MA206 – Probability & Statistics
Monte Carlo Simulation 


Monte Carlo Simulations are statistical simulation methods where statistical simulation is defined as any method that utilizes sequences of random numbers to replicate real-world occurrences.  Although Monte Carlo Simulation has its roots in the gambling casinos of Monaco, it is now regularly used in many diverse applications, from the simulation of complex physical phenomena such as radiation transport in the earth's atmosphere to the simulation of something as simple as a game of Bingo.

The goal of the Monte Carlo Method is to simulate the physical (or mathematical) system of interest by random sampling from its CDF(s).  We can more clearly define Monte Carlo Simulation as a scheme of employing Uniform(0, 1) random numbers to help solve certain problems that are generally static in nature.  Monte Carlo simulation is now widely used to solve problems that are often not easily solved analytically.  The simulation includes a large number of trials where we utilize the collective results to infer a solution.
Sampling from Distributions by Simulation using Uniform(0,1) Numbers

Suppose we know that a particular random variable has an Exponential(
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) Distribution.  The problem here is that we would like to create numbers that fit this distribution in order to simulate this random variable.  If we know that most computer programming languages (Excel and Mathematica included) can produce Uniform(0,1) numbers, how can we use this to produce Exponential(
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) numbers?  In order to answer this question, we must review inverse functions.


A function 
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.  By substituting 
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, we see that 
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.   If we plot the function 
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, we can see the relationship between the numbers on the y-axis and the numbers on the x-axis.  In order to more clearly demonstrate this concept, we will conduct an example on the following page.

Example:  Find the inverse for the function 
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(1)  Set the function equal to y and solve for x.
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(2)  Now that we think we’ve found the inverse, let’s substitute it back into the definition of an inverse to make sure.  Is 
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(3)  Now let’s graph 
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What is 
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?  In order to find an approximate value from the graph, we would start at 2 on the x-axis and move up to the curve.  From there, we move to the left until we reach the y-axis.  This gives the functional value for x = 2.  Follow the arrows in Figure 1 to see that 
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(4)  If this is the case, then what is 
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?  Using the information above (
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.  In order to get this information from the graph, we would do the reverse of the process described above.  Start at 8 on the y-axis and move to the right.  Once you arrive at the function move down until you reach the x-axis.  This will be the value for the inverse (see Figure 2).

Now that we have reviewed inverse functions, let’s look at a CDF and review some of its properties.  Remember that a CDF is the cumulative distribution function and CDFs only have ranges between 0 and 1.  As you can see from Figure 3, the Exp(
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) CDF starts at 0 and as the x values move toward ∞, the function gets closer and closer to 1.  If we wanted to produce the numbers on the x-axis from the numbers on the y-axis, then we would want to find the inverse of the CDF.  For example, if you randomly chose 0.65 from the Uniform(0,1) distribution, to what Exp(
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)  number would that correspond?  If you follow the arrows on Figure 3, then you should see that given a Uniform(0,1) number (y-value), we can find the 

x-value by substituting the y-value into the inverse CDF function.  For this example, 
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Let’s see if we can actually find the functional form of the inverse.  If we would like to sample from an Exponential(
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) distribution, then we know the CDF is 
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.  Instead of setting the function equal to y, let’s set it equal to p:  
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 and then solve for x.  
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Once we have this equation, then we can take Uniform(0, 1) numbers and substitute them into the equation above (for p) in order to produce Exponential(
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) numbers.  For the example above (where p = 0.65), we get 
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Why does a Uniform(0,1) number produce these exponential numbers?  Look at the CDF again and you will see why.  If you substitute a random number between 0 and 1 (that is a Uniform(0,1)) into the inverse CDF, then 65% of the time the resulting x-value is less than 10.4982, 80% of the time the x-value will be less than ~ 16.5, and so on.  The numbers that you get out of the inverse function will follow the same pattern as the CDF.

Simulation and the EDF

  With simulation, we can sample from different distributions and model situations that are very complex (contain more than one type of distribution).  Often a large system or process is composed of several different subsystems, each of which follows a different known probability distribution.  Although we may know a great deal about each individual subsystem (via the PDF/CDF), we don’t have much information about the behavior of the system as a whole (we don’t know its distribution).  Generally speaking, there are no set rules regarding what happens when you add subsystems that follow different distributions together.  In order to determine the distribution that results from the composition of several different subsystems, we rely on the power of simulation.  We accomplish this by using the procedure above to sample from the distributions of the applicable subsystems, add the results together to simulate the system as a whole, use an EDF to model the complete system, and finally fit a known continuous distribution to the EDF (approximate the previously unknown distribution of the system as a whole).  


An example of this would be applying a simulation to the amount of cars that a production line should be able to produce in a day, given that we know the distributions of the amount of time each step in the auto manufacturing process takes (but not the process as a whole).  The purpose of a simulation in this case would be twofold.  First of all, by approximating the distribution of the production line as a whole, we could answer various probability questions about the production process.  In addition, by simulating the behavior of the entire production process as the sum of individual steps, we could use our ability to change parameter values of individual steps’ distributions in order to analyze the overall effect of various production line improvements.  In this scenario, an accurate computer simulation would be an extremely valuable asset (in terms of time and money saved) to the production line manager.

Figure 1: � EMBED Equation.3  ���



Figure 3:  CDF – Exponential (1/10)



Figure 2: � EMBED Equation.3  ���
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