MA-381

Convex and Concave Functions
Let us reiterate some of the theory of Convexity. The suggested problems in this lesson will be good to help you think about the issue of convexity.

Definitions:


CONVEX  SET.  A set S is convex if ( x, y ( S, and for any c ( [0, 1], then the linear combination:  cx + (1-c)y ( S
In other words, the line segment joining any two endpoints in the set also lies completely in the set.  

CONVEX FUNCTION.  A function is said to be convex if for any pair of points, x1 and x2, and a given lambda, ,  such that 0<  < 1, the following holds:
f[ x1 + (1-) x2 ] <  f(x1) + (1-) f(x2) .

To be strictly convex, the inequality must be strict.  For concave functions, the inequality is reversed.

As a good test to see if you understand what the definition of convexity is requiring, sketch the geometric interpretation of the definition on the plot below, and using this diagram, explain the convexity requirement to one of your classmates.  IF you can't do this, you do not understand the main concept that we will test you on.
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Example:  f(x) = x2 :   From the plot below, it appears that the function is indeed convex.  Graphically, if we select any two points on the graph, then the line segment connecting those two points lies wholly above the functional values between those 2 points as shown in the plot. (Note that this plot and the associated notation is similar to Figure 15, page 12.3.)
[image: image2.png]
Case 1: Convexity at a particular point:

Point A is f(x’) = f(-1) = 1
Point B is f(x’’) = f(2) = 4

Points C and D both occur at the point where x = cx’ + (1-c)x’’, where c = 1/3, so x = (1/3)(-1) + (2/3)(2) = 1.   (We set c = 1/3 arbitrarily – it can be any number between 0 and 1). 

Now, point C has a y-value of: cf(x’) + (1-c)f(x’’) = (1/3)(1) + (2/3)(4) = 3.  

Point D has a y-value of: f(cx’ + (1-c)x’’) = f(1) = 1.  

Notice that our result:

f(cx’ + (1-c)x’’) = f(1) = 1  (  cf(x’) + (1-c)f(x’’) = (1/3)(1) + (2/3)(4) = 3

indicating that we are indeed looking at a convex function at our chosen point.

Case 2: Convexity over the function’s entire domain:  Now, let’s use the definition of convexity to show that this function is convex for any value of x:  recall that f(x) is convex if: f(cx’ + (1-c)x’’) ( cf(x’) + (1-c)f(x’’), so substituting in our particular function f(x) = x2 yields:

(cx’ + (1-c)x’’)2  (  cx’ 2 + (1-c)x’’ 2 , and our goal is to show that the ( sign is valid!

= c2x’ 2 +  2c(1-c)x’x’’ + (1-c)2x’’ 2  (  cx’ 2 + (1-c)x’’ 2
= c2x’ 2 – cx’ 2 +  2c(1-c)x’x’’ + (1-c)2x’’ 2 - (1-c)x’’ 2 ( 0

= c(c-1) x’ 2 + 2c(1-c)x’x’’ – c(1-c)x’’ 2 ( 0

= -c(1-c) x’ 2 + 2c(1-c)x’x’’ – c(1-c)x’’ 2 ( 0

= - x’ 2 + 2x’x’’ – x’’ 2 ( 0

= -( x’ 2 – 2x’x’’ + x’’ 2) ( 0

= - (x’ – x’’)2 ( 0  which is TRUE ( x’ and x’’ we choose, therefore f(x) = x2 is a convex function!

Similar arguments can be made for concave functions (functions which are convex downward) like f(x) = - x2.  Examples 12 and 14 on page 674 are other examples of functions that are convex, concave, or neither.  A nice result is that if f and g are both convex functions, then the sum f + g is also convex!  Another result is shown in example 15 on page 674 where the author illustrates that any linear function is both convex and concave.

Notice the extent of the algebra we had to do to show that the simple function f(x) =  x2 is a convex function.  We used the definition of convexity to prove that this function was convex.  We have more direct methods to show convexity/concavity (thank goodness!).  For single variable problems, we can use first and second order derivatives to help us.  We’ll generalize this derivative-based concept to higher dimensional problems by using the notion of jacobian and hessian matrixes.

So,  why is convexity/concavity so important in NLP’s?

In nonlinear programming, generally we can only classify our minima and maxima as relative or local extrema.  Unlike linear programs (LP’s), we generally cannot determine whether a given min or max point is the global optimal solution.  However, if we add requirements of convexity, then we can make determination of the global optimal solution to an NLP.  In other words – convexity of the objective function and associated constraints (when it is present) is an example of how important problem structure can be.

It is not enough to simply formulate a math program correctly – it must also be formulated smartly!

