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Data structure for discrete random variables?

Looks like data structure for continuous RVs:

[[f (x)], [support], ["Discrete", "XXX"]]

where XXX is PDF, CDF, SF, HF, CHF, or IDF

Let X denote the number of heads in two tosses of a fair
coin; X ∼ Binomial(n = 2, p = 1/2)

X := [[1/4, 1/2, 1/4], [0, 1, 2],
["Discrete", "PDF"]];

X := [[x -> binomial(2, 1/2)*(1/2)^2], [0..2],
["Discrete", "PDF"]];
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Data structure for discrete random variables?

Two support formats: NoDot versus Dot

NoDot: Random variables whose finite supports display no
pattern

Example

f (x) =


0.2 x = 1
0.5 x = 7/2
0.3 x = 11.

RV’s probabilities and supports are entered as Maple lists:

X := [[0.2, 0.5, 0.3], [1, 7/2, 11],
["Discrete", "PDF"]];
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Data structure for discrete random variables?

Dot: Random variables with patterned supports

Example

f (x) =

(
5

x

)
(0.2)x (0.8)5−x x = 0, 1, . . . , 5.

If RV’s support is Ω, the general Dot format is:

[min{Ω} .. max{Ω}, k, x → g(x) ]

with defaults k = 1 and g(x) = x .

X := [[x -> binomial(5, x) * (0.8)^5 * 0.2^(5-x)],
[0..5], ["Discrete", "PDF"]];
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Converting functional forms
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Simple Algorithms

Example

Given the hazard function

h(x) = 1/4 x = 1, 2, . . . ,

find f (xi ) for xi = 1, 2, 3, . . . .

Using the previous table,

f (xi ) = h(xi )
∏

j |xj<xi

[1− h(xj)] =
1

4

xi−1∏
j=1

[
1− 1

4

]
=

1

4

(
3

4

)xi−1

for xi = 1, 2, 3, . . . , which is a geometric distribution with
p = 1/4.
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Simple Algorithms

Example

Let
f (x) = (5− x)/10 x = 1, 2, 3, 4

be the PDF of the discrete random variable X . Use PlotDist
to depict the CDF of X .

X := [[x -> (5 - x) / 10], [1 .. 4],
["Discrete", "PDF"]];

PlotDist(CDF(X));
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Simple Algorithms

Others simple algorithmic procedures include:

A procedure that verifies the validity of a PDF; i.e., it
checks∑
all xi ∈Ω

Pr(X = xi ) = 1, Pr(X = xi ) > 0 for each xi ∈ Ω

Procedures for computing the mean, variance, skewness,
and kurtosis of a random variable using the
ExpectedValue(X) procedure

Extending the ExpectedValue(X) procedure to compute
the expected value of a function of a random variable
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Simple Algorithms

Example

Let X be a binomial random variable with parameters n and p.
Show that

E

[
1

X + 1

]
=

1− (1− p)n+1

(n + 1)p
.

X := BinomialRV(n, p);

ExpectedValue(X, x -> 1 / (x + 1));
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Sums of Independent Discrete Random Variables

Sums of Independent Discrete Random Variables

An important operation in probability theory and
statistical inference is calculating the distribution of sums
of independent random variables

Most texts devote the majority of their attention to sums
of continuous random variables

This section provides the insight into the part of the
Convolution(X, Y) procedure that computes the sum of
independent discrete random variables with integer valued
supports that are bounded below
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Discrete Convolution Formula

There are several approaches for computing the PDF of
Z = X + Y in the discrete case.

For example, the event {X + Y = z} for integer z can be
written as the union of the disjoint events
{X = ζ, Y = z − ζ}, {X = ζ + 1, Y =
z − (ζ + 1)}, . . . , {X = z − ζ, Y = ζ}, where ζ is the
minimum of the union of the support values of X and Y .

Pr(Z = z) = Pr(X + Y = z)

=

z−ζ∑
k=ζ

Pr(X = k ,Y = z − k)

=

z−ζ∑
k=ζ

Pr(X = k)Pr(Y = z − k).
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Discrete Convolution Formula: Practical Example

Example

If X and Y are independent Poisson random variables with
respective parameters λ1 and λ2, compute the PDF of
Z = X + Y .

Pr(Z = z) =
z∑

k=0

e−λ1λk
1

k!
· e
−λ2λ2

z−k

(z − k)!

= e−(λ1+λ2)
z∑

k=0

λ1
kλ2

z−k

k! (z − k)!

=
e−(λ1+λ2)

z!

z∑
k=0

z!

k! (z − k)!
λ1

kλ2
z−k

=
(λ1 + λ2)z e−(λ1+λ2)

z!
z = 0, 1, 2, . . . .
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Discrete Convolution Formula: Impractical Example

Example

Suppose X and Y are independent RVs with PDFs:

fX (x) =


0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =


0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Compute the PDF of Z = X + Y .

Not bad enough? Consider the supports of X and Y to be
{−1002,−15, 2, 62, 211} and {−216,−57, 23, 81}!
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Discrete Convolution Formula: Impractical Example

To compute Pr(Z = 4), we can use the discrete convolution
formula with ζ = −3

Pr(Z = 4) =
7∑

k=−3

Pr(X = k, Y = 4 − k)

= Pr(X = −3) · Pr(Y = 7) + Pr(X = −2) · Pr(Y = 6) +

Pr(X = −1) · Pr(Y = 5) + Pr(X = 0) · Pr(Y = 4) +

Pr(X = 1) · Pr(Y = 3) + Pr(X = 2) · Pr(Y = 2) +

Pr(X = 3) · Pr(Y = 1) + Pr(X = 4) · Pr(Y = 0) +

Pr(X = 5) · Pr(Y = −1) + Pr(X = 6) · Pr(Y = −2) +

Pr(X = 7) · Pr(Y = −3)

= 0.15 · 0 + 0 · 0 + 0.25 · 0.3 + 0 · 0 + 0 · 0 + 0.1 · 0 +

0 · 0.1 + 0 · 0 + 0 · 0 + 0.3 · 0.2 + 0 · 0
= 0 + 0 + 0.075 + 0 + 0 + 0 + 0 + 0 + 0 + 0.06 + 0

= 0.135.
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Moment Generating Function (MGF) Technique

If Z = X + Y and X and Y are independent, then MGF of Z is

MZ (t) = E
(
et(X+Y )

)
= E

(
etX etY

)
= E

(
etX ) E (etY

)
= MX (t) MY (t).

For the previous example, the MGFs of X and Y are

MX (t) = E
(
etX
)

= 0.15e−3t+0.25e−t+0.1e2t+0.3e6t+0.2e8t

MY (t) = E
(
etY
)

= 0.2e−2t + 0.1et + 0.3e5t + 0.4e8t
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Moment Generating Function (MGF) Technique

Result of the product of MX (t) and MY (t):

MZ (t) = 0.03e−5t + 0.05e−3t + 0.015e−2t + 0.045 + 0.045e2t +

0.01e3t + 0.135e4t + 0.06e5t + 0.04e6t + 0.16e7t + 0.02e9t +

0.04e10t + 0.09e11t + 0.06e13t + 0.12e14t + 0.08e16t

Considerations:

Structure of discrete random variables in APPL: Supports
are ordered

Implementation issues with MGFs or PGFs when the
supports of the random variables X and/or Y are not
integer-valued

Characteristic functions
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Conceptual Algorithm Development

Ideas:

If the discrete convolution formula is not used, then some
type of sorting will be necessary

Build arrays to hold sums and corresponding probability
values, methodically compute sums and dump the sums in
the arrays, sort the arrays



Algorithms for
Discrete
Random
Variables

Outline

Data
Structures and
Simple
Algorithms

Sums of
Independent
Random
Variables

Order
Statistics

Conceptual Algorithm Development

Ideas:

If the discrete convolution formula is not used, then some
type of sorting will be necessary

Build arrays to hold sums and corresponding probability
values, methodically compute sums and dump the sums in
the arrays, sort the arrays
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Conceptual Algorithm Development

Brute Force Method

Suppose X has support x1, x2, . . . , xn and Y has support
y1, y2, . . . , ym.

Compute all possible sums between the support of X and
the support of Y by brute force: x1 + y1, x1 + y2, . . . , x1 +
ym, x2 + y1, x2 + y2, . . . , xn + ym−1, xn + ym. Place the
sums in an array.

Sort the array with the sums. When n ·m is “small” (less
than 20), use basic insertion sort. When n ·m is larger,
but still less than 100, use more efficient heapsort.
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Conceptual Algorithm Development

Brute Force Method
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Conceptual Algorithm Development

For n ·m > 100, the brute force method is impractical

Idea:

Instead of constructing the sums array s first and then
sorting it, construct s by sequentially appending the next
ordered element.

“Moving heap method:” Build, delete, and insert sums
into a minimum heap data structure as the sums are
computed.
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Moving Heap Method

Moving Heap Method

The idea behind this sorting algorithm is the construction
of a two-dimensional “conceptual” array A.

The array A serves as a bookkeeping device to help explain
the nature of the algorithm.

A is displayed to resemble the axes in the Cartesian
coordinate system. We assume that the supports of X and
Y are arranged in increasing order; i.e., x1 < x2 < · · · < xn

and y1 < y2 < · · · < ym. The array cell (i , j) contains the
sum Ai , j = yi + xj for i = 1, 2, . . . , m and j = 1, 2, . . . , n.
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Moving Heap Method

Example

Suppose X and Y are independent RVs with PDFs:

fX (x) =


0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =


0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Use the “moving heap method” to determine the PDF of
Z = X + Y .
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Construct the 5× 6 array A. Set Ai , 6 = 0 for i = 1, 2, 3, 4
and A5, j = 0 for j = 1, 2, 3, 4, 5.

The smallest value in A is positioned in cell (1, 1).

The algorithm designates the cell (1, 1) as an “active” cell.
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Building the array of sums and probabilities

Let the one-dimensional array s of length n ·m hold the
sums.

Let the one-dimensional array called Probs of same length
hold the corresponding probabilities for the sums.

The first (smallest) sum to be placed in the first position
of array s is A1, 1.

After A1, 1 is removed, activate the cells with the next
largest sums.
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Building the array of sums and probabilities

Let the one-dimensional array s of length n ·m hold the
sums.

Let the one-dimensional array called Probs of same length
hold the corresponding probabilities for the sums.

The first (smallest) sum to be placed in the first position
of array s is A1, 1.

After A1, 1 is removed, activate the cells with the next
largest sums.
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The next cells that may contain the next largest sums are
A1, 2 = −3 and A2, 1 = −2.

Since cells (1, 2) and (2, 1) are now “active,” the 1’s and
0’s outside the matrix A are reset to reflect this
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The values A1, 2 and A2, 1 now form the minimum heap H,
resulting in H = {A1,2,A2,1} = {−3,−2}.
A minimum heap is a complete binary tree with the special
ordering property that each parent node contains a value
less than or equal to the values in its children’s nodes.
Because of this ordering property, the smallest value in a
minimum heap will always be at the root.
The next sum to be entered into the array of sums s is the
root of the heap.
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Array A after A1, 2 = −3 is processed and appended to s.

Cell (2, 1) is the only active cell. Candidates to become
active are cells (1, 3) and (2, 2).



Algorithms for
Discrete
Random
Variables

Outline

Data
Structures and
Simple
Algorithms

Sums of
Independent
Random
Variables

Order
Statistics

Moving Heap Method

Since row two contains the active cell (2, 1), and by
design A2, 1 < A2, 2, entry A2, 2 is not activated.
Cell (1, 3) does become active, and its entry is
A1, 3 = y1 + x3 = 0.
Since cells (1, 3) and (2, 1) are now “active,” the 1’s and
0’s outside the matrix A are reset to reflect this.
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The entry A1, 3 is inserted into the heap H, resulting in
H = {A2, 1,A1, 3} = {−2, 0}.
After the addition of A1, 3, the heap H is displayed below.

The minimum element, A2, 1, is removed from the root of
the heap and placed in the sum array s; its corresponding
probability is placed in the Probs array.
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Continuing to move northeast through matrix A
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Figure: Array A with active cells (1, 3), (2, 2), and (3, 3).
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Figure: Heap H with entries A1, 3 = 0, A2, 2 = 0 and A1, 3 = 2.
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Figure: Array A with its seventeenth active cell (3, 4).
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After twenty iterations of this process, s and Probs arrays
are

s = [−5, −3, −2, 0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 7, 9, 10, 11, 13, 14, 16 ]

Probs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08 ]

These are the same arrays constructed by using the
moment generating function technique.

The redundancies are removed from s and the appropriate
probabilities are combined in Probs.
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Summary

If supports of X and Y are:

“small” (less than 100), use the Brute Force Method.

finite, but “large” (greater than 100), use the Moving
Heap Sort Method.

infinite, use either the Discrete Convolution Formula or
Moment Generating Function Technique.
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Moment Generating Function Technique.



Algorithms for
Discrete
Random
Variables

Outline

Data
Structures and
Simple
Algorithms

Sums of
Independent
Random
Variables

Order
Statistics

Sums of Independent Discrete Random Variables

Summary
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Heap Sort Method.

infinite, use either the Discrete Convolution Formula or
Moment Generating Function Technique.



Algorithms for
Discrete
Random
Variables

Outline

Data
Structures and
Simple
Algorithms

Sums of
Independent
Random
Variables

Order
Statistics

Sums of Independent Discrete Random Variables

Example

Let the discrete random variable S = X1 + X2 + · · ·+ X150,
where the Xi ’s are independent, Pr(Xi = −1) = Pr(Xi = 0) =
Pr(Xi = 1) = 1/3, i = 1, 2, . . . , 150. Find a normal
approximation to Pr(S = 5).

Instead of settling for approximations of the probabilities, APPL
procedures, such as Convolution, can retrieve exact solutions.

Since the mean and variance of S are µ = 0 and σ2 = 100,
using the normal PDF approximation we obtain
1

20

√
2e−1/8
√
π
∼= 0.03521.
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Since the mean and variance of S are µ = 0 and σ2 = 100,
using the normal PDF approximation we obtain
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The APPL code:

X := [[1 / 3, 1 / 3, 1 / 3], [-1, 0, 1],
["Discrete", "PDF"]];

S := ConvolutionIID(X, 150)

yields the exact PDF for S . The statement PDF(S, 5) returns

Pr(S = 5) =
160709987007649212790999852367465829596098558279031212787052332840770

4567759074507740406477787437675267212178680251724974985372646979033929
,

which is approximately 0.03518.

ConvolutionIID is a procedure that uses Convolution to
sum 2 or more idependent and identically distributed random
variables.
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Order Statistics for Discrete RVs: Taxonomy

Figure: Categorization of discrete order statistics by sampling
convention, support, and probability distribution.
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APPL’s Order Statistics Procedure

The APPL procedure OrderStat(X, n, r, ["wo"]) has
three required arguments:

a random variable X,

the number of items n randomly drawn from the
population with PDF fX (x), and

the index r of the desired order statistic.

An optional fourth argument "wo" can be specified to
indicate that the items are drawn from the population
without replacement.

The output of the algorithm is fX(r)
(x), the PDF of the rth

order statistic, where n items have been sampled either with or
without replacement from a population with PDF fX (x).
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If the population with PDF fX (x) has equally likely
probability values, then the PDF of the r th order statistic
when n items are sampled is

fX(r)
(x) =

(x−1
r−1

)(N−x
n−r

)(N
n

) x = r , r + 1, . . . , r + N − n.
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If fX (x) has nonequally likely probability values, then there
are three cases to consider when computing the PDF of the r th
order statistic:

1 One item is sampled: n = 1. The PDF of the r th order
statistic is the same as the population PDF; i.e.,
fX(r)

(x) = fX (x) for r = 1, 2, . . . ,N.

2 The entire population is sampled: n = N. The PDF of the
r th order statistic is fX(r)

(x) = 1 for x = r .

3 More than one item, but not the entire population, is
sampled: n = 2, 3, . . . ,N − 1. This non-trivial case
required us to write additional procedures
NextCombination and NextPermutation.
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Further exploration of Case 3:

(a) The first lexicographical combination of n items sampled
from the sequence of integers 1 to N is formed; it is
{1, 2, . . . , n}.

(b) Given a combination consisting of n distinct integers, the
algorithm generates all possible permutations of that
combination and their corresponding probabilities.

(c) After the probability of each permutation generated in
step (b) is computed, each permutation is “rewritten”
lexicographically to determine the corresponding order
statistic probabilities.

(d) After all n! permutations of a given combination are
exhausted, the procedure NextCombination determines
the next lexicographical combination. Steps (b) and (c)
are repeated.
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The OrderStat algorithm computes the PDF of the
minimum order statistic when at most n = 2 items are
sampled without replacement from a discrete population
with infinite support; n ≥ 3 is an open research question.

The PDF of X(1) when n = 2 items are sampled is

fX(1)
(x) = fX (x)

SX (x + 1)

1− fX (x)
+

∞∑
y=x+1

fX (y)

1− fX (y)

 x = 1, 2, . . . ,

where SX (x) is the survivor function defined by
SX (x) = Pr(X ≥ x).
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If the random variable X has finite support Ω, then without
loss of generality we can assume that Ω = {1, 2, . . . ,N}.

The PDF of X(r) when n items are sampled with replacement
from this finite population is given by

fX(r)
(x) =



n−r∑
w=0

(n

w

)[
fX (1)

]n−w [
SX (2)

]w
x = 1

r−1∑
u=0

n−r∑
w=0

( n

u, n − u − w ,w

)[
FX (x − 1)

]u[
fX (x)

]n−u−w [
SX (x + 1)

]w
x = 2, 3, . . . ,N − 1

r−1∑
u=0

(n
u

)[
FX (N − 1)

]u[
fX (N)

]n−u
x = N.
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If the support of X is countably infinite, then the calculation of
the PDF of X(r) is similar to the finite-support case.

The algorithm only works for distributions with infinite
right-hand tails.

fX(r)
(x) =



n−r∑
w=0

(n

w

)[
fX (1)

]n−w [
SX (2)

]w
x = 1

r−1∑
u=0

n−r∑
w=0

( n

u, n − u − w ,w

)[
FX (x − 1)

]u[
fX (x)

]n−u−w [
SX (x + 1)

]w
x = 2, 3, . . .
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