Bayes Rule – “updating” beliefs based upon new information
Additional Reading:  Devore section 2.4 pages 67-74
Suggested problems: Section 2.4 problems 64, 65 and 67, SM problems
Objectives:
1. Understand the ideas of Bayesian updating to include prior and posterior probability distributions
2. Use “tree diagrams” to compute posterior probabilities (implementing Bayes’ Theorem)
3. Understand and use the likelihood ratio to update prior odds
BACKGROUND
On page 6 of Devore is the picture similar to Figure 1 below, which nicely describes the flow of MA206.  We began the semester with data (a sample) and used a representation of the sample (the EDF) in order to develop and fit possible models for the population producing the observed sample (the lower arrow from sample to population).  We then explored these probabilistic models and their properties.  The knowledge gained about population models led us back to the sample – we were able to recognize that there are probabilities of obtaining sample values from the population (the upper arrow from population to sample).  This led to the ability to make some inference about the population parameters (such as the mean) using confidence intervals and hypothesis testing (the bottom arrow from sample to population).
[image: ]
[bookmark: _Ref203462854]Figure 1:  The relationship between probability and statistics
This process and way of thinking is extremely useful in life regardless of whether one uses actual statistical techniques to perform the inference.  We are regularly given “samples” – data that we observe, collect, experience – and use this data to form beliefs about the true state of the world (the population parameters).  Understanding that what we observe is generally only a sample, and sometimes a very small sample at that, should help in making more informed and reasoned decisions (inferences).  However, it is interesting to take note of how often principles of this course are ignored – people regularly make assumptions about the world around them based on very limited data…even a single data point.  And they are sometimes 100% sure the conclusion is correct!  In recent years we have seen this many, many times in the political arena with polls.  Watch election coverage and you will see candidates declared the winner in a state/county with very little of the vote actually counted based upon “exit polls”.  Unfortunately, this has caused some real problems as these results are sometimes wrong.  A more trivial example that has led to phenomenol TV ratings occurs weekly on the show “Deal or No Deal”.  Sit back and observe people making decisions and drawing conclusions sometime.
MA206 students know better of course.  However, the process of inference we have seen in this course is not the end of the story.  Generally, as we process more data we not only determine how sure we are of our estimates but we are led to “update” or change those estimates.  And as more data arrives we may continue to update and change estimates…it is an iterative process that sometimes never really ends.  For example, suppose as a Lieutenant you are in Iraq and have intelligence from a local Iraqi about possible insurgent activity in a certain location.  Obviously this is useful information, but the “inference” you draw from this may not be strong enough to cause you to commit all assets to attacking that location.  Why?  You just have one data point – a small sample.  Instead, you decide to send out a patrol.  Suppose that patrol reports suspicious (but inconclusive) activity in that same area.  Are you more likely to lend credence to the citizens’ report?  Of course!  Are you now “certain” about the insurgents’ location?  No – but more certain than before. 
The process of “updating” beliefs about a parameter estimate are central to a statistical approach known as Bayesian Statistics.  In the book “Super Crunchers” , Ian Ayres suggests there are “two valuable quantitative tools for the man or woman of the future.”  One is an understanding of variability (standard deviations – basically the idea of a confidence intervals rather than simple point estimates) and the second is Bayesian intuition and principles.  
Bayesian statistics is based upon Bayes’ Theorem, which first appeared in a paper by Reverend Thomas Bayes discovered among his possessions after his death .  Surprisingly little is known about Bayes other than that he (like his father before him) was a non-conformist minister.  He published a few mathematical papers, but it was the work published after his death in 1763 that has had a profound effect on modern statistics.  Bayesian statistics, like the namesake, is sometimes viewed as “non-conformist” among traditional statisticians.  However, this value of the Bayesian approach continues to gain momentum.  Regardless, the way of thinking – the notion of using new information effectively to update beliefs – has utility beyond mere statistical lessons.
BAYES THEOREM and the PROBLEM
Bayes’ Theorem is given in our textbook (page 73):
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Obvious right?  Actually, the formula looks very complicated, but the intuition is not.  We will approach understanding this formula using an example and tree diagrams (note: example 2.30 in Devore is similar).  Our example is taken from “Super Crunchers” (Ayres, 2007) and involves screening for breast cancer.  One percent of women at age forty have breast cancer.  The small percentage makes taking drastic action (like cancer therapy) silly…except to the one in one-hundred women who actually do have cancer (if left untreated the cancer is fatal but, if caught early, breast cancer treatment is generally effective.)  This is where a screening test and Bayesian updating are valuable.  Mammograms are 80% accurate in detecting breast cancer if the woman has it.  Further, they are 90% accurate when a woman is cancer free (i.e. 10% of the time they give a “false positive” – reporting cancer when it is not there).  These error rates seem pretty high, but even so provide the patient valuable additional information.  Suppose you know someone who just had a positive mammogram.  What is the probability they have breast cancer?  Alternatively, suppose you know someone with a negative mammogram…what is their probability of cancer?  
To answering these questions we would want to find:

	.

With no test results, we have a “prior” belief for - here the obvious choice for this is the probability of breast cancer in the overall population (0.01 for a forty year old woman).  We also know the probability of a positive (negative) test result given the woman has cancer (or doesn’t – “N”):	

		
The probability we want involves “flipping” the order in these probability statements…TREE FLIPPING (a great deal of fun!)  In the example below we will only consider the first question (the person with a positive mammogram)…as you follow along, see if you can answer the second question for the person with a negative mammogram.
TREE DIAGRAMS and BAYES’ THEOREM
The “prior” probability tree contains a single level with two branches (C and N for “has cancer” or “doesn’t have cancer”).  Recall that 1% of forty year old women have breast cancer so, prior to a mammogram the prior probability tree might be:
[image: ]
Note that the choice of prior probability here is far from a certainty.  We chose the population probability.  However, different women might assign a different probability based upon a variety of other things – family history, self-exam etc.  We will discuss the choice of prior probabilities further later and in class.  This is by far the most controversial element of Bayesian analysis.  However, if asked most of us probably could assign some “prior” to most events – we don’t think about it, but do have levels of belief that actually drive our actions.  
The next step in building the tree diagram is to add the new information obtained as a result of the test.  This next set of branches is known as the “likelihood” and gives the probabilities for obtaining the test results given the prior condition.  Recall that the mammogram is correct 80% of the time when a woman actually has cancer and 90% of the time when a woman does not have cancer.  This leads to the second level of the tree shown here:
[image: ]
Take a second to “read” the “paths” along the tree.  For example, the top “path” says there is a 1% chance a woman aged 40 has cancer.  The next piece of the tree says that, GIVEN a woman has cancer, there is an 80% chance of a positive mammogram.  Thus, at this point, the tree diagram is simply a nice way to record what we know about breast cancer and mammography.
We can add one additional piece of information to the tree – the “marginal likelihood” – by simply multiplying the probabilities along each of the (in this case four) paths formed by the tree.  In essence, we are using the definition of conditional probability (see Devore page 68 equation 2.3), but solving for the intersection of the events (disease status and test result).  For example, the first tree path is C (has cancer) and + (positive mammogram).  The probability a patient both has breast cancer AND tests positive is computed:

	
This result is somewhat intuitive…one might naturally think multiplying probabilities along the path would yield the probability for that branch of the tree.  See if you can compute the corresponding probabilities for the other three branches.  You should obtain the values which yields the complete tree below describing the given information.  Note a few simple techniques to check accuracy which also help understand the tree.  The sum of “marginal likelihoods” for sub-branches should equal the probability for the main branch.  For example, the probability of cancer is 0.01.  Thus, the probability of a positive test and cancer (0.008) added to the 0.002 probability of a negative test and cancer equals 0.01.  The same can be done in the bottom half of the tree.  Further, adding all four “marginal likelihoods” results in a total probability of one.    
[image: ]
Now comes the fun part – the “tree flip”.  In the new tree, we want to START with the test result and GIVEN how the test result came out, compute the probability of cancer (recall this was the original question our friend asked – she had a positive mammogram and wants to know the probability she actually has breast cancer).  Thus, the first split is whether the test result is positive or negative.  In particular, we are considering the case of a positive test – we see from our original tree that there are two paths that produce such a mammogram:  the subject can have cancer and a positive test or not have cancer with a positive test (the 1st and 3rd paths along the tree).  Thus, the probability of a positive test is the sum of these two cases or:

	
Before we move on with building the new tree, this computation deserves a quick comment.  This is the “law of total probability” shown in Devore on page 72 (look at the picture on that page in particular).  Notice that the two probabilities we added were computed by multiplying along the tree branches (the prior probability times the likelihood) so we could rewrite the expression to look like that in the text:
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Thus, while the formula looks intimidating, the law is pretty intuitive…simply says to get the probability of an event (like a positive mammogram) simply add up the probabilities from all the different ways you can observe this event (a patient with cancer or without cancer can have a positive mammogram).
Back to our new tree – we can now look at the first split (considering only the positive test result at this point since that is the result our friend had):
[image: ]
Now, the next branches on the tree are the ones we care about – whether the person has cancer or not.  Looking at this for only positive tests, the tree we want to complete is:
[image: ]
The trick here is to look at the two paths of interest – one is a positive test and cancer, the other is a positive test and no cancer.  We have seen these two paths before, just not in the same order.  However, the order does not matter – the probability of the intersection is the same:

	
This is also intuitive – “read” the equations about out loud…for example “the probability of having cancer and a positive mammogram equals the probability of a positive mammogram and having cancer”.  Thus, we actually know more about our “flipped” tree:
[image: ]
This new tree should make a lot of sense – there is a 0.107 probability of a positive test and this probability can be broken into two probabilities (cancer or not) with probabilities adding to 0.107.  Recall our 0.107 came from adding the 1st and 3rd branches of the original tree.  The reordering of test result first then cancer has made these two branches the 1st and 2nd of the “flipped” tree.  Looking at this result, given a positive test, is the patient more likely to have cancer or not?  Note that the branch with no cancer actually has a much higher total probability than that of the cancer branch!  Can you tell why (hint: look at the original tree)?


The final step is to compute the quantity we really care about – the probability a person with a positive test result has cancer.  Looking at the partial tree above, can you guess how to do so?  There are actually a couple of ways to think about this.  One is that we want to find  so that the probabilities along the cancer and positive test branch multiply together to 0.008 (the overall probability of that branch).  In other words, we need to solve the equation .  The other way is a bit more intuitive: think about the proportion of the “test positive” group that has cancer and the proportion that doesn’t.  For those having cancer, that proportion of the total testing positive is 0.008 of 0.107 or the solution:    

	.
Before moving on, let’s stop and consider where the computation above came from by looking at the original tree.  The two numbers in our ratio are the probability a subject has cancer AND tests positive (numerator) and the probability a subject tests positive (denominator):

.
The denominator (as we have already seen) is the sum of two probabilities – a woman can test positive whether she hasving cancer or not.  Thus, we can further expand the expression:



Take a second to look at this formula – it is somewhat intuitive.  As a final step, consider how we computed each of the two intersection probabilities in our tree.  Both represent a “branch” or path of the tree and were the product of the two probabilities along these paths (as discussed in the “law of total probability” and equation ).  Replacing the intersections with these products gives us:
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The final expression is exactly the formula for a general case of Bayes’ Theorem as given in equation .  Take a minute to compare the two equations to see that this is the case.  Perhaps this formula still looks somewhat intimidating, but keep in mind how easily we could do the calculation by using our tree(s) to guide us!

A similar calculation for the probability of not having cancer given a positive test allows us to fill in the positive test half of the tree:
[image: ]
The result (as shown) is the “posterior distribution” for the probability a patient has cancer given they had a positive mammography.  In other words, it is an “updated” probability distribution to account for the NEW INFORMATION provided by the mammography test.  Recall the “prior distribution” gave the probability of cancer as 0.01 (and not cancer therefore 0.99).  The positive screening test result has changed those probabilities.  As expected the probability of having cancer increases (to 0.075).  Notice that the new probability of cancer, while it has increased, is still pretty low.  This may be surprising – after all, the mammography was positive.  Why didn’t the probability increase more (to 1 or to 0.80 for example)?  The reason is clear from looking at our first “unflipped” tree.  Since 99% of women don’t have cancer, even with only a 10% false positive rate there are still more women without cancer having positive mammograms than there are those with cancer!  
Think about this very simple numerical example:  suppose we have 1000 forty year old women and 99% do not have cancer (990).  For the 10 with cancer, we would expect 8 to have positive mammograms (80% accuracy).  For the 990 without cancer, we would expect 99 (10%) to test positive.  Thus, of the 107 testing positive only 8 (or 0.75%) actually have cancer.  

The UPDATING “FACTOR”
A closer look at the formula in equation  (Bayes’ Theorem for our mammography example) reveals that we “update” the prior probability by multiplying it by a single number.  Here is what we mean – Bayes’ Theorem (in the final form) was:

	.
We “pull” the prior probability of cancer out of the numerator to give:
	 
Thus, to obtain the updated probability of cancer given a positive test result, we take the prior probability (0.01) and multiply it by a single number – the “updating factor” above.  A closer look at this factor is definitely in order.  In our example, the factor equates to:

	.

We see that the “updating factor” here is 7.5, so we multiply our prior probability of 0.01 by 7.5 to give a new probability of cancer of 0.075 (no surprise!).  But the updating factor gives us even more insight.  Notice that it is a ratio of the probabilities of positive test results for those with and without cancer EXCEPT that these probabilities are “weighted” in the denominator by the prior probability of cancer (in the expression above).  Why, and what does this mean?  We answer that by exploring a few examples of different prior probabilities and their impact on the factor:
Case one: prior probability of cancer 1


In this case, we are 100% sure that the patient has cancer – thus, the updating factor is 1…we will not change our prior belief (regardless of the mammogram results.)  All of the “weight” of the prior moves to the test result based upon the person having cancer.  Note that this is the smallest value the updating factor can be for a positive test (a positive test will increase the prior probability of cancer).  If we were looking at the negative test result a 1 would be the largest possible value.  
Case two: prior probability of cancer 0

	
The updating factor is now as large as it can be – eight (since the probability of a positive test result is 8 times as high if the person has cancer).  In this case, a positive test result causes us to multiply the prior probability by the largest amount we can (of course, 0 times 8 is still zero).  Note that our example problem is very close to this case – we have a very large updating factor (7.5).  Thus, we increase our prior probability by as much as possible.  Why?  A positive test result sends a very different message than our prior probability suggested.  We initially thought the probability of cancer was very low (0.01).  The positive mammogram disagrees with this assessment so we increase the probability by 7.5 times.
Case three: prior probability of cancer 0.5
This is a case where we are completely unsure about the chance of cancer (basically a “coin flip”) prior to the mammogram.  Can you guess what the updating factor will be and why?

	
In this case, the updating factor is between the smallest (1) and largest (8) possible values obtained in the first two examples.  However, notice the impact on the prior probability is 1.8 x 0.5 = 0.9!  Why does the probability change so much?  Before the test, we had no estimate about the likelihood of cancer.  Thus, the positive test result gives us a great deal of new information and we change our belief to a very high probability.
Thus, we see several things about updating probabilities:
· The more information the test provides, the greater the change in probability.  In our example a positive test is 8 times as likely for a person with cancer (0.8 vs. 0.1) so the largest updating factor is 8.  If the test was even more discerning (like 0.99 vs. 0.01) the amount our probability would change would increase.  On the other hand, if the test is just as likely to be positive regardless of cancer status the factor would be 1 (we would not change our belief based upon the test result)
· The more sure we are prior to the test, the larger (or smaller) the updating factor – this is because a test result that differs from our prior probability suggests that our prior probability is not correct.
· The more sure we are prior to the test, the less absolute change in probability – even with a large updating factor in our example we only increased the probability from 0.01 to 0.075.  In case 3 we changed probability from 0.5 to 0.9.  Even though the test might suggest differently, we still have strong prior evidence to suggest the chance of cancer is not high (as shown in the simple numerical example given earlier) since many without cancer might easily test positive.
The LESSONS/ISSUES of BAYES’ THEOREM
1.  The role of prior probabilities
The discussion in the previous section hints at an important learning point – prior estimates can play a very strong role in the ultimate estimate one makes after seeing new data/information.  This is important in two ways – the first is that prior probabilities are often not considered in analysis (see next section for consequences).  The second is that the CHOICE of prior probabilities makes a difference, and sometimes is relatively subjective.  This latter point is the criticism traditional (“frequentist”) statistician levy at the Bayesian approach.  Consider our example.  We assigned a prior probability of 0.01 that a woman had breast cancer.  This assignment was data driven – we used the “average” rate for woman of the given age.  However, how good is that choice for the woman we are concerned about?  Perhaps she has a family history of breast cancer in which case the prior probability should be higher.  Perhaps there are other factors that increase/decrease risk of breast cancer.  There are a number of other reasons why using the average for all women might not be the best estimate for one.  In some Bayes’ settings the prior probability choice is even more subjective than this example.  One should be careful not to use this to get the desired result.  However, as stated at the beginning of this reading, we all have underlying beliefs about things whether we choose to quantify them or not, and they are often very subjective. 
2. Consequences of ignoring Bayes.  
There are two primary ways that people “ignore” Bayesian precepts.  The first, and most common, is failing to account for the “prior” probabilities.  Thus, a person simply uses the probability associated with the test or new data they observe.  In our example, the mammogram is the new data.  Thus, a person ignoring the prior probability is likely to just use the 80% accuracy rate of the mammography as their probability of having cancer.  Since breast cancer has a very high risk, this overestimate of the probability is probably not a bad thing in this case – “better safe than sorry”.  However, it is easy to see situations where such an overestimate can be problematic and would result in a lot of unnecessary (and possibly painful and expensive) treatments.  For example, Down Syndrome is a rare disease that can be detected with near 100% accuracy during pregnancy using an amniocentesis.   The problem is that the amniocentesis has a high risk of miscarriage.  Suppose there is a screening test with similar accuracy to the mammogram for Down Syndrome that is safe.  Consider the implications of failing to consider the prior probabilities.  A woman testing positive on the screening test might assign and 80% probability of her child having Down Syndrome when the true probability is under 10%.  She could then, needlessly, risk a miscarriage by having an amniocentesis.  Fortunately, there are now as many as 4 screening tests for Down Syndrome that can help women make this difficult decision more carefully…assuming they take advantage of Bayes’ Theorem.
The second failure is not “updating” prior probabilities based on new information.  In our example, this seems unlikely (people tend to take notice of positive mammography results) but in life it is not uncommon for people to ignore new information if it does not agree with a “prior” belief.  Just watch “Deal or No Deal” to see numerous examples of people ignoring “new information” as it arrives.
UPDATING ODDS AND THE LIKELIHOOD RATIO
Bayesian “updating” is particularly simple in the case of the “odds”.  The odds of an event are the ratio of the probability the event occurs and the probability it doesn’t.  So, for example, suppose the probability of winning a game is 0.2.  The odds are:

	.
Often the odds are not expressed in this way, but rather as 4 to 1 (meaning four times as likely to lose as win.)
Applying this to our example consider the “posterior” odds of cancer for a person testing positive.  Earlier we developed an expression for the probability of cancer given a positive test using Bayes’ Theorem:
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A similar expression is easily developed for the probability of no cancer given a positive test:
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Combining the probability statements in  and  the odds of cancer given a positive test are:

	.	
Now, that is an ugly looking expression!  But notice that the denominators (which are basically the probability of testing positive…recall the “law of total probability” from earlier) are the same and therefore this expression is easily simplified: 

	.	
Looking even more closely, we see there are two terms in these posterior odds.  The first term is the “prior odds” of having cancer.  Thus, to find the posterior odds we simply take the prior odds and multiply them by a single number…this number is known as the “likelihood ratio (LR)”.  The equation is thus just:
[image: ]
The two odds terms are pretty clear – let’s look a little more closely at the “updating” term…the LR.  We have the ratio of probabilities of testing positive (one given a patient has the disease the other not).  Thus, if the positive result is much more likely for those with disease (normal) the odds increase given a positive test.  If, however, the test is just as likely to be positive regardless of disease (not a good test) the odds don’t increase.
Let’s apply this formula to our mammography example.  The prior odds are:

	
(or 99 to 1 odds a forty year old woman has breast cancer).  Meanwhile the likelihood ratio is:

	,
meaning the test is 8 times as likely to be positive for a person who has cancer.  This results in updating the odds:

	.
Thus, the odds go from 99 to 1 to 99 to 8 (about 12 to 1) after a positive mammography result.  Note that this is exactly the odds we get using the posterior probability distribution from the previous section.  The posterior probabilities were 0.075 of having cancer and 0.925 not having cancer for a positive test leading to odds of 0.075/0.925 or about 0.081.  Compare this to 8/99 = 0.081 (rounding of the probabilities accounts for any differences.)  
Using the odds makes the updating process very simple…all that is needed is the likelihood ratio to compute the new odds based upon additional information (the test).
PROBLEMS
1.  For the mammography tree determine the “posterior” distribution of cancer for women testing negative.  What conclusions do you draw?  How should a negative mammography be viewed by patients?
2. What happens to the “posterior” probabilities for those testing positive if the mammography was more accurate (say 99% correct for both positive and negative readings)?
3. Compute the “posterior” odds of having cancer for a patient who has a negative mammography and interpret your results (compute them using method of updating prior odds with the LR and compare to the odds using the posterior probabilities computed in problem 1.)
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