Applications

Applications



Outline

Applications

Outline

0 Bootstrapping

© Kolmogorov—Smirnov test statistic

© Benford's Law



Application 1: Bootstrapping

Applications Estimate the standard error of the difference between the

medians associated with the rat survival data given below.

Bootstrapping Group Data n Median
Treatment | 16, 23, 38, 94, 99, 141, 197 7 94
Control 10, 27, 30, 40, 46, 51, 52, 104, 146 | 9 46
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Applications Estimate the standard error of the difference between the
medians associated with the rat survival data given below.

Bootstrapping

Group Data n Median
Treatment | 16, 23, 38, 94, 99, 141, 197 7 94
Control 10, 27, 30, 40, 46, 51, 52, 104, 146 | 9 46

Generate B bootstrap samples, each of which consists of n =7
samples drawn with replacement from 16, 23, 38, 94, 99, 141,
and 197. Calculate sample standard deviation of the medians.
Bootstrap estimates of the standard error of the median:

B=50 B=100 B =250 B =+
Treatment 41.18 37.63 36.88 37.83
Control 20.30 12.68 9.538 13.08
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Application 1: Bootstrapping (continued)

Applications

Calculate B = +oo column via:
> treatment := [16, 23, 38, 94, 99, 141, 197];
> X := BootstrapRV(treatment) ;

Dok > Y := OrderStat(X, 7, 4);

> sqrt(Variance(Y));

8359/823543 y =16
80809,/823543 y =23
196519/823543 y =38
f(y) ={ 252169/823543 y =94
196519/823543 y =99
80809/823543 y =141
| 8359/823543 y = 197

Standard error: V/242712738519382 = 37.8347

823543
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Application 1: Bootstrapping (continued)

Applications Bootstrapping in reliability
Use bootstrapping to determine a 95% lower confidence bound
on the system reliability for a series system of three independent
WMl components using the binary failure data (y;, n;), where

@ y; is the number of components of type i that pass the
test;

@ n; is the number of components of type i on test
fori=1,2,3.

Component number ‘ i=1 ‘ =2 ‘ i=3

Number passing (y;) | 21 27 82

Number on test (n;) | 23 84




Application 1: Bootstrapping (continued)

Applications Bootstrapping in reliability
Use bootstrapping to determine a 95% lower confidence bound
on the system reliability for a series system of three independent
WMl components using the binary failure data (y;, n;), where

@ y; is the number of components of type i that pass the
test;

@ nj is the number of components of type i on test
fori=1,2,3.

Component number ‘ i=1 ‘ =2 ‘ i=3

Number passing (y;) | 21 27 82

Number on test (n;) | 23 28 84
Point estimate for the system reliability:
21 2 2 11
7 82 1107 = 0.8595.

23 28 84 1288
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Application 1: Bootstrapping (continued)

Applications > := BinomialRV(23, 21 / 23);
> X1 := Transform(X1, [[x -> x / 23], [0, 2311);
> X2 := BinomialRV(28, 27 / 28);

Bootstrapping > X2 := Transform(X2, [[x -> x / 28], [0, 28]]);
> X3 := BinomialRV(84, 82 / 84);
> X3 := Transform(X3, [[x -> x / 84], [0, 84]]);



Application 1: Bootstrapping (continued)

Applications

X1 := BinomialRV(23, 21 / 23);
X1 := Transform(X1, [[x -> x / 23], [0, 23]11);

X2 := BinomialRV(28, 27 / 28);

Sootsraping X2 := Transform(X2, [[x -> x / 28], [0, 28]11);
X3 := BinomialRV(84, 82 / 84);
X3 := Transform(X3, [[x -> x / 84], [0, 84]]);
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Temp := Product(X1, X2);



Application 1: Bootstrapping (continued)

Applications

X1 := BinomialRV(23, 21 / 23);

X1 := Transform(X1, [[x -> x / 231, [0, 23]11);
X2 := BinomialRV(28, 27 / 28);

X2 := Transform(X2, [[x -> x / 28], [0, 28]1);
X3 := BinomialRV(84, 82 / 84);

X3 := Transform(X3, [[x -> x / 84], [0, 84]]);
Temp := Product (X1, X2);

T := Product(Temp, X3);

Bootstrapping

V VV V V V V.V
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Application 1: Bootstrapping (continued)

V VV V V V V.V

X1 := BinomialRV(23, 21 / 23);

X1 := Transform(X1, [[x -> x / 231, [0, 23]11);

X2 := BinomialRV(28, 27 / 28);

X2 := Transform(X2, [[x -> x / 281, [0, 28]11);

X3 := BinomialRV(84, 82 / 84);

X3 := Transform(X3, [[x -> x / 84], [0, 84]]);

Temp := Product (X1, X2);

T := Product(Temp, X3);

@ There are a possible 24 - 29 - 85 = 59, 160 potential mass
values for T.

@ Of these, only 6633 are distinct because the Product
procedure combines repeated values.

@ The lower 95% bootstrap confidence interval bound is the
0.05 fractile of the distribution of T, which is

6723/9016 = 0.7457



Application 2: Kolmogorov—Smirnov test statistic

Appieiters Defining formula:

Dn = sup [F(x) = Fa(x)|

Computational formula:
i—1

—X0 ||, T

Kolmogorov—

Smirnov test

statistic Dn = maXx
i=1,2,...,n

|

The CDF of D, (all parameters known case, Birnbaum, 1952):

P(D <+v>—n|/zn+V/3+v /

g(ui,up, ... up)dup ... duy du1

for0<v< 2’2’;1, where

2n1

“+v

-V

glur,up, ... up)=1
for0<u; <uw <--- < up,.




Application 2: Kolmogorov—Smirnov test statistic
(continued)

Applications

CASEl: n=1

0 t<3
Ps(;lir?noogvo;::; FDl(t) = Pr(D]_ S t) = 2t — ]. % < t < 1
statistic 1 tz].
CASE Il: n=2
0 t<i
8(t—1)? T<t<i
Fp,(t) =Pr(D; <t) = 4 2
1 t>1



Application 2: Kolmogorov—Smirnov test statistic

(continued)

Applications Goal: X := KSRV (n),
CASE lll: n=06

F(x)
10

Kolmogorov—
Smirnov test

statistic 08 A
06 -
04
02 -

00 A

00 02 04 06 08 10
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Applications Benford’s Law

@ concerns the distribution of the leading digit in a data set

@ Simon Newcomb (1881) noticed that the early pages of
logarithm tables were more worn than the later pages

o if X denotes the leading digit

1
Benford’s Law fX(X) = P(X = X) = IOglO <1 + X>

o P(X =1)=0.301

o P(X = 9) =0.0458

@ Frank Benford (1938) fit the distribution to a wide variety
of data sets



Application 3: Benford's Law

Applications Benford’s Law

@ concerns the distribution of the leading digit in a data set

@ Simon Newcomb (1881) noticed that the early pages of
logarithm tables were more worn than the later pages

o if X denotes the leading digit

1
Benford’s Law fX(X) = P(X = X) = IOglO <1 + X>

@ P(X=1)=0.301

@ P(X =09)=0.0458

@ Frank Benford (1938) fit the distribution to a wide variety
of data sets

@ the goal: search for probability distributions satisfying
Benford's Law exactly
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Application 3: Benford's Law (continued)

Applications Variate Generation
o let X ~ Benford
@ the cumulative distribution function of X is

Fx(x) = P(X = x) = logo (1 + x)

Benford's Law o Iet U ~ U(O, 1)
@ a Benford random variable X is generated via

X — [10Y]



Application 3: Benford's Law (continued)

Applications Variate Generation
o let X ~ Benford
the cumulative distribution function of X is

Fx(x) = P(X = x) = logo (1 + x)

©

©

let U~ U(0,1)
a Benford random variable X is generated via

X — [10Y]

Benford's Law

©

@ this is an initial probability distribution that satisfies
Benford's Law exactly: U ~ U(0,1) and T =10Ys0 T
has probability density function

1
fr(t) = tIn 10

1<t<10
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Applications More notation

@ the target population of interest: a continuous random
variable T with probability density function

fr(t)

Benford's Law [+] W = IOglO T
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Applications More notation

@ the target population of interest: a continuous random
variable T with probability density function

fr(t)

Benford's Law o W=logiyy T

@ a random integer D denoting the order of magnitude
associated with a specific value of T with probability mass
function fp(d) and support ..., —2,—1,0,1,2,... so that
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Application 3: Benford's Law (continued)

Applications More notation

@ the target population of interest: a continuous random
variable T with probability density function

fr(t)

Benford's Law o W=logiyy T

@ a random integer D denoting the order of magnitude
associated with a specific value of T with probability mass
function fp(d) and support ..., —2,—1,0,1,2,... so that

10P < T < 10P*1

@ a random leading digit Y with support 1,2,...,9 with
probability mass function fy(y)
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Applications

Example 1
Let W ~ U(0,2)
T = 10" has probability density function

1

= 1 1
2tIn10 <t<100

fr(t)

Benford's Law



Application 3: Benford's Law (continued)

Applications

Example 1
Let W ~ U(0,2)
T = 10" has probability density function

1

= 1 1
2tIn10 <t<100

fr(t)

Benford's Law

Since D has probability mass function
ip(0)=P(1<T<10)=1/2

fp(l) = P(10 < T < 100) =1/2



Application 3: Benford's Law (continued)

Applications

Example 1
Let W ~ U(0,2)
T = 10" has probability density function

1

= 1 1
2tIn10 <t<100

fr(t)

Benford's Law

Since D has probability mass function
ip(0)=P(1<T<10)=1/2
fip(l)=P(10 < T <100) =1/2

Last step: calculate the probability mass function of the leading
digit Y
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Application 3: Benford's Law (continued)

fy(y)

Example 1 (continued) Y has probability mass function

Pr(Y =y)
Prly< T<y+1)+Pr(10y < T <10(y + 1))

y+1 10(y+1)
/ Fr(t) dt + / (1) dt
y

10y

vl 0(y+1) g
dt dt
/y 2tIn 10 +/10y 2tIn 10

2 InllO [In(y +1) = Iny + In(10(y + 1)) — In(10y)]

1
log1o (yj) y=1,2,...,9
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Application 3: Benford's Law (continued)

fy(y)

Example 1 (continued) Y has probability mass function

Pr(Y =y)
Prly< T<y+1)+Pr(10y < T <10(y + 1))

y+1 10(y+1)
/ Fr(t) dt + / (1) dt
y

10y

vl 0(y+1) g
dt dt
/y 2tIn 10 +/10y 2tIn 10

2 InllO [In(y +1) = Iny + In(10(y + 1)) — In(10y)]

1
log1o (yj) y=1,2,...,9

which satisfies Benford's Law exactly
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Application 3: Benford's Law (continued)

Applications Example 2 Let W ~ Triangu/ar(O, 1, 2)

f(w)— w O<wxl
WART =Y 2—w 1<w<?

So T = 10" has a piecewise probability density function

Benford's Law

Int

_Int 1<t<10

Fr(t) = tﬁln 10)?

YT 210 int 10 < t < 100
t(In 10)2 -

via the APPL statements

> W := TriangularRV(0, 1, 2);
>g := [[w->10 "~ w], [0, 2]];
> T := Transform(W, g);
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Example 2 (continued)
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Application 3: Benford's Law (continued)

Applications

Example 2 (continued)
The probability mass function of Y is

+1
fy(y) = logyg (yy) y=12,...9

Benford's Law

which satisfies Benford's Law.



Application 3: Benford's Law (continued)

Applications

Example 2 (continued)
The probability mass function of Y is

+1
fy(y) = logyg (yy) y=12,...9

Benford’s Law
which satisfies Benford’s Law.

The calculation was performed via the APPL statements
> W := TriangularRV(0, 1, 2);

> Z := Benford(W);
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