
MA386 Project 2 - A New Quadrature Method

We’ll use special functions called spherical basis functions (SBFs) to help integrate periodic func-
tions. You may use MATLAB or Mathematica to complete this project.

In Section 4.3 we approximated definite integrals of the form
∫ b

a
f(t) dt by first interpolating

f(t) with a polynomial and then integrating the interpolant. In this project you will do something
similar, but we’ll be using a different type of interpolant generated by a spherical basis function

given by

φ(t) = e−(1−cos(t))2 .

In the example below, you will see how to add shifts of this function together in a way that inter-
polates a given function.
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Figure 1: A graph of the spherical basis function φ(t) and a few of its shifts.

1. Example: Finding an interpolant. Consider the function φ(t) = e−(1−cos(t))2 and the two
nodes (or sample points) t1 = 0 and t2 = 4. Each node is associated with a basis function,
which we get by shifting φ(t):

φ1(t) = φ(t − t1) = e−(1−cos(t−0))2

φ2(t) = φ(t − t2) = e−(1−cos(t−4))2

One can use these to interpolate functions at t1 and t2.

For example, here is how we can interpolate the function f(t) = cos(t) + (sin(t))
2

+ 0.5. We
look for weight c1 and c2 so that c1φ1(t) + c2φ2(t) interpolates f(t) at t = t1 and t = t2. In
other words, we need to solve the following equations:

c1φ1(t1) + c2φ2(t1) = f(t1) ⇒ c1 · 1 + c2 · 0.064924 = 1.5

c1φ1(t2) + c2φ2(t2) = f(t2) ⇒ c1 · 0.064924 + c2 · 1 = 0.419106
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Solving this system gives c1 = 1.47902 and c2 = 0.323082. With our weights solved for, we
define the interpolant to f(t) at the sample points T = t1, t2 to be

sf,T (t) = 1.47902φ1(t) + 0.323082φ2(t).

Below is a plot of f(t) and sf,T (t) on the same graph. Note that the functions agree at t1 and
t2, as expected.
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Figure 2: A graph of the target function f(t) and its SBF interpolant sf,T (t).

2. Example: Approximating
∫ 2π

0 f(t) dt. Consider the example above. We will approximate
the integral by integrating the interpolant we found.

∫ 2π

0

f(t) dt ≈

∫ 2π

0

sf,T (t) dt =

∫ 2π

0

c1φ1(t) + c2φ2(t) dt

= 1.47902

∫ 2π

0

φ1(t) dt + 0.323082

∫ 2π

0

φ2(t) dt

= 1.47902(2.90513)+ 0.323082(2.90513) = 5.23534.

The real value for
∫ 2π

0
f(t) dt is about 2π. If had used more data points, perhaps we would

have a better approximation.

3. The function φ(t) has the amazing property that no matter how many points you have, an
interpolant built from shifts of φ(t) always exists. Given n points T = {t1, t2, . . . , tn} and a
target function f(t), we look for an interpolant of the form

sf,T (t) = c1φ1(t) + c2φ2(t) + · · · + cnφn(t),

where φj(t) is given by shifting φ(t):

φj(t) = φ(t − tj) = e−(1−cos(t−tj))
2

.

2



In order to find the weights, use the interpolation conditions to get n equations, i.e.,

sf,T (tj) = c1φ1(tj) + c2φ2(tj) + · · · + cnφn(tj) = f(tj),

where j = 1, 2, . . . , n. Solving these equations will give us the cj ’s.

To approximate
∫ 2π

0
f(t) dt, we just integrate sf,T (t).

4. Let’s see how well this method works. Let f(t) = cos(t)+(sin(t))
2
+0.5. Consider the following

node sets:

(a) T =

{

0,
2π

3
,
4π

3

}

.

(b) T =

{

0,
2π

5
,
4π

5
,
6π

5
,
8π

5

}

.

(c) T =

{

0,
2π

7
,
4π

7
,
6π

7
,
8π

7
,
10π

7
,
12π

7

}

.

For each of these sets,

• Find the interpolant sf,T (t).

• Graph f(t) and sf,T (t) on the same graph.

• Calculate
∫ 2π

0
sf,T (t) dt.

• Calculate the error
∣

∣

∣

∫ 2π

0 sf,T (t) dt −
∫ 2π

0 f(t) dt

∣

∣

∣
.

5. Now do the same thing, but with the target function g(t) = | cos(t)|. In other words, for each
of the node sets above,

• Find the interpolant sg,T (t).

• Graph g(t) and sg,T (t) on the same graph.

• Calculate
∫ 2π

0
sg,T (t) dt.

• Calculate the error
∣

∣

∣

∫ 2π

0
sg,T (t) dt −

∫ 2π

0
g(t) dt

∣

∣

∣
.

6. Discuss the outcome of your experiments.1 For each of the target functions, what can you
say about the approximation rate of the method, i.e. how does the error seem to depend on
the space between the nodes? Include “log log” plots and “big O” notation in your analysis.
Given the choice between Newton-Cotes quadrature, the composite Simpson’s method, or this
integration method, which would you choose and why?

7. Finding the coefficients of the inerpolant amounts to solving a system of the form Ac = d,
where c is a vector containing the coefficients, d is the vector of data obtained from our target
function, and A is a matrix whose (i, j)th entry is given by

Ai,j = φ(ti − tj).

The matrix A is one of the “special” matrices from Section 6.6. Which one is it, and what
methods could you use from Section 6.6 to make solving Ac = d easier?

1Bonus: Get crazy and use this method to integrate a discontinuous function. What happens as you add more

and more nodes? Can you explain what is happening?
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8. Include all of the above in a typed, professionally written report; by-hand work will not be
accepted. Include any computer code you use in an appendix. Put any ideas you find into
your own words, and be sure to document your sources. If you have any questions at all, let
me know immediately. Good luck!
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