
MA 371 Homework 1. Selected solutions
Problem 1 (c), (d). Any vector, w = (w1, w2, w3, w4, w5) which is orthogonal to

v1 = [0, 2, 1, 0, 2],v2 = [1, 0, 0, 2, 0],v3 = [0, 1, 2, 0, 1], and v4 = [2, 0, 0, 1, 0] must satisfy
w · vi = 0 for i = 1, 2, 3, 4. This can be formulated in matrix form as




0 2 1 0 2
1 0 0 2 0
0 1 2 0 1
2 0 0 1 0







w1

w2

w3

w4

w5




= 0.

The RREF of A is




1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


, from which is easy to see that any scalar multiple

of the vector




0
−1
0
0
1




is orthogonal to v1,v2,v3, and v4.

To show that there does not exist a non-zero vector in R5 which is orthogonal to
v1,v2,v3,v4, and also to (0,−1, 0, 0, 1), we proceed as above and find the RREF form
of a matrix the rows of which comprise these five vectors. If

B =




0 2 1 0 2
1 0 0 2 0
0 1 2 0 1
2 0 0 1 0
0 −1 0 0 1




,

then the RREF of B is 


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




,

from which we see that the only solution to Bx = 0 is x = (0, 0, 0, 0, 0). Thus, there is
no non-zero vector orthogonal to v1,v2,v3,v4, and also to (0,−1, 0, 0, 1).

2. (a). If x = ky for some scalar, k, then using Theorem 1.2.2 (c) we have

‖x + y‖ = ‖ky + y‖
= ‖(k + 1)y‖
= |k + 1|‖y‖.



On the other hand, again using Theorem 1.2.2 (c),

‖x‖+ ‖y‖ = ‖ky‖+ ‖y‖
= |k|‖y‖+ ‖y‖
= (|k|+ 1)‖y‖.

We see that if ‖x+y‖ = ‖x‖+‖y‖ for arbitrary x and y, we must have |k+1| = |k|+1,
which is true if and only if k ≥ 0. Thus, the statement is not true for all scalars k, but
is true for k ≥ 0.

2. (b) Using Theorem 1.2.6 (c) the left-hand side of Cauchy-Schwarz is

|x · y| = |ky · y|
= |k||y · y|
= |k|‖y‖2,

while the right-hand side of Cauchy-Schwarz gives, using Theorem 1.2.2 (c),

‖x‖‖y‖ = ‖ky‖‖y‖
= |k|‖y‖‖y‖
= |k|‖‖y‖2.

Thus the statement is true.

3.(a) As suggested in the hints, write

‖u + v‖2 = (u + v) · (u + v)

= ‖u‖2 + 2u · v + ‖v‖2.

So if ‖u + v‖2 = ‖u‖2 + ‖v‖2, we see that ‖u‖2 + ‖v‖2 = ‖u‖2 + 2u · v + ‖v‖2. This
implies that u · v = 0, that is, that u and v are orthogonal. So the statement is true.

3 (b) was done in class, and also in the hints. (It’s true.)

3. (c) This one is false. The easiest way to see this is to to draw a picture.

5. (a)(First system) The augmented matrix for the first system is

(
2 3 −1 1
4 6 −2 0

)
,

which has RREF

(
0 0 0 1
0 0 0 0

)
, so the system has no solution. Geometrically, this

corresponds to the fact that the planes 2x + 3y − z = 1 and 4x + 6y − 2z = 0 do not
intersect.



5 (b) (First system)

The coefficient matrix for the first system is

(
2 3 −1
4 6 −2

)
. The matrix comprises

the following column vectors in R2 :

(
2
4

)
,

(
3
6

)
, and

(
−1
−2

)
. The left-hand side of

the system can be written as a linear combination of these vectors:

x

(
2
4

)
+ y

(
3
6

)
+ z

(
−1
−2

)
.

But note that these vectors all lie on the same line, since they are multiples of each other.
Any linear combination of the these must also lie on the same line. Geometrically from
this perpective, the system having no solution corresponds to the fact that the ”target”
vector (1, 0)T does not lie on the same line.

5. (a) (Second system) The RREF for the augmented matrix of the second system

is

(
1 0 −1/2 −1/10
0 1 0 2/5

)
. The variable z is free, so the system has infinite solutions.

(Why?). Geometrically, this corresponds to the fact that the planes 2x+3y− z = 1 and
4x+y−2z = 0 do intersect; two planes intersect in a line (an infinite number of points).
This time column vectors for the matrix are not multiples of each other (though the first
and the third are). So the system would have infinite solutions given any target vector.
(Why?)

Problems 6 and 7 done in Mathematica.


