Primer on   FRACTIONAL FACTORIAL EXPERIMENTS

The Need for Fractional Factorials.  As the number of factors in a 2k factorial design increases, the number of runs required for a complete replicate of the design rapidly outgrows the resources of most experimenters.  For example, a complete replicate of the 26 design requires 64 runs.  After we estimate the mean, there are N-1=63 degrees of freedom remaining to estimate the other effects.  In this design, 6 of these 63 degrees of freedom correspond to main effects and 15 correspond to 2-way interactions.  The remaining 42 degrees of freedom are associated with higher order interactions (three-way , four-way, five-way, and the one six-way interaction).
If you can assume that certain higher order interactions are insignificant, then information on the main effects and low-order interactions can be obtained from running only a fraction of the complete 2k factorial experiment.  Thus the name, Fractional Factorial Experiments.

Example.  The class problem for lesson 27 examined a 24 experiment that measured how Filtration Rate is affected by four factors: (A) temperature, (B) pressure, (C) concentration of formaldehyde, and (D) stirring rate.  The complete, unreplicated experiment is as follows.

	Std Ord
	Letter
Notn
	
A
	
B
	
C
	
D
	
AB
	
AC
	
AD
	
BC
	
BD
	
CD
	ABC
	ABD
	ACD
	BCD
	ABCD
	Yield (lbs)

	1
	(1) *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	45

	2
	a
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	71

	3
	b
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	48

	4
	ab *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	65

	5
	c
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	68

	6
	ac *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	60

	7
	bc *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	80

	8
	abc
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	65

	9
	d
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	43

	10
	ad *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	100

	11
	bd *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	45

	12
	abd
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	104

	13
	cd *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	75

	14
	acd
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	86

	15
	bcd
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	70

	16
	abcd *
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	96



The significant effects and their estimate effects for this experiment: Temperature (A=21.63), Concentration (C=9.88), and Stirring Rage (D=14.63) main effects and the interactions of Temperature with Concentration (AC= 18.13), and Stirring Rate (AD = 16.63).  We can see this from the Minitab output:

Estimated Effects and Coefficients for Rate    

Term         Effect      Coef
Constant               70.062 
A            21.625    10.813 
B             3.125     1.563 
C             9.875     4.937 
D            14.625     7.313 
A*B           0.125     0.062 
A*C         -18.125    -9.063 
A*D          16.625     8.312 
B*C           2.375     1.187 
B*D          -0.375    -0.187 
C*D          -1.125    -0.563 
A*B*C         1.875     0.937 
A*B*D         4.125     2.063 
A*C*D        -1.625    -0.812 
B*C*D        -2.625    -1.312 
A*B*C*D       1.375     0.687 

Analysis of Variance for Rate    

Source                DF      Seq SS     Adj SS     Adj MS      F      P
Main Effects           4     3155.25    3155.25    788.813     **
2-Way Interactions     6     2447.88    2447.87    407.979     **
3-Way Interactions     4      120.25     120.25     30.062     **
4-Way Interactions     1        7.56       7.56      7.563     **
Residual Error         0        0.00       0.00      0.000
Total                 15     5730.94


 Nscores -
         -                                             *   A
         -
      1.2+                                        *    AD
         -                                      *    D
         -                                 *    C
         -                           *    ABD
         -                         **    BC,B
      0.0+                         *    ABC
         -                       **    AB,ABCD
         -                       *    BD
         -                      *    CD
         -                     *    ACD
     -1.2+                    *    BCD
         -
         -     *    AC
         -
           --+---------+---------+---------+---------+----Effects 
           -20       -10         0        10        20

Fractional Factorial.  Suppose, however, that we could only do 8 runs instead of the full 16 runs in the experiment.  Would we still be able to reach the same conlusion?  It depends on if we run the correct 16 runs.  So how should we determine which 8 of the 16 runs to use?  Answer:  We use a systematic method to get “part” of every effect.  You can see this method by looking at the cube plots, where we have systematically taken out the “opposites.”
		
	Full 24 Factorial in 16 Runs	Fractional 24-1 Factorial in 8 Runs

You can see that at each level of D, we run the opposite configurations of A, B, and C.  This is true for each of the other factors as well.  (You could easily see this by making cube plots with separate cubes for each of the other factors A, B, and C.)  The configurations that we run are marked with an asterisk (*) in the design matrix on the previous page.  (Note the symmetry:  there are two asterisks in each of the four-run boxes separated by dashed lines and they have a definite pattern.)

When we reduce the number of runs to only a half of the full 2k design (24=16 to 24-1=8 in this example), we call this a “Half Fraction” of the 2k design.  Similarly, if we reduced to only a quarter, we’d call it a “Quarter Fraction” (Going from 24=16 to 24-2=4 would be a quarter fraction).

Disadvantage of the Fractional Factorial.  What drawbacks do we have when we only do Fractional Factorials?  In the full 24= 16 experiment, we were able to estimate the mean and 15 effects as shown in the Minitab output.  In the 24-1 =8 experiment, we can only estimate the mean and 7 effects.  So which ones are we estimating?  The answer is that each estimate is really an estimate of the sum of two effects. It’s our job to figure out which effects are causing each estimate.  Consider the Minitab output when we only run the 8 configurations in the half fraction:

MTB > FFactorial 'Rate' = A! B! C! D;
SUBC>   EPlot.

Alias Information for Terms in the Model.
Totally confounded terms were removed from the analysis

I + A*B*C*D
A + B*C*D
B + A*C*D
C + A*B*D
D + A*B*C
A*B + C*D
A*C + B*D
A*D + B*C

Fractional Factorial Fit

Estimated Effects and Coefficients for Rate    

Term         Effect      Coef
Constant               70.750 
A            19.000     9.500 
B             1.500     0.750 
C            14.000     7.000 
D            16.500     8.250 
A*B          -1.000    -0.500 
A*C         -18.500    -9.250 
A*D          19.000     9.500 

Analysis of Variance for Rate    

Source                DF      Seq SS     Adj SS     Adj MS      F      P
Main Effects           4        1663       1663      415.7     **
2-Way Interactions     3        1408       1408      469.5     **
Residual Error         0           0          0        0.0
Total                  7        3072


         -
         -                                            2    A,...
     0.80+
         -
 Nscores -
         -                                          *    D
         -
     0.00+                                       *    C
         -
         -                           *    B
         -
         -
    -0.80+                        *    AB
         -
         -
         -
         -       *    AC
           ----+---------+---------+---------+---------+--Effects 
             -20       -10         0        10        20

Recall that the full experiment found that A, C, D, AC, and AD were the significant effects.  We could reach the same conclusion from this output; however, we must be careful in our analysis.  Each of the effects that Minitab is plotting is really the sum of two effects.  So, each of the points really has two “names” that make up the effect.  When people have two names, we call them aliases; therefore, we use the term Alias in describing the two effects:  “The two effects are aliased.”  Minitab gives you the alias structure at the beginning of the output.  In this example, the mean is aliased with the ABCD effect, the A main effect is aliased with the BCD effect, and so forth.  So, when we get the estimate for the effect of A=19.00 in the 24-1 half-fraction experiment, we’re really getting the sum of the estimates for the effects of A and BCD.  (You can see this by looking at the output from the full 24 experiment in which A=21.625 and BCD=2.625.  The sum of these two is 19.00.)

Determining Which Effects are Significant.  In general, the way to determine which effects are significant is a little more complicated.  But, it’s systematic and straightforward.  For each of the estimated effects, make a chart that has the sum of the aliased effects on one side and the estimated value of the sum of these aliased effects on the other.

	Aliased Effects
	Estimate

	A + BCD
	19.00

	B+ ACD
	1.50

	C + ABD
	14.00

	D + ABC
	16.50

	AB + CD
	-1.00

	AC + BD
	-18.50

	AD + BC
	19.00


We then note which estimates we think are significantly different from zero.  Use the same tools you use in the full factorial (list of effects, ANOVA, and normal plot).  These are the bold-faced estimates in the chart.  Then, use a trial and error method to assign the estimate to the effects for the significant estimates.  Usually, if an estimate is significant, first try to assign the lowest order effect in the alias sum as the cause.  When you get to interactions, try to assign the interactions that contain the main effects you thought were significant.  In this case, we assign A as the cause of the first estimate since it is a main effect and of lower order than BCD.  This is in bold-face in the chart.  The same logic applies for C and D.  For the interactions, we used AC and AD since A, C  and D are significant main effects and B was not.
This is not an exact science!  Sometimes, we could alias two effects that are exactly the opposite.  In this case, suppose that the true interaction effects were AB = -15 and CD = +14.  We’d have concluded that these effects are non-existent when they were really just cancelling each other out.  So, be careful.

Determing the Alias Structure.  Each fractional factorial design will have a certain alias structure depending on which runs you decide to make.  Look back at the cube plot of the half fraction.  We could have just as easily used the opposite corners of each of the two cubes, and this would have given us a different alias structure.  So how do we get the alias structure?  We get it by determining a “defining relation” and using this relation to determine the configuratons to run and the alias structure.  We get the defining relation just as we get the block generators:  we look them up in a table!
For this experiment, the defining relation is I = ABCD.  If you want to know which effects are aliased with a certain effect, all you do is multiply each side of the defining relation by the certain effect and use modulus 2 arithmetic.  (This means that 0, 2, 4, 6 ... = 0 and 1, 3, 5 ... = 1).  For example, if we want to know which effects are aliased with A, we multiply the defining relation by A to get A=A2BCD=BCD in modulus 2 arithmetic.  For ACD, we would have ACD=A2BC2D2 = B.  Look down the alias structure of the Minitab output and you can see how this technique works.
Why did the table tell us to use I=ABCD as the defining relation?  The concept behind of this assignment is similiar to how the blocking table told us to block using ABCD.  Consider:
	1) In a two block experiment, we use the largest interaction effect (e.g., ABCD) as the block factor.  This makes the block effect confounded with the interaction we believe is most likely to be zero.
	2) In a half-fraction factorial, we use I=ABCD as the defining relation so that the main effects are aliased with three-way interactions and two-way interactons are aliased with each other. Since the main effects are most likely to be significant and the higher-order interactions we are most likely to be zero, the potential consequences of aliasing are minimized.

	Std Order
	
Run
	
I
	
A
	
B
	
C
	
AB
	
AC
	
BC
	
D=ABC

	1
	(1)
	
	
	
	
	
	
	
	

	2
	ad
	
	
	
	
	
	
	
	

	3
	bd
	
	
	
	
	
	
	
	

	4
	ab
	
	
	
	
	
	
	
	

	5
	cd
	
	
	
	
	
	
	
	

	6
	ac
	
	
	
	
	
	
	
	

	7
	bc
	
	
	
	
	
	
	
	

	8
	abcd
	
	
	
	
	
	
	
	


Determining the Configurations to Run.  Once we have determined how many runs our resources will allow us to do, we look at how many factors a full experiment could examine in this many runs.  For example, a 24-1 experiment has 8 runs, which would be a  full 23 factorial if we had just three factors.  Then, we write out the three main effect columns for the full factorial.  This is just the 23 experiment that we have studied before.  Now we must determine the levels of the “extra factors” we’d like to study.  To do this, we use the defining relation to get the alias structure of these “extra factors.”  For the 24-1 half fracton with defining relation I=ABCD, we get D=ABC.  This means that D and ABC are the same, so logically D should have the same levels as ABC.   Thus, all you have to do is multiply A, B and C together to get the level of D.  If you wanted to, you could look at the full 23 design matrix that has all the interactions and simply set D at the levels of the ABC column.  Then, add a lower case ‘d’ to the run config-urations that have D at the high level. It doesn’t get much easier than this!
The Alternate Fraction.  Recall two points in the earlier discussion.
	1) In the 24-1, We picked only 8 of the possible 16 configurations to get our fractional experiment of “opposites.”  We could have just as easily picked the other 8.
	2) We discussed earlier that we could have a case in which we might alias two effects that are exactly the opposite.  (Recall the hypothetical case in which AB = 15 and CD = +14.  Our mistaken conlusion was that these effects were non-existent when they were really just cancelling each other out.)
You might be able to solve a bit of this problem beforehand if you have an idea of how the interactions will occur (positive or negative interactions).  Suppose we had expected that both the AB and CD interactions were likely to be significant and of opposite sign.  We could use a different defining relation  to get what we call the alternate fraction (as opposed to the principle fraction).  We get the alternate fraction defining relation by changing a sign in the principle fraction defining relation.  In this example the principle defining relation was I=ABCD, so the alternate defining relation would be I=ABCD.  This fraction would run the other 8 configurations that we didn’t run in the principle fraction.  It would also have AB=CD in its alias structure instead of AB=CD.  Then, instead of our experiment estimating ABCD = 1.00 and us concluding that both interactons are zero, we’d get something like ABCD = 29, and we’d know something was up concerning these two interactions!
If we run the principle fraction, and then the alternate fraction, we get the full experiment.  If we do this, however, we have a blocked experiment in which the effect confounded with blocks is the defining relation.  You can see, then, that a half-fraction experiment is just running one of the blocks in a two-blocked experiment, where the effect confounded with blocks is the highest order interaction.

Quarter-Fraction Factorials and Beyond.  Suppose we had five factors to study and wanted to run a full 25 factorial of 32 runs.  If our resources were limited to only 16 runs, we’d use a 25-1 half fraction factorial with defining relation I=ABCDE.  You can probably see that the main effects in this case are aliased with four-way interactions and two-way interactions are aliased with three-way interactions.  (For example, A=BCDE and AB=BCDE).  To figure out which configurations to run, we’d could just use the “+” block in a two-block experiment with ABCDE as the factor confounded with blocks.
Now consider what happens when our resources allow us to only do 8 of the 32 possible runs.  Since we are running only a quarter of the possible configurations, this is called a quarter fraction factorial.  In the five factor case, the quarter fraction factorial is denoted 25-2, since we are running only 25-2 = 8 of the possible 32 congfigurations.
An eight run experiment allows us to estimate eight things:  the mean and seven effects.  In the previous 24-1 example, we had 16 different effects, so each of the 8 estimates really estimated the sum of two effects.  In that way we accounted for all 16 effects.  In a 25-2 experiment, we have 32 different effects:  5 main effects, 10 two-way interactions, 10 three-way interactions, 5 four-way interactions, and one five-way interaction.  In this case, each of the eight estimates would estimate the sum of four effects.  The defining relation would have four terms, I = ACD = BCE = ABDE, and each of our alias equations would have four terms, and each effect would be aliased with three other effects.  Determining which configurations to run has the same methodology as in the 24-1.  Since there are only 23 =  8 runs, write the design for a full 23 experiment in three factors.  Then, determine the levels of the “extra” factors D and E by using any of the terms in the alias equation that only have A, B, and C.  For example, D = AC, so set D at the same levels that AC would have.  Since E = BC, set E to the levels in the BC column.
	Aliased Effects
	Without 4(+) Interactions 

	A + BD +CE +ABCDE
	A + BD +CE 

	B + AD +ABCE + CDE
	B + AD + CDE

	C + ABCD + AE + BDE
	C +  AE + BDE

	D + AB + ACDE + BCE
	D + AB +  BCE

	E + ABDE + AC + BCD
	E +  AC + BCD

	BC + ACD + ABE + DE
	BC + ACD + ABE + DE

	BE + ADE + ABC + CD
	BE + ADE + ABC + CD


In a quarter fraction factorial, trying to determine which effects are significant becomes more complex.  Since the defining relation has four terms and each effect is involved in a four-way aliasing, each estimate will have an equation with four terms.  This makes the table we use to assign interactions cluttered, with the clutter coming from all the new higher-level interactions that are probably insignificant.  So, as dangerous as it could potentially be, we must start to “assume away” the four-way and higher interactions.  When we do this, we reduce the clutter somewhat and make it easier to determine the significant effects.  The right column in the table shows what happens when we drop these higher order interactions. The analysis is just as in the preceding example, though, and once you master the method, you can do any fractional factorial!
For experiments that study even more factors, the fractions get even smaller:  one-eighth, one-sixteenth, and so on.  To get the defining relations, we simply look to a table for our design.  The table below provides a partial list of the principle fractions for some of the most common types of fractional experiments.  The table gives the design generators (used to get the levels of the  “extra” factors) and the defining relation (used to get the alias structure).  You should be able to determine the entire alias structure for each of these experiments from this table.
You can get alternate fractions by multiplying the design generators by .  For example, there are four fractions in quarter-fraction factorial 25-2:  the principle fraction and three alternate fractions.  The principle fraction generates the levels of D and E using D = AC and E = BC.  The three alternate fractions use 1) D = AC and E = BC, 2) D = AC and E =  BC, and 3) D =  AC and E =  BC.
	k
	Design
	Runs
	Design Generators
	Defining Relation

	3
	23-1
	4
	C = AB
	I = ABC

	4
	24-1
	8
	D = ABC
	I = ABCD

	5
	25-1
	16
	E = ABCD
	I = ABCDE

	
	25-2
	8
	D = AB, E = AC
	I = ABD = ACE = BCDE

	6
	26-1
	32
	F = ABCDE
	I = ABCDEF

	
	26-2
	16
	E = ABC, F = BCD
	I = ABCE = BCDF = ADEF

	
	26-3
	8
	D = AB, E = AC, F = BC
	I = ABD = ACE = BCDE = BCF = ACDF = ABEF = DEF

	7
	27-1
	64
	G = ABCDEF
	I = ABCDEFG

	
	27-2
	32
	F = ABCD, G = ABDE
	I = ABCDF = ABDEG = CEFG

	
	27-3
	16
	E = ABC, F = BCD, G = ACD
	I = ABCE = BCDF = ADEF = ACDG = BDEG = ABFG = CEFG

	
	27-4
	8
	D = AB, E = AC, F = BC, G = ABC
	I = ABD = ACE = BCDE = BCF = ACDG = ABEF = DEF = ABCG = CDG = BEG = ADEG = ADFG = CEFG = ABCDEFG



DRILL PROBLEM, LESSON 31

Nickel-titanium alloy is used to make components for jet turbine aircraft engines.  Cracking is a potentially serious problem in the final part, as it can lead to non-recoverable failure.  A test is run at the parts producer to determine the effect of four factors on cracks.  The response is the length of a crack (in mm) induced in a sample coupon subjected to a standard test.  The factors and the crack data are in the following table.
	Factor

	(A) Pouring Temperature

	(B) Titanium Content

	(C) Heat Treatment MethodPressure

	(D) Amount of Grain Refiner Used



The engineer initially ran the experiment as a full 24 factorial and got the data in the table below.

	Std Order
	Letter
Notn
	
A
	
B
	
C
	
D
	Crack (mm)
	
	Letter Notn with D=ABC
	
D=ABC

	1
	(1)
	
	
	
	
	1.71
	
	d
	

	2
	a
	
	
	
	
	1.42
	
	a
	

	3
	b
	
	
	
	
	1.35
	
	b
	

	4
	ab
	
	
	
	
	1.67
	
	abd
	

	5
	c
	
	
	
	
	1.23
	
	c
	

	6
	ac
	
	
	
	
	1.25
	
	acd
	

	7
	bc
	
	
	
	
	1.46
	
	bcd
	

	8
	abc
	
	
	
	
	1.29
	
	abc
	

	9
	d
	
	
	
	
	2.04
	
	(1)
	

	10
	ad
	
	
	
	
	1.86
	
	ad
	

	11
	bd
	
	
	
	
	1.79
	
	bd
	

	12
	abd
	
	
	
	
	1.42
	
	ab
	

	13
	cd
	
	
	
	
	1.81
	
	cd
	

	14
	acd
	
	
	
	
	1.34
	
	ac
	

	15
	bcd
	
	
	
	
	1.46
	
	bc
	

	16
	abcd
	
	
	
	
	1.38
	
	abcd
	



1.  Suppose that he could only do 8 of the total 16 configurations.  He wants to run the alternate fraction, so he uses the defining relation I = ABCD.  Which runs will he do?




2. What is the alias structure of this experiment?






	Aliased Effects
	Estimate

	A - BCD
	-0.1525

	B - ACD
	-0.1275

	C - ABD
	-0.2275

	D - ABC
	0.2425

	AB - CD
	0.1025

	AC - BD
	0.1225

	AD - BC
	-0.2175


3.  The estimates of the effects are in the table.  Fill in the aliased effects rows based on the alias structure and determine which effects in each alias are causing the estimate to be significant.

DRILL PROBLEM, LESSON 33

Nickel-titanium alloy is used to make components for jet turbine aircraft engines.  Cracking is a potentially serious problem in the final part, as it can lead to non-recoverable failure.  A test is run at the parts producer to determine the effect of four factors on cracks.  The response is the length of a crack (in mm) induced in a sample coupon subjected to a standard test.  The factors and the crack data are in the following table.
	Factor

	(A) Pouring Temperature

	(B) Titanium Content

	(C) Heat Treatment MethodPressure

	(D) Amount of Grain Refiner Used



The engineer wants to run a 24-1 using the alternate fraction uisng I = -ABCD.

REQUIREMENTS

1. The responses are in the file ALLOY.MTW.  Use the Stat > DOE > Fractional Factorial to setup the experimental design in columns A through D.  Use the “Options” command to set the fraction number to 1 (the alternate fraction).

2.  Use Stat > DOE > Fit Fractional Factorial to perform calculations and analyze effects.  Fill in the following chart and determine which effects are significant  

	Aliased Effects
	Estimate

	
	

	
	

	
	

	
	

	
	

	
	

	
	




CLASS PROBLEM, LESSON 31

The Integrated Circuit Problem.  Five factors in a manufacturing process for an integrated circuit are to be investigated.  The five factors (A) aperture setting (small, large), (B) exposure time (20% below nominal, 20% above nominal), (C) development time (30 s, 45 s), (D) mask dimension (small, large), and (E) Etch time (14.5 min, 15.5 min).

REQUIREMENTS

1.  The engineer would like to do a 25 but can only do 16 of the 32 possible configurations.  What is the notation of the experiment he should run?


2.  What is the recommended defining relation for this experiment?


3.  What is the alias structure of this experiment?









4.  The levels of A, B, C, and D in a basic 24 experiment are already provided in in the following table.  furthermore, the yield for each of the runs (if you get the level of E correct) are also provided.
     a.  Determine the levels of the factor E to run based on the recommended defining relation.
     b.  Fill in the letter notation for these runs after you have completed a.
     c.  Fill in the sum of the aliased effects for each of the 15  estimates. 
     d.  Compute the estimate for the A + BCDE sum.
     e.  The bolded estimates are significant.  Circle the effects in each of the alias sums that are significant.
	Std Order
	Letter
Notn
	
A
	
B
	
C
	
D
	E = 
	Yield (lbs)

	1
	
	
	
	
	
	
	8

	2
	
	
	
	
	
	
	9

	3
	
	
	
	
	
	
	34

	4
	
	
	
	
	
	
	52

	5
	
	
	
	
	
	
	16

	6
	
	
	
	
	
	
	22

	7
	
	
	
	
	
	
	45

	8
	
	
	
	
	
	
	60

	9
	
	
	
	
	
	
	6

	10
	
	
	
	
	
	
	10

	11
	
	
	
	
	
	
	30

	12
	
	
	
	
	
	
	50

	13
	
	
	
	
	
	
	15

	14
	
	
	
	
	
	
	21

	15
	
	
	
	
	
	
	44

	16
	
	
	
	
	
	
	63



	Aliased Effects
	Estimate

	A +
	11.125

	B + 
	33.875

	C + 
	10.875

	D +ABCE
	-0.875

	E +
	 0.625

	AB +
	 6.875

	AC +
	 0.375

	AD +
	 1.125

	AE +
	 1.125

	BC +
	 0.625

	BD +
	-0.125

	BE +
	-0.125

	CD +
	 0.875

	CE +
	 0.375

	DE +
	-1.375





CLASS PROBLEM, LESSON 33

The Integrated Circuit Problem.  Five factors in a manufacturing process for an integrated circuit are to be investigated.  The five factors (A) aperture setting (small, large), (B) exposure time (20% below nominal, 20% above nominal), (C) development time (30 s, 45 s), (D) mask dimension (small, large), and (E) Etch time (14.5 min, 15.5 min).  The engineer ran a 25-1 experiment in 16 runs.  He used the recommended defining relation I=ABCDE.

REQUIREMENTS
1.  The responses are in the file CIRCUIT.MTW.  Use the Stat > DOE > Fractional Factorial to setup the experimental design in columns A through E.
2.  Use Stat > DOE > Fit Fractional Factorial to perform calculations and analyze effects.

3.  Once you have determined the appopriate effects, re-do the Stat > DOE > Fit Fractional Factorial with only the significant effects and save the fits and residuals.  Analyze the residuals--does the assumption that   iid N(0, 2) hold in this case?






4.  What is is the best regression equation to predict future values of the yield?




5.  What configuration would you set if you wanted a yield of 55?
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