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Indefinite Integrals and Net 

ChangeChange
It is no use saying, 'We are doing our best.' You 
have got to succeed in doing what is necessary.

Wi t Ch hill--Winston Churchill
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ObjectivesObjectives
• Given initial conditions and a marginal cost g

function, find the total cost of production.
• Understand the net change theorem as it 

applies to area concentration massapplies to area, concentration, mass, 
population, cost and distance.

• Understand the difference between definite 
d i d fi it i t land indefinite integrals.

• Compute antiderivatives of polynomials, 
rational and trigometric functions.at o a a d t go et c u ct o s

• Understand the differences between total 
distance vs. total displacement when 
integrating a velocity function
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integrating a velocity function.



DefinitionDefinition

Th F d t l Th f C l l P t 2The Fundamental Theorem of Calculus, Part 2
If f is continuous on [a, b], then 

Where F is an antiderivative of f, that is a function 
)()()( aFbFdxxf
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such that F ̕ = f.

Stewart, p. 384



DefinitionDefinition

Th N t Ch ThThe Net Change Theorem
The integral of a rate of change is the net change:
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Stewart, p. 394



The Chain RuleThe Chain Rule
If f and g are both differentiable and F = f · g is the composite 
function defined by F(x) = f(g(x)), then F is differentiable and F′ is 
given by the product

F′(x) = f ′(g(x))g′(x)

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable 
functions, then

dudydy
dx
du

du
dy

dx
dy

=
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dxdudx



Given F(x) Find F′(x) 
U i h Ch i R lUsing the Chain Rule

3 tanx1F(x) +=
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First SimplifyFirst Simplify

1
3
1

x) tan(1F(x) +=
Let f(u) = (u)1/3
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First SimplifyFirst Simplify
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Let g(x) = 1 + tan xLet f(u) = (u)1/3

g´(x) = sec2 xf´(u) = 1/3(u)-2/3
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First SimplifyFirst Simplify

1
3
1

x) tan(1F(x) +=
Let g(x) = 1 + tan xLet f(u) = (u)1/3
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