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1. INTRODUCTION

My area of research is number theory. In particular, I study hypergeometric functions over
finite fields. I am interested in linking values of these functions to two other number theo-
retic objects, elliptic curves and modular forms. More recently, I have become interested in
relationships between these hypergeometric functions and values of the p-adic gamma func-
tion, and how these connections can shed light on possible p-adic analogues of some classical
identities. In this section, I will briefly introduce the main objects, and in the next section, I
will give formal definitions, together with some recent history. Then, in Section 3, I will state
some of my main results and briefly mention the ideas behind their proofs. I will conclude by
discussing a current problem of interest, as well as some possible routes for future study.

Classical hypergeometric functions have been studied for centuries and enjoy many beautiful
symmetries and transformation identities (see, e.g. [21]). In the 1980s, Greene [9] introduced
a finite field analogue of such functions, built up out of character sums. He showed that
these new functions also satisfy many transformations, in a completely analogous way to their
classical counterparts. These hypergeometric functions over IF,, often referred to as Gaussian
hypergeometric functions, are the focus of my research.

Modular forms are most easily viewed as holomorphic functions on the complex upper half
plane, which act in a nice way under various collections of transformations. The study of
such functions and their properties encompasses a rich theory which includes work of classical
mathematicians such as Poincaré, Hecke, and Ramanujan, and yet remains an active field of
research still today, in number theory and other areas of mathematics.

Elliptic curves can be described as curves of genus 1, given by a cubic equation in two
variables, together with a distinguished point, the point at infinity. These curves enjoy the
special property of a group law, and they have relevance both to classical problems such as the
congruent number problem (see [13]) and to current questions in cryptography, algebraic ge-
ometry, and more. Elliptic curves and modular forms have many known connections, perhaps
most famously those brought to light in the proof of Fermat’s Last Theorem.

The main results given in Section 3 provide explicit relationships between these classes of
objects. Theorem 1 expresses values of a hypergeometric function in terms of the number of
points on an elliptic curve over [F,, while Theorems 2 and 3 provide formulas for the traces of
Hecke operators on spaces of cusp forms in level 1. Perhaps most interestingly, Theorems 1
and 2 combine in a special case to give a formula for Ramanujan’s 7-function 7(p) in terms
of hypergeometric functions, in Corollary 3.

2. RECENT HISTORY

Classical hypergeometric series have been studied by mathematicians such as Euler, Van-
dermonde, and Kummer. An important example of these series is defined for a,b,¢ € C
as
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2Fila,bic; 2] = oF, <a’ b z) - i %z",

n=1

where (a), =a(a+1)(a+2) - (a+n—1).

In 1836, Kummer showed that the above series satisfies a well known second order differential
equation. The specialization 2F1[2, 2 1;t] has further interesting properties, as it is closely
related to elliptic curves. In fact, it is a multiple of an elliptic integral which represents a
period of the lattice associated to the Legendre family of elliptic curves y? = z(x — 1)(z — t).

Connections between classical hypergeometric functions, modular forms, and elliptic curves
have been investigated since the early 1900s. More recently, Stiller, Beukers, and others have
continued to discover new relationships. In [22], Stiller constructed an isomorphism between
the graded algebra generated by classical Eisenstein series £y and E@ and one generated by
powers and multiples of hypergeometric series of the form 2F1[12, 5 ;, t]. Soon afterwards,
Beukers [5] gave identifications between periods of families of elliptic curves and values of
particular hypergeometric series. For example, he related a period of y? = 22 — 2 — t to the
values o ' [, 35 33 212

Meanwhile, as these and other similar results were being considered, Greene [9] was devel-
oping the theory of hypergeometric functions over finite fields. Let p be an odd prime, and F,

denote the field of p elements. Let IEE denote the group of multiplicative characters on F,

and extend such characters y to all of F,, by setting x(0) = 0. If A,B € Iﬁ\; and J denotes
the Jacobi sum, then define

(g) - B=Y J(A, B Z A(z)B(1 — ).

z€elF,

Greene defined hypergeometric functions over Fp in the following way:

Definition 1. If n is a positive integer, x € F,,, and Ay, Ay, ..., Ay, B1,Bs, ..., B, € @, then

define
bR =5 () Gn) - G)
n1Fn T | = x).
o ( p—15\ x /\Bix B )

B, ..., B,

Greene explored the properties of the above series and showed that it satisfies many trans-
formations analogous to those satisfied by its classical counterpart. The development of these
new objects generated interest in finding connections they may have with modular forms and
elliptic curves. One type of hypergeometric function over F,, in which all the A; are the
quadratic character (or Legendre symbol) and all the B; are the trivial character, seemed to
generate particular interest.

We will be most interested in the case when n = 1. For ease of notation, we will write

A, B >
olr )
Let ¢ and ¢ denote the unique quadratic and trivial characters, respectively, on F,. Further,
define two families of elliptic curves as follows:

2B (t) iy =a(x—1)(z —t)
3E2(t) . y2 = (Qf — 1)(272 + t)

2F1[A,B;C§$] = of] (
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Then, for odd primes p and ¢ € IF,,, define the traces of Frobenius on the above families by
2A1(p,t) = p+1—#E(t)(F,), t#0,1
sAa(p,t) = p+1—F3E()(F,), t #0,-1.
These families of elliptic curves turn out to be closely related to particular hypergeometric
functions over F,,. For example, o F}[¢, ¢; ;] arises in the formula for Fourier coefficients of a

modular form associated to o F;(t) ([14, 17]). Further, Koike and Ono, respectively, gave the
following explicit relationships:

Theorem ((1) Koike [14], (2) Ono [17]). Let p be an odd prime. Then
(1) p2F1[¢a d)?g? t] = _¢(_1)2A1(p7 t)} t 7£ 07 1

@war (P 0 e d) =06l ~ ) 1401

Soon after, Ahlgren and Ono [3] and Ahlgren [2] exhibited formulas for the traces of Hecke
operators on spaces of cusp forms in levels 8 and 4. To state their results, we require some more

notation. For a positive integer N, let I'g(N) denote the congruence subgroup of I' = SL4(Z)
defined by

FdN%z{CiZ)EFﬁzommdNﬁ.

Let Sg(I'o(NN)) denote the vector space of cusp forms of weight k& on I'y(N). Finally, let
Tr(To(N),p) denote the trace of the Hecke operator T(p) on Si(I'g(N)). Additionally, we
define polynomials

J

Theorem ((1) Ahlgren and Ono [3], (2) Ahlgren [2]). Let p be an odd prime and k > 4 be an
even integer. Then

k/2—1 b9
Gils.p) = 3 (—1)]‘( . j)pjsk_Qj_z.
=0

(1) Tri(Lo(8),p) = —4 = 3215 Gil2A(p, 1), p)

(2) Tri(To(4),p) = =3 = 302, Gi(2Au(p, 1), p).
The methods for proving the above theorem involved combining the Eichler-Selberg trace
formula with a theorem given by Schoof. More recently, Frechette, Ono, and Papanikolas
expanded these techniques and gave a similar formula in the level 2 case:

Theorem (Frechette, Ono, and Papanikolas [6]). Let p be an odd prime and k > 4 be even.
When p = 1(4), write p = a® + b?, where a,b are nonnegative integers, with a odd. Then

TrTof2),p) = 2~ 56p) — 3 Guls As(p,),p),

where

Sk (p) = 3Gi(2a,p) + 3Gi(2b,p) ifp=1 (mod4)
SR (COks ifp=3 (mod 4).
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In addition, Frechette, Ono, and Papanikolas used relationships between counting points on
varieties over IF, and hypergeometric functions over IF, to obtain further results for the traces
of Hecke operators on spaces of newforms in level 8. More recently, Papanikolas [18] used the
above theorem as a starting point to obtain a new formula for Ramanujan’s 7 function, as
well as a new congruence for 7(p) modulo 11.

3. STATEMENT OF MAIN RESULTS

As in the results given in Section 2 above, we connect values of a particular hypergeometric
function over I, to a family of elliptic curves and to traces of Hecke operators on a space of
modular forms. We now set up the notation necessary to state our results. Throughout, let p
be a prime such that p = 1(12). For t # 0,1, let

27 27
Et:y2:4x3—1_ta:—1_t.

Notice that E; is a family of elliptic curves having j-invariant @. Further, define
a(t,p) =p+1—#E(F,)

to be the trace of the Frobenius endomorphism on F;. Let £ € IE,E be a character of order 12.
As in Section 2, we let ¢ denote the quadratic character (the Legendre symbol) on F,,.

Theorem 1 (Fuselier [7]). Let p =1 (mod 12) be prime. Ift # 0,1 and notation is as above,
then

p2FilE, &5 et] = ¥(t)alt, p),
where Y(t) = —p(2)E73(1 —t).

Notice that as £ has order 12, this specialization to the hypergeometric function » F [€, £5; &; t]
bears a resemblance to the classical specialization QFl[%, %; %; t] that appears in the results
of Stiller and Beukers, mentioned in Section 2. The significance of this result, which becomes
important in the proof of Theorem 2 below, lies in the choice of E;. Since this family has
j-invariant @ and isomorphic elliptic curves over I, have the same j-invariant, Theorem 1
actually gives a relationship between every elliptic curve having j # 0,1728 and the value of
a hypergeometric function over F,,.

The proof of Theorem 1 requires many manipulations of character sums, together with
relationships to Gauss sums. In particular, it makes repeated use of the Hasse-Davenport
theorem (see [15]), which relates products of Gauss sums of characters having a specified
order. The proof also makes use of some of the properties of hypergeometric functions over
[F, that Greene proved in [9].

We now move toward the statement of the second main theorem, in which we relate traces of
Hecke operators to a(t,p). We denote p and a(t, p) exactly as above, and we use the notation
for the congruence subgroups I'g(V), as defined in Section 2. For our purposes, we will focus
on the full modular group I'g(1) = IT' = SLs(Z). The polynomials G (s, p) are also defined as
in Section 2.

Additionally, pick integers a,b such that p = a® + b* and a + bi = 1(2 + 2¢) in Z[i]. Also,
choose integers ¢, d such that p = ¢ — cd + d? and ¢ + dw = 2 (3) in Z[w], where w = ¢>™/3,
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Theorem 2 (Fuselier [7]). Let a,b,c, andd be chosen as above. For primes p =1 (mod 12)
and even k > 4,

p—1
Trk(rap) =—-1- )‘(kap) - ZGk(a(tap)vp)a
t=2
where

Ak, ) = 3[Gi(20,p) + Gu(2 )] + 5 [Gile + d,p) + Gi(2e — d.p) + Gile — 24, p)].

The proof of Theorem 2 relies heavily on Hijikata’s version of the Eichler-Selberg trace
formula [11], which we simplify to suit our scenario. Additionally, we make use of a theorem
of Schoof [19], which gives a way of counting isomorphism classes of elliptic curves in terms
of orders of imaginary quadratic fields.

Theorem 2 gives rise to an inductive formula for the traces Try(I", p), in terms of hypergeo-
metric functions. To state it, we utilize the notation for Gy (s, p) and A\(k, p) given in Theorem
2.

Theorem 3 (Fuselier [8]). Suppose p =1 (mod 12) is prime. Let k > 4 be even and define
m = % — 1. Then

5 2m
Tro(m+1)(I',p) = =1 = A2m + 2,p) + bo(p — 2) Zp2m¢m _ (5, é; t)
m—1 m—1
_ Z bi(1+ A(2i +2,p)) — Z b Traio(T, p),
=1 i=1

where

by =p"" [(sz) - (m _ZT— 1)] '

Some of the nicest results come by taking £ = 12 and combining Theorems 1 and 2. In
doing so, we obtain formulas for Ramanujan’s 7 function, since S12(I") is one dimensional and
hence Tri5(I",p) = 7(p). For example, we can express 7(p) in terms of tenth powers of our
hypergeometric function:

Corollary 4 (Fuselier [7]). Let p =1 (mod 12) be prime and let a, b, ¢, and d be defined as
above. Let & be an element of order 12 in ). Then
10
t) |

7(p) = 42p° — 90p* — 75p* — 35p* — 9p — 1 — 2°(a'® + ')
1 , &
-3 ((c+d)" + (2 — )" + (c — 2d)"7) me¢ (5 i
Recently, I have become interested in how values of Gaussian hypergeometric functions
relate to sums of particular binomial coefficients, and how p-adic analysis can be used in
conjunction with these formulas to generalize some classical results. We let ,,1F,(t) denote
the evaluation of the Gaussian hypergeometric function for which all A; = ¢ and all B; = ¢.
In 2001, Ahlgren produced a combinatorial formula ([1], Theorem 1) for the hypergeometric
function 3F5(t) in terms of sums of various binomial coefficients. He proved this by using the

4. FUTURE WORK
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Gross-Koblitz formula [10] to write the hypergeometric series in terms of the p-adic gamma
function. Ahlgren then used this formulation to give a new proof of a conjecture of Beukers
given in [4], namely that

"\ n+k\ 0 (mod p?) if p=3 (mod 4),
2 () ()= a2 sy 0

=0 2p (mod p?) if p=a®+0b? and a is odd.

More recently, McCarthy and Osburn [16] used hypergeometric functions over F, to prove
supercongruences which serve as a p-adic analogue of a theorem of Ramanujan:

Theorem ([16], Theorem 1.2). If p is an odd prime, then

—1

2 1 5 __DP 3 . _
> 4k +1 ( ) _ ) (modp’) ifp=1 (mod4)
0 (modp*) if p=3 (mod4)

IS

k=0

where T'y, is the p-adic gamma function.

With these results in mind, [ am currently re-investigating the hypergeometric function
o F1[€, €% ¢;t] from Theorem 1. T hope to see how writing this function in terms of sums of
binomial coefficients, together with p-adic analysis, might produce new supercongruences for
high powers of p. In particular, I am interested in how generalizing to characters other than
e and ¢ affects the analysis.

In addition to this ongoing project, there are multiple other avenues for future study:

e Produce analogues of Theorems 1 and 2 in the case when p fails to be congruent to 1
modulo 12.

e Specify the techniques from Theorem 1 to particular families of elliptic curves, e.g.
those arising from modular curves.

e Uncover relationships between hypergeometric functions over F, and classical Eisen-
stein series, as Stiller [22] did for the classical case.
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