Beats – Analytic Formulation
ODE – undamped system with natural frequency ω0 and driven at ω:
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Solution, in phase-shifted form (assume initial displacement and initial velocity are zero):
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Solution, with trig identity applied:
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                          High frequency response     

                                                                Low frequency envelope
(ω0 and ω closer together means lower envelope frequency, which means the more time that the amplitude has to grow)

Resonance – Analytic Formulation

Starting with beats, from above:
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Rewrite as: 
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                          This ratio approaches t as ω0 –ω approaches 0 (by L’Hopital’s rule)                                                      
Therefore as ω approaches ω0, the solution approaches:




                          High frequency response     

                                                          Solution grows linearly with t!
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