
Basic Set Theory Handout

Given a typical math programming problem:

Max (or Min) f (x1, x2, … xn ), for 
[image: image1.wmf]1

³

n


Subject to some nonempty feasible region: (i.e., some constraints on x1, x2, … xn, possibly

    nonnegativity, etc)

Are there conditions on f and on the feasible region that guarantee that an optimal solution exists?  The answer is “yes”.  Later we’ll study the Karush-Kuhn-Tucker conditions – which are both necessary and sufficient (i.e., they have to apply, and it’s enough that they apply) for an optimal solution to exist.  For now, we’ll examine Weierstrass’s theorem, which is a sufficient condition for an optimum to exist.  (To help you understand the difference between necessary versus sufficient conditions, consider this example:  a sufficient condition for you to pass MA381 is to get at least a “B” on every measured event in the class.  However, it’s not necessary – you could get a lower passing grade some or all measured events, and still pass the course.)


Weierstrass’s theorem tells us that if our feasible region has certain characteristics (compactness), and if our objective function is continuous over our feasible region, then we know that an optimal solution exists to our problem.  Note however, that Weierstrass’s theorem says nothing about where to find that optimum – shucks!  However, just knowing that at least one optimum exists is of value to us.  We already know what continuity means, so let’s look at this notion of compactness for our feasible region.  We need some definitions.  We’ll base these definitions on Figures 1 and 2, shown below.




1.  An (-neighborhood around a point:  Given a point (x0,y0) in 
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, an 
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-neighborhood around this point is the set 
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.  It’s shown in Figures 1 and 2 as the set of all points contained in a circle of radius  centered at (x0,y0).  

2.  The boundary of a set S:  The point (x1,y1)  is on the boundary of a set S, if 
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.  In other words, the 
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-neighborhood around (x1,y1)  contains at least one point in S and one point not in S.  It’s shown in Figure 2 as the set of all points contained in a circle of radius  centered at (x1,y1).  

3.  The interior of a set S:   A point (x2,y2)  is in the interior of S if 
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, for some 
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 > 0.  In other words, we can find a radius  such that all the points in this 
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-neighborhood around (x2,y2)  are also contained in S.  We see in Figure 2 that the radius  at point (x2,y2) is such that all points inside the circle described by  are also in S.

4.  A closed set is one that contains all of its boundary points.

5.  An open set is one that does not contain any of its boundary points.

6.  A bounded set is one that can be contained in a ball of sufficiently large radius.  

7.  Finally: A compact set S is one that is both closed and bounded.


Weierstrass’s Theorem:  Let S be a nonempty, compact set, and let f: S (
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 be continuous on S.  Then, the problem minimize {f (x): x ( S } attains its minimum, that is, there exists a minimizing solution to this problem.  (A similar result is true for a function to attain a maximum.  Note also that the theorem is stated here in terms of the domain being defined over the real line 
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, but it holds in higher dimensions too.)

Let’s look at some example sets:

a.  
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  S is open (it doesn’t include its boundary points), and bounded (by a circle of radius 1).

b.  
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  S is compact.  It’s closed (it includes its boundary points), and bounded (by a circle of radius 1).

c.  
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  S is closed (it contains all its boundary points, but unbounded, since we cannot enclose the set in a ball of finite radius.   This case requires some thought!  Incidentally, the empty set 
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, in Figures 1 and 2) are the only two sets that are both open and closed.  In all other cases, a set S is open if and only if its complement S’ is closed.

d.  We’ve talked about the desire for convexity, both for the objective function and the feasible region.  Is a compact set always convex?  Is a convex set always compact?

Finally, let’s look at some examples.

a.  
Min f (x)


Subject To: a < x < b




The lower bound (infimum, actually) on this interval is f (b), but 
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 (S isn’t closed).  An optimal solution

doesn’t exist.

b.  
Min f (x)


Subject To: 
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The function f is discontinuous at b, and the limit of f as we approach b from the left is < f (b).  An optimal solution doesn’t exist.

c.  
Min f (x)


Subject To: 
[image: image21.wmf]x

a

£





The function f is unbounded.  An optimal solution doesn’t exist.

d.  
What about  Min
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.  Are the theorem’s conditions met?  Does an optimum exist?
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