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ABSTRACT

A pursuit and evasion game involves one entity trying to catch another entity.  A fundamental equation of pursuit is the lead equation.  The term ‘lead’ refers to a pursuing entity predicting a point that the evading entity will be at in a certain time, and then heading toward that point rather than the evader’s current point in a given chase.  This paper provides insights on the optimal lead factor based upon a basic lead equation.  It provides the principles for a pursuing element to predict an optimal lead factor given certain qualities of the evading element’s path.  Its significance may be boundless in pursuit strategies and decision making algorithms.    
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EXECUTIVE SUMMARY


The topic of pursuit and evasion modeling is a topic in mathematics that has yet to be fully explored.  Some classic authors in the topic are Rufus Isaacs and Paul Nahin, who wrote Differential Games and Chases and Escapes respectively.  Each author provided insight to some classic scenarios, but neither of them touched on the idea of “leading”.  The research done throughout this project was narrowed from overall pursuit games to one particular technique of pursuit: leading.  The overall purpose of the research was to find if there was any way to predict how much of a lead a pursuing entity should have in any given type of pursuit scenario given one evading entity.  

The means for gathering data that could be analyzed was the creation of an algorithm using MATLAB® as a platform for iterating through scenario after scenario.  The output of the algorithm was a color-coded graph that showed the fractions of lead necessary for minimizing the time in which it takes a pursuer to catch an evader.  These graphs provided us with the ability to make some key observations about leading.  Essentially, it allowed us to answer the question: when is it good to lead and when is it not good to lead?  The conclusion we made was, in essence, that a pursuer should lead when his orientation is close to being perpendicular to the path of the evading element.  


This paper dives into the mathematics involved with reaching the above conclusion by taking a broad approach to pursuit and evasion modeling, then narrowing the focus to the analysis of the lead equation and its effect on pursuit.   
THIS PAGE INTENTIONALLY LEFT BLANK

I.
introduction
On the school playground, children play a simple game of “tag”, where one child tries to catch another to make him or her “it”.  On the battlefields of war, elements maneuver against other elements in order to seek and destroy.  The idea of pursuit and evasion is not foreign, yet there are many opportunities for research developing the mathematical models that describe pursuit and evasion.  Chases and escapes are not just a part of life, but an exciting part of life.  From cops and robbers to demolition derbies at county fairs, many people find themselves glued to pursuit and evasion scenarios.     


The mechanics behind a pursuit and evasion scenario may, at first glance, seem rather elementary.  Obviously, the fastest element will make the catch regardless of the evading tactics, as speed always wins, right?  Generally speaking, we may be lead to believe the fastest always wins, and in the most elementary of senses, it is true; however, real life is full of situations when time is a critical constraint that must remain in the forefront of our thought process.  In the topic of pursuit and evasion, a pursuer may not always have unlimited time to seek out and destroy its target.  Just because one element is faster than the other does not necessarily mean the fastest element always wins in a given scenario.  Football games require the tackler to catch the ball carrier before reaching the end zone.  If the enemy shoots a missile at a target in war, it becomes absolutely necessary for the defenders of that target to intersect the missile before it hits the target.  Time is the ultimate factor in success or failure in real-life scenarios.  This leads to the necessity of time-sensitive pursuit and evasion tactics.     


The research done in the field of pursuit and evasion remains relatively elementary and primitive.  While it may take years to accomplish a task that may save many lives in wars to come, we must first develop the theoretical framework for future algorithms which implement these ideas.  The problem is that the wide array of pursuit and evasion scenarios is a large obstacle that stands in the way of the development of such theories.  


One fundamental idea that remains a stepping stone in the area of pursuit is the idea of a pursuing element leading an evading element.  This principle can best be illustrated through the game of football.  Imagine a running back running up the sideline toward the end zone.  From across the field, the tackler chasing the running back will try to meet the running back at some point down the field.  He will not run toward his current position at each passing second, as that will most likely be extremely inefficient.  However, there may be some instances where leading the running back is also inefficient.  For example, if the tackler is pursuing the running back head on, there is no sense in leading; rather, a direct pursuit would most likely be the best course of action.


The efficient use of a leading algorithm is an area where a thorough examination is absolutely critical.  In programming and developing an algorithm for pursuit, leading can be a very effective technique, but it can also put the pursuer at a strong disadvantage depending on the situation.  Thus, the purpose of this thesis, and the ensuing sections, is to create a general guideline on the most effective employment of the leading tactic.    

II.
BACKGROUND

A.
Background
The notion of leading should not be a foreign notion to anybody.  We are always predicting what will happen in a given amount of time.  Whether measuring seconds, days, or months, we are always trying to predict and then intercept the future.  From playing the stock market to chasing somebody, we have natural techniques for leading and thus intercepting.  Taking it down to a basic level, however, is where we may learn the most about leading.  Consider the example of a defensive linebacker on the football field trying to make a tackle on a running back down field.  Figure 1 illustrates this behavior in mathematical terms.
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Figure 1.   Leading Behavior
In Figure 1, the ball-carrier is represented by E = 
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, where both x and y are functions of time t.  The lead point is then determined by t + Δτ, where Δτ is the pursuer’s estimated time for the evader to reach a particular location.  A tackler’s ability to calculate Δτ is what sets apart a great defensive football player from a mediocre one.  Mathematically, how can we adequately determine this estimated time?


A possible way for us to determine Δτ is seen in Equation 2.1.  We simply take the current distance between the ball carrier and the tackler, and then divide it by the tackler’s speed [Ar06].

(2.1)
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This equation provides a rather “rough” estimate of Δτ, but in order to keep the model realistic, we want to use information that one would have access to, or be able to “sense”.   The ability for the pursuing tackler to estimate the distance at which the evading ball carrier is away from him becomes a critical skill necessary for an effective pursuer.  This is so because it allows him to judge the best path to take in order to effectively tackle the ball carrier.  To describe this path, we can use Equation 2.2.  The derivation of this equation can be viewed in Appendix A.  Equation 2.2 gives us the movement of the pursuer after each iteration n, where 
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 is the pursuer’s speed, Δt is the step size, and c is the lead factor, which will be discussed shortly [Ar06].  
(2.2)
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The lead equation is strongly dependent on the term
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.  Due to the fact that the evading element is not following a particular parametric equation, the way we can calculate this derivative is through the use of the difference equation in Equation 2.3 [Ar06].

(2.3)
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The constant term c is called the lead factor, and represents the “amount” of lead to apply.  This value can be between 0 and 1, giving either no lead, when c = 0, or a full lead, when c = 1.  What we mean by a “full lead” is that the pursuer is aiming toward the exact point he expects the evading element to be in a set amount of time.  While one may think that a full lead would be better than no lead when it comes to chasing somebody down, Figure 2 suggests otherwise, where the blue lines represent a pursuer trying to catch an evader (thick black arrow) given different values of c.  This figure best illustrates the effect of the lead factor c in the pursuer’s lead algorithm.  
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Figure 2.   Effect of lead factor c

As illustrated in the particular example in Figure 2, we can easily see that the pursuer catches the evader soonest when c = 0.75. 


The lead problem has not received the level of scrutiny necessary to understand its implications.  Rufus Isaacs alludes to the lead tactic as a “policy outside the optimal strategy… [because the pursuer] has no grounds for his prediction” [Is65].  While Isaacs’s claim may at first appear to have some validity, he provides no basis for discrediting the leading strategy.  We see the strategy in many physical scenarios.  
We could easily refer to the lead strategy as an interception strategy as Paul Nahin does in Chases and Escapes [Na07].  Nahin provides some basic mathematics behind the scenario of a submarine firing a torpedo at an unsuspecting surface ship.  Using distances and velocities similar to the previously discussed equations, Nahin sets forth a basis for calculating this interception.  Nahin’s interception formula, however, does not account for an active evasion where the pursuer must continually shift lead directions in order to react to the evader’s movement.  Nahin’s interception accommodates an unsuspecting target but not a suspecting one.


The problem of the suspecting target is the maneuverability issue.  Consider a battle between two fighter aircraft.  The prediction of the other aircraft’s movements is critical to each pilot [Ha91].  Whether it is in the sense of one trying to kill the other or the contrary, one trying to evade the other, the pilots must know when to break and when to pursue.  The maneuverability throughout the fight depends largely on the ability of the pilot to estimate the leading factor as well as when to apply the leading factor.  

Needless to say, the lead time becomes a very important, yet counterintuitive, problem.  Not only must we accommodate an actively involved evader, but different situations may require different lead times and the problem becomes one that may not be very easy to grasp or control.  

B.
Objective and research questions
1.
Objective
The objective of this research is to develop some observations about the optimal lead time given a specific situation in any given pursuit and evasion scenario. 

2. Research Questions

This study addresses the following research questions:


1.  Are there any patterns that provide a common lead factor in any pursuit and evasion scenario?

2.  Can an optimal lead factor be determined if a pursuer can estimate an evader’s path?

3.  How can we develop an algorithm to change the lead factor based on the interpretation of a scenario?  
C.
justification of study
Considering the field of robotics in warfare or any other form of pursuit and evasion, we can aspire to develop some observations about leading to assist in the development of algorithms used for robotic navigation.  What we must do is develop effective ways to reduce the time to capture.  Leading is one way to accomplish this; however, what we have shown in the background is that the fraction of lead to create an optimal catch time is not fixed.  On the contrary, this fraction changes with the scenario.  We must therefore explore different situations and techniques in order to develop conclusions explaining the lead factor that produces the most optimal catch time in certain scenarios.  The application of these conclusions may prove to be beneficial to the developers of future technology in warfare as well as other disciplines dealing with robotics.   
D.
definition of terms
Pursuit:  When one entity chases another entity, we have pursuit.  The entity in pursuit is the entity chasing the other one.  Pursuit is the primary focus of this study.  Many techniques for pursuit exist; however, for the purposes of the study, pursuit will be discussed in terms of leading and direct pursuit (where no leading is occurring).

Evasion: When one entity is trying to escape another entity that is chasing it, we have evasion.  The entity trying to escape the other entity is the entity in the state of evasion.  


Lead: Taking a path towards a moving target in the direction of an anticipated point of interception.  


Lead Time: The time the evader takes to get from his current spot to the expected interception point. 


Lead Factor: A parameter c taking values between 0 and 1 that determines the point at which the pursuer anticipates the interception.   

Capture:  Point at which an evading elements’ arbitrary surrounding area is breached by a pursuer signifying the success of the pursuer. 


Catch Time: The time it takes for a pursuing element to catch an evading element.  

iII.
data and analysis
A.
data acquistion
The lead factor in the modeling of pursuit and evasion can best be analyzed through the numerical acquisition of different evading scenarios.  The thought was that if we could develop a platform that could quickly produce results and give us insight as to the optimal lead factor in a wide array of scenarios, we could begin to develop some conclusions about the lead equation.  In order to gather data about the lead factor, we wanted to look at many different starting pursuer positions and lead factors for a given evading path.  Using MATLAB® to collect this data, we made an algorithm that could evaluate the catch time for each initial pursuer position at intervals along a circle around the evader’s starting position.  Figure 3 illustrates the establishment of each initial position of the pursuer.  


[image: image11]
Figure 3.   Initial Positions of Pursuer in Data Acquisition

Figure 3 shows the pursuing element at four different initial positions around the starting point of the evader.  We varied the number of initial positions using the parameter i in Equation 3.1, where m represents the position number and r represents the initial distance away from the pursuer.

(3.1)
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As m increases in each iterative step, the initial position of the pursuer moves around the evader in i equal intervals.  


The MATLAB® algorithm evaluates the scenario at each initial position for lead factors between 0.01 and 1.  For each combination of initial position and optimal lead factors, we construct a table with catch times obtained by running the pursuit scenario using Equation 2.2 and a variety of different equations describing the path of the evading element.  This table then allows us to produce some different graphs that we can analyze and draw inferences from.  In particular, the table contains information about the optimal lead factor for each starting position.  An example of such a table can be viewed in Table 1.  This table shows the data for two initial pursuer positions given a curved evading path.  The complete MATLAB® code is provided in Appendix B. 
	Pursuer Initial
x-coordinate
	Pursuer Initial
y-coordinate
	Minimum Lead 
Factor
	Maximum Lead
Factor
	Minimum 
Catch Time

	0
	5
	0.27
	1
	2.52

	0
	-5
	0.51
	1
	0.46


Table 1.   MATLAB® Produced Data
B.
analysis
1. 
Approach


In order to analyze the lead factor c, we considered its effect on the catch time for several different evading paths.  The paths considered were a straight line path, a curved path, an oscillating path, and a random path.  In some cases, multiple lead factors resulted in optimal catch times.  For example, in some cases a lead factor of 0.1 produced the same catch time as a lead factor of 0.5.  This is why there is a minimum lead factor and a maximum lead factor in Table 1.  We used MATLAB® to create a visualization of the range of optimal lead factors at each initial pursuer position relative to the evader’s path. 
2.
Path A: Straight Line

When evaluating the algorithm with the evader moving in a straight line, Figure 4 was the result.  The path of the evader (the blue line in Figure 4) follows Equation 3.2, where s is the evader’s speed and n is the iteration number in the simulation.

(3.2)
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Figure 4 shows the lead factor that gave the minimum catch time at each initial position in the straight line simulation.  Each dot on the graph is an initial position of the pursuer.  The algorithm tests each lead factor (from 0.01 to 1.00 every 0.01) at each initial position by running through the scenario of the pursuer’s equation versus the evader’s equation for each lead factor, where the pursuer is set to be faster than the evader.  The optimal lead factor is annotated by the color and size of the dot on the graph in Figure 4.  The color key to the right of the graph is in hundredths; for example, 100 is a lead factor of 1.00 whereas 50 is a lead factor of 0.50.          
To explain the graph in Figure 4 more thoroughly, consider the small blue points on the first radius next to the evader’s path.  These points mean that at this particular initial position of the pursuer, the lead factor that resulted in the fastest catch time was around 0.05.  At these points, the algorithm tried every lead factor, but the lead factor that was the most effective was around 0.05.   

As noted in the previous section, we must also consider the fact that at certain positions the lead factor may have a range of values that produce the quickest catch time, not just a single lead factor.  The graph in Figure 4 pulls out the smallest lead factor that produces the fastest lead time.  Figure 5, however, shows the greatest lead factor resulting in the same minimum catch time.    

Together, Figures 4 and 5 illustrate the range of lead factors which produce optimal catch times.  For example, at the initial position (10,0), all lead factors between 0.6 and 0.9 result in the optimal catch time.  The difference in lead factor values from each graph produces the range of acceptable lead factors giving the fastest catch time.  The graph may be divided into “regions” and annotated with the range of optimal lead factors which produce the optimal catch time.  Figure 6 shows how the straight line evader can be broken into regions.  The black lines in Figure 6 represent the divide between regions.  Each region, in turn, is annotated with the c value range.     
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Figure 4.   Straight Line Minimum Lead Factor
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Figure 5.   Straight Line Maximum Lead Factor
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Figure 6.   Range of Straight Line Lead Factors
Note that the lead factors are nearly symmetric around the path of the evader.  Additionally, when the pursuer is in a region perpendicular to the path of the evader, a lead factor of 1 produces the optimal catch time.  In order to generalize the observations to more universal cases, we explore several other evading paths that may or may not produce the same result. 
3.
Path B: Curved

The curved path provides us with an interesting result in the sense that it helps verify what is noticed in the straight line path:  in the sector that is relatively perpendicular to the evader’s direction of travel, the most effective lead factor is close to 1.  The curved path follows Equation 3.3.

(3.3) 
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Figure 7 depicts the minimum lead factors where as Figure 8 shows the maximum lead factors given this particular path.  The graphs in Figures 7 and 8 show that there is limited contrast, if any, at the initial positions that are perpendicular to the initial direction of the evader.  Figure 9 shows the range of values that would result in the minimum catch times.  Once again, we see that there is some degree of symmetry of when dividing the initial positions into regions based upon the lead factor c.   
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Figure 7.   Curved Minimum Lead Factor
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Figure 8.   Curved Maximum Lead Factor
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Figure 9.   Range of Curve Lead Factors
4.
Path C: Oscillatory

The oscillatory case provides us with a result that is very similar to the straight line case, with one notable difference.  As the radius gets larger, the behavior of the lead factor acts like the straight line case; however, as the radius gets smaller, the lead factors do not resemble any notable pattern.  The equation for this particular oscillatory evader path is denoted in Equation 3.4.  

(3.4)
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As depicted in Figures 10 and 11, there is no required lead in the pursuer’s initial positions in front or behind the evader’s direction of travel.  
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Figure 10.   Oscillatory Minimum Lead Factor
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Figure 11.   Oscillatory Maximum Lead Factor
In the same fashion as the previous paths, we can separate the lead factor range into the regions shown in Figure 12.  
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Figure 12.   Range of Oscillatory Lead Factors
One notable difference in the oscillatory case that is not seen in the previous cases is that a lead factor of 1 is not optimal for the initial positions that are orthogonal to the direction of the evader.  Namely, a lead factor below 1 is required to optimize the catch time.    
5.
Path D: Random 



The random path is as close to a “real world” simulation as the simulation can provide.  From the previous path analyses, we could conjecture that a full lead would be required along the region perpendicular to the evader’s initial direction of travel.  Figures 13 and 14 show the results of the random path based off of Equation 3.5, where ω is the degree of turning freedom the evader has, which is set to 0.2 in Figures 13 and 14, and κ is a random number between 0 and 1.  
(3.5)
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The random path verifies the conjecture.  Furthermore, Figure 15 separates this particular random path into its range regions.   
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Figure 13.   Random Minimum Lead Factor
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Figure 14.   Random Maximum Lead Factor
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Figure 15.   Range of Random Lead Factors
III. Conclusions
The analysis of the data retrieved in the pursuit and evasion simulation can be used to develop some basic conclusions about the lead factor c in the leading equation.  While we cannot analytically prove the following, we can certainly infer from the numerical simulations that the following is true.     

CONCLUSION 1:
With the exception of an “oscillating” evader, any pursuing element located at a position relatively perpendicular to an evading element, regardless of distance away, should use a lead factor close to 1.0 in order to optimize the catch time. 

CONCLUSION 2:   
If an evader goes into “oscillation”, the further away the pursuer is from the evader the closer the lead factor should be to 0.85 in order to minimize the catch time.  The closer the pursuer is to the oscillating evader, the more uncertainty there is in the lead factor that will produce the optimal catch time.

These conclusions provide us with some insight on the pursuit algorithm that may be beneficial in the development of robotic algorithms in pursuit games.  First, it provides us with a standard for using a full lead in pursuit.  Once a pursuing element is perpendicular to some evader’s path, that pursuing element can take a full lead to minimize the catch time.  

An evading strategy which can be effective, however, is the oscillatory behavior.  As the pursuing element closes in for the catch, we see that some kind of oscillation could potentially buy the evader some extra time before being caught, due to the uncertainty of the effective lead factor as a pursuer is closer to the evader.  

Overall, these simulations provide us with a useful insight in the topic of pursuit and evasion.  They give us a means for predicting the lead factor a pursuing element should take in order to minimize the catch time.  While we would like to be able to determine the most effective lead factor given any initial position and any path by the pursuer, such a task with the given simulation cannot be accomplished.  This report provides a basic model for determining, at the very least, when a pursuer can undoubtedly take a full lead toward an evader.   
On the other side of the spectrum, there are also many other strategies for evasion.  From attempts to mislead the enemy pursuer to attempts at sacrificing oneself for the good of the group, the techniques of evasion remain as important as the techniques of pursuit.  Can one entity of a completely autonomous group possess the knowledge and capabilities to sacrifice itself through a sort of feint or misleading maneuver?  What maneuver is best for a sacrificing element to use?  If a pursuing element is trying to lead an evading element, is it possible to perform misleading movements that would actually force the pursuing element further away from the evader?  Such questions are critical to the proper maneuvering of an autonomous group of mission oriented evading elements.  The exploration of the answers to such questions may produce some very interesting and intriguing results for the development of such algorithms. 

Exploration into the topics of pursuit and evasion is without bound.  Can one really develop theorems through the exploration and analysis of the techniques in this field?  While infinite amounts of scenarios exist and some may argue that robotics can never replace the human mind and decision making process, the benefits of the exploration of these topics may be immense.  One life saved in battle is worth more than the time, energy, and money put into products and technology that may change the face of modern warfare forever.  
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Appendix A: development of lead equation

The following is the derivation of the lead equation [Ar06]. 
We start with the basic model of moving the pursuer directly toward the evader at each time interval n, as illustrated in Figure 16.


[image: image29]  
Figure 16.   Movement of Pursuer Directly Toward Evader
Before showing how we arrive at the equation shown in Equation II.2, we will first define the variables here.
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The relation between the similar right triangles from Figure 16 allows us to create a difference equation relating the sides of the triangles with the hypotenuse.
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The two equations above can then be rewritten as the following difference equations.
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Now, to incorporate the lead effect into the difference equations, we must consider the geometry set forth in Figure 1.  We let Δτ be the pursuer’s estimated time for the evader to reach a particular location.  So, rather than aiming toward the evader’s actual position 
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.  The term c exists on the interval [0,1], and represents the fact that the pursuer can calculate only a fraction of Δτ.  Given a realistic scenario, we need a way to calculate Δτ.  The way in which we do it is given below, where the current distance between the pursuer and evader is divided by the pursuer’s speed.


[image: image45.wmf](

)

(

)

p

E

P

E

P

s

n

y

n

y

n

x

n

x

2

2

)

(

)

(

)

(

)

(

-

+

-

=

D

t

   
Then, substituting 
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 to the difference equations above, we arrive at the following.  
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These two messy equations can be rewritten in vector form to arrive at Equation 2.2.  

(2.2)
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appendix B: matlab® code for simulation

The following code is linked together by running the visuals.m file to produce the graphs in the analysis portion of this paper.  The evader path files are not located in this appendix due to their simplicity in coding.  
Visuals.m

%% This file creates the visualizations from running the pursuit and
%% evasion simulations an example of how to input the visuals into the main MATLAB screen is visuals(Positions(10,20),pathtestc(3000,.1)).
function [catchtimes, leadfactors1, leadfactors2, En] = visuals(positions, path)
leadtimes = LeadTimes(positions, path);
testone=.000001*(size(leadtimes,2):-1:1);
testtwo=zeros(size(leadtimes));
for i=1:length(positions)
    testtwo(i,:)=testone;
end
[catchtimes, leadfactors1] = min(leadtimes,[],2);
En = path;
figure(1)
grid on;
plot(En(:,1),En(:,2));
hold on;
scatter(positions(:,1),positions(:,2),10*leadfactors1,leadfactors1,'.');
[catchtimes, leadfactors2] = min(leadtimes+testtwo,[],2);
figure(2)
grid on;
plot(En(:,1),En(:,2));
hold on;
leadfactors2(1)=1;
scatter(positions(:,1),positions(:,2),10*leadfactors2,leadfactors2,'.');
Positions.m

%% This file creates all the initial positions for the Pursuer
function [initialpositions] = Positions(radiusmax,numberofpositions)
xp = 0;
yp = 0;
initialpositions(1,:) = [xp yp];
i=1;
for r=0:5:5*radiusmax
for m=0:numberofpositions
    xp = cos((pi/2)+m*((2*pi)/numberofpositions))*r; 
    yp = sin((pi/2)+m*((2*pi)/numberofpositions))*r;
    initialpositions(i,:) = [xp yp];
    i=i+1;
end   
end
LeadTimes.m

%% This file creates the iterations of lead times for each initial position
%% and pursuit
function table = LeadTimes(initialpositions,En)
lt = 1;
table(length(initialpositions),lt) = 0;
for i=1:length(initialpositions)
for lt=1:100
    [Pn, catchtime]=Pursuer1(initialpositions(i,1),initialpositions(i,2),En,lt);
    table(i,lt)=catchtime;
end
end
Pursuer1.m

%% This file creates the path for Pursuer 1 
function [Pn, catchtime] = Pursuer1(xp,yp,En,lt)
%Initializing...
dt = .02;
vp = 7;
n = 1;
Pn(n,:) = [xp yp];
Pn(n+1,:) = [xp yp];
%Pursuer's algorithm...
while norm(Pn(n,:)-En(n,:))>.05&&n<3000
n=n+1;
Pnew = Pn(n,:) + (vp*dt*(En(n,:) + ((En(n,:)-En(n-1,:))*(lt*.01)*(norm(Pn(n,:)-En(n,:))/(vp*dt)))-Pn(n,:))/norm(En(n,:)+(En(n,:)-En(n-1,:))*(lt*.01)*(norm(Pn(n,:)-En(n,:))/(vp*dt))-Pn(n,:)));
Pn(n+1,:) = Pnew;
end
catchtime = n*dt;
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