/plot_style.nb)

In general, PlotStyle controls the appearance of the curve while PlotOptions controls the appearance of the entire graph.

For example, we can change the thickness of the curve using either the Thickness or AbsoluteThickness options in
PlotStyle.

The thickness of a curve is set as a percentage of the width of the domain.

In[14]:= Plot@x^2, 8x, -2, 2<, PlotStyle Ø 8Hue@0.5D, Thickness@0.05D<D;

-2 -1 1 2

1

2

3

4

graphics_2d.nb 3

You can also set the thickness of a curve in terms of points (12 points per inch.)

In[15]:= Plot@x^2, 8x, -2, 2<, PlotStyle Ø 8Hue@0.5D, AbsoluteThickness@5D<D;

-2 -1 1 2

1

2

3

4

Combining Plots

Two graphs can be combine either by placing them in one statement or by graphing separately and then combining the
results.

To graph two curves simultaneouosly, use braces { } around the functions.

In[16]:= Plot@8x^2, 4 - x<, 8x, -3, 3<D;

-3 -2 -1 1 2 3

2

4

6

8

To include options, each function has its own set of options in PlotStyle, again enclosed in braces.

graphics_2d.nb 4

In[17]:= Plot@8x^2, 4 - x<, 8x, -3, 3<,
PlotStyle Ø 88Hue@0.5D, Thickness@0.02D<, 8Hue@0.01D, Thickness@0.09D<<D;

-3 -2 -1 1 2 3

2

4

6

8

The second way to combine plots is by naming separate plots, and then combining them by using the Show [] command.

In[18]:= p1 = Plot@x^2, 8x, -2, 2<, Background Ø Raspberry,
PlotStyle Ø 8DarkTurquoise, Thickness@0.02D<D;

p2 = Plot@x^2 + 2, 8x, -2, 2<, Background Ø Raspberry,
PlotStyle Ø 8Black, Thickness@0.02D<D;

p3 = Plot@x^2 + 4, 8x, -2, 2<, Background Ø Raspberry,
PlotStyle Ø 8MintCream, Thickness@0.02D<D;

Show@
p1,
p2,
p3D;

-2 -1 1 2

1

2

3

4

-2 -1 1 2

3

4

5

6

graphics_2d.nb 5

-2 -1 1 2

5

6

7

8

-2 -1 1 2

2

4

6

8

Notice that ending the Plot command with a semicolon only supressed the "Graphics" output, not the graph itself.
To supress the graph, use DisplayFunction->Identity.
To resume displaying a graph, use DisplayFunction->$DisplayFunction

In[22]:= p1 = Plot@x^2, 8x, -2, 2<,
Background Ø Mint,
PlotStyle Ø 8Tomato, Thickness@0.02D<,
DisplayFunction -> IdentityD;

p2 = Plot@x^2 + 2, 8x, -2, 2<,
Background Ø Mint,
PlotStyle Ø 8Black, Thickness@0.02D<,
DisplayFunction -> IdentityD;

p3 = Plot@x^2 + 4, 8x, -2, 2<,
Background Ø Mint,
PlotStyle Ø 8MintCream, Thickness@0.02D<D;

Show@p1, p2, p3,
DisplayFunction Ø $DisplayFunction,
Frame Ø True,
FrameStyle Ø 88Blue, Thickness@0.017D<,8Red, Thickness@0.012D<,8Blue, Thickness@0.012D<,8Green, Thickness@0.012D<<D;

graphics_2d.nb 6

-2 -1 1 2

5

6

7

8

-2 -1 0 1 2
0

2

4

6

8

Typical Plotting Problems

The plotting routines are not perfect.This is supposed to be the graph of a circle.

In[26]:= y3 = Sqrt@9 - x^2D;
y4 = -y3;
Plot@8y3, y4<, 8x, -10, 10<D;

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

The error messages are due to the function being undefined at x = -10, etc. However, there are also gaps in the graph and the
graph is oval, not circular.

We can fix the errors and the gaps by changing the domain.

graphics_2d.nb 7

In[29]:= Plot@8y3, y4<, 8x, -3, 3<D;

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

We can fix the oval by using the AspectRatio option.

In[30]:= Plot@8y3, y4<, 8x, -3, 3<, AspectRatio Ø AutomaticD;

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Piecewise Functions

Mathematica can create and graph piecewise continuous functions. To create a piecewise function, use the /; notation to
specify the domain. Notice that the resulting graph is incorrect since it is shown as being continuous.

graphics_2d.nb 8

In[31]:= f@x_D := x ê; x < 2
f@x_D := 9 ê; 2 § x § 5
f@x_D := 10 - x ê; x > 5
Plot@f@xD, 8x, -5, 10<D;

-4 -2 2 4 6 8 10

-4

-2

2

4

6

8

A more compact but harder to read version of the same function can be created using the Which command.

In[35]:= h@x_D := Which@x < 2, x, 2 § x § 5, 9, x > 5, 10 - xD
In[36]:= Plot@h@xD, 8x, -5, 10<D;

-4 -2 2 4 6 8 10

-4

-2

2

4

6

8

In order to create a discontinuous graph, plot the portions separately and then combine using the Show command.

graphics_2d.nb 9

In[37]:= p1 :=
Plot@f@xD, 8x, -5, 2<, DisplayFunction Ø Identity, PlotStyle Ø 8Red, Thickness@0.03D<D;

p2 := Plot@f@xD, 8x, 2, 5<, DisplayFunction Ø Identity,
PlotStyle Ø 8Blue, Thickness@0.03D<D;

p3 := Plot@f@xD, 8x, 5, 10<, DisplayFunction Ø Identity,
PlotStyle Ø 8Green, Thickness@0.03D<D;

Show@p1, p2, p3, DisplayFunction Ø $DisplayFunctionD;

-4 -2 2 4 6 8 10

-4

-2

2

4

6

8

Plotting a List of Points

Mathematica can create a graph of list of points in a couple of ways. One way is to create a list of points and then use the
ListPlot command.

In[41]:= mypoints = 881, 3<, 82, 2<, 83, 6<, 84, 7<, 85, 1<<
ListPlot@mypoints, PlotStyle -> PointSize@0.03DD;

Out[41]=

i
k
jjjjjjjjjjjjjjjjjjjj

1 3
2 2
3 6
4 7
5 1

y
{
zzzzzzzzzzzzzzzzzzzz

2 3 4 5

2

3

4

5

6

7

graphics_2d.nb 10

If you have a large number of data, entering the data in this form can be tedious. Instead, you can use the table editor. Enter
the name of your data and then the "=" sign. Next choose Input->Create Table/Matrix/Palette (or ˜ ‚ C) and
choose the Table option. Enter the number of rows and columns, close the dialog box and then enter the data in the table.
You can use the Í key to move between cells.

In[43]:= mypoints2 =

5 2
6 14
7 20
8 11
9 15

Out[43]=

i
k
jjjjjjjjjjjjjjjjjjjj

5 2
6 14
7 20
8 11
9 15

y
{
zzzzzzzzzzzzzzzzzzzz

In[44]:= ListPlot@mypoints2, PlotStyle Ø 8Red, PointSize@0.04D<D;

6 7 8 9
2.5

7.5

10

12.5

15

17.5

20

For some reason I don't understand, the axis is above the last point. This can be fixed using the option PlotRange.

In[45]:= ListPlot@mypoints2, PlotRange Ø 880, 10<, 80, 25<<, PlotStyle Ø 8Red, PointSize@0.04D<D;

2 4 6 8 10

5

10

15

20

25

graphics_2d.nb 11

You Try It!

1. Graph the following equation. Adjust the x and y values to create an appropriate viewing rectangle.
y = 58 x4 – x3 + 6 7 x2 – x + 1

2. Adjust the above graph so that the axes are in a large font. Also create a title for the graph.

3. Create a single graph containing the graphs of the following functions on the interval –2p < x < 2p using three
different colors and line thicknesses.

y = sin(2x), y = 2sin(2x),and y = 3sin(2x)

4. Create a single graph containing the graphs of the following functions, using three different symbols. The graphs
should consist of points, not a smooth curve.

y = ln(x) ,y = ln(2x), and y = ln(3x)

5. Create the graph of a piecewise function of your choice using both methods listed above.

graphics_2d.nb 12

