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Abstract

Exact distributions for the marginal gain in reliability of adding & components in parallel to
n components in parallel under the exponential assumption are computed. Expected values
and variances are derived and the independence of the coefficient of variation from A, the
exponential parameter, is shown. The implications of these results for system designers is
highlighted. Much of the work demonstrates the uses of A Probability Programing Language
(APPL) software in complex convolution calculations. Mathematical induction is used to
prove expected value formulas and generalize them.
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1 Summary of Contents and Conclusions

Few exact distributions are known for the reliability of series and parallel systems. In this
paper we show how using APPL, A Probability Programming Language, allows for the
computation of exact formulas for the reliability distributions. We analyze the distributions
of Z = maz(X;,i = 1,2,...,n) and Y = maz(X;,i = 1,2,...,n + k) representing the
reliability distribution of parallel systems of n components and n+k components respectively,
and W, , =Y — Z, the distribution of the marginal gain obtained by adding the extra &
components. We will abreviate W,,; as W, when n and k are obvious. Furthermore, we
obtain exact formulas for the gain, W, ;. Obtaining the distribution function allows for
computing percentiles, probabilities, moments, random variate generation, expected values,
variances and so forth, a great improvement over simply finding results based on p and o2,
as was often done in the past. The computations give rise to theorems on the exact form of
the expected value of W, , its variance, and coefficient of variation. The expected value of
W.,.x in terms of n and % turns out to have a tractable form that lends itself to mathematical
modeling. Further, we show that the coefficient of variation of W, . is independent of A\, which
has implications about a type of risk associated with increased variance in the components.
The increase in CV (W, ;) with respect to n is “flat” for & small and shows that “risk”
associated with increased parallelism is low. The results show explicitly why increasing the
variance of components in parallel improves reliability. The availability of APPL shows
that some reliability calculations can now be solved precisely that were formerly solved by

approximation or simulation.

2 Literature Review and Motivation

The use of reliability block diagrams (RBDs) to model systems that have parallel and series
components is standard. Many texts explain how the diagrams are derived (e.g., Leemis
1995). When used to model systems, it is rare that exact reliability distributions are cal-
culated, primarily due to the intractability of the distribution functions. Kuo and Prasad

state that for redundancy allocation problems, “little work is directed toward exact solu-



tions for such problems” (Kuo and Prasad, 2000). The difficulty in finding exact solutions
for RBDs lies in solving for the distribution functions, which are equivalent to using the
random variable algebraic functions Minimum and Maximum. Often engineers had to settle
for finding characteristics of the parallel systems, such as p, without knowing the entire
distribution, as is the case with The Reliability Engineering Handbook (Kececiogliu, 1991,
pg. 25) who present the mean of Y = Maxz(X;), where X; ~ Ezponential(\). With the
advent of A Probability Programming Language (APPL) (Glen, Leemis, Evans 2001) it is
possible, among other things, to find exact distribution functions for RBDs and then find
other interesting characteristics of the distributions, e.g. the mean, variance, and coefficient
of variation for such systems. Since the ability to find exact reliability distributions now
exists, we can also consider the exact distribution of the marginal increase in reliability of
adding k extra components to the system. Using these results, or knowledge that an exact
formula exists, we can then work to derive results in a simplified form.

The utility of an exact formula for the distribution of marginal gain of new components
is apparent, especially when considering the obvious cost and space constraints. Space
vehicles, probes and shuttles have limited capacity. Additional astronauts can be viewed as
redundant components to a space shuttle system, but they are subject to supply constraints,
space constraints, and fatigue failure. Back up computers have limited space for placement
in airplanes and even additional servers must compete for space in office buildings. If there
is an explicit law of diminishing returns for redundancy, then it is possible to construct
design tradeoffs between increased reliability and constraints on space. A review of the
literature revealed that there was a gap in finding general exact formulas for distribution,
mean, variance and coefficient of variation for parallel systems, as well as for the difference

between two such systems.

3 Problem Formulation

Systems with parallel components can be modeled with RBDs effectively. Figure 1 shows a
three component parallel system with the dashed lines indicating the proposal of adding a

fourth component in parallel. Let Z represent the reliability distribution of the system with



3 components and Y represent the proposed system with 4 components. The distribution of
the marginal gain of the new system can be modeled by W5, =Y — Z. Using APPL, (Glen,
et al, 2001), we can determine the exact distribution of Z, Y, and W. Consider the simple
case where each component has lifetime distributed as X; ~ Exponential(\). Then Z =
max(X;, i =1,2,3) and Y = maz(X;, i = 1,2,3,4) represents the reliability distributions
of parallel systems of 3 components and 4 components respectively, and W5; =Y — Z,
represents the distribution of the marginal gain obtained by adding the extra component.
The software program APPL computes, among other things, distributions that result from

random variable algebra. So the needed distributions are found with the APPL commands:

> X:= ExponentialRV(lambda) ;
> Y:= OrderStat(X, 4, 4);

> Z:= OrderStat(X, 3, 3);

> W:= Difference(Y,Z);

In this case, W is determined to have PDF as follows:
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A plot of this pdf, setting A\ = %, is found in Figure 2. Note the two-piece nature of the
pdf that breaks at zero. Its negative domain represents the probability that the improved
system may still have a lower lifetime, even with the added component. Its expected value
E(Ws51) > 01is evident and we will show that the expected value goes to zero as n increases,
an intuitive result.

For the general case where Z = max(X;,i = 1,2,...,n) and Y = max(X;,i =
1,2,...,m + k), and W, is the distribution of adding k¥ more components in parallel to

a system of n components in parallel, the similar lines of APPL code yield the following

general solution for the PDF of W, ;:
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Plots of E(W), V(W), CV (W) as n increased led to the general theorem statements which
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are proved in this paper. We will investigate the properties of W, to include E(W), V(W),
and CV(W). We cover in detail the case of k& = 1, the gain of adding one additional
component and then generalize using induction. We also give interpretations of our results
for any n that may help designers of parallel systems decide what number of components to

put in a system.

4 Theorems and Corollaries

4.1 Theorem 1

If a component is added in parallel to a system of n components (each distributed Exponen-

tially with parameter A > 0) in parallel the expected gain is equal to m .
Proof: Let Z = maz(X;, 1 =1,2,...,n—1), Y = maz(X;, i =1,2,...,n) and W, =
Y — Z, where X; are iid exponential random variables with parameter A\ > 0. Due to

independence, F(Y) = [[7_,(1 — e ). This product is a polynomial of the form
FY)=1+ ae ™M +ase N + .. +a,e ™V
where the a; are the coefficients of the binomial expansion. So the pdf of ¥ has the form
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Therefore,
n— 1b
B(W,.) = B(Y ~2) =5 (2% -3 %)

el

Renotating by making explicit the binomial expansion coefficients in terms of the parameter
n, the number of factors of type (1 — z), we define C,, ; as the coefficient of the j*™ term in
the expansion of (1 — z)" with C,, o = 1. For example, Cog =1, Co1 = —2, Cyo = (—1)%

Using this new notation, and factoring out %, we now have

Z Cuj _ f Cn1j

The following recursion defines the binomial coefficients in terms of their predecessors:

On,j = _On—l,j—l + C7L—1,j~

For our induction proof, the case of n = 3 is easily verified and omitted. We then assume
that for the case of n — 1, the following is true:

1 Cn,j n—1 Cnfl,j B -1
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We will now show that for the case of n, E(W) = Consider the following for n + 1:
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Substitute the recursion relation:
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Now use the induction hypothesis:
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which reduces to
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and the result follows when the _71 is multiplied back into the term.

4.1.1 Corollary 1

lim E(W,,) =0

n—oo

1
Proof: Clearly, lim ————— = 0 and the result follows.
n—00 )\(n + 1)

4.1.2 Corollary 2

E(Y') approaches E(Z) from above.
Proof:
Since lim E(W,1) =0,= E(Y) — E(Z) as n — o0
1

also, E(Y') > E(Z) since E(Y) — E(Z) = 1)

Thus E(Y') approaches E(Z) from above.



4.1.3 Corollary 3

EW,)=2(+ 45+ + 25

n+1
Proof: Since the induction hypothesis has been proven, the marginal gain is NYCEE)) +1) for any
n and k= 1. As n goes from n — n + k — 1, the gains are /\(nlﬂ), /\(,”1”), ceey /\(,nlJrk).
Summing gives the result.
O
4.2 Theorem 2
V(W,1) is a function of %
Proof:
From the first theorem, we can see that E(Y?) = —% 37, % and we know that
VW) = V(Y)+V(2)
= E(YQ) +E(Z*) - E(Y)?? - E(Z)?
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4.2.1 Corollary 1
The coefficient of variation of W, ; is independent of A.
Proof:
: —+[f(n,a;,b;
CV(W) = W - \/)\2 {f(l ) = (n+1)y/=f(n,a;,b;)
Hw A(n+1)
O



4.3 Theorem 3

E(Y?) — E(Z*) asn — oo and V(Y) = V(Z)as n — oo, implying V(W,,1) =2V (Y) in
the limit.

Proof:
n n—1 b
E(Y?) - (Y F -3 )=
J= 1] Jj= 1]

Using the terminology and notation from Appendix A and simplification from Mathmatica,

f = %Pfypolygamma(o, n) + Polygamma(0,n)* — 2yPolygamma(0,n + 1)
—Polygamma (0, n + 1)*> — Polygamma(1,n) + Polygamma(1,n + 1)}
n—1 n—1 1
Terms 1 and 3 can be written as ¥(n) —¢(n + 1) Z—_Zn—i—l :—ﬁ—>0as
n — oo. Similarly, terms 5 and 6 approach zero as do terms 2 and 4. Thus the following

holds true as n — oo

Y

E(Y?) = E(Z?)
= V(Y)—-V(2)
= V(W) —=2V(Y)

(I

4.4 Theorem 4
V(Y') diverges as n — oo.
Proof: Using Mathmatica, equation (1) simplifies to

1

Tl 18+ — 7 — 36yPolygamma(0,n + 1)

—18Polygamma(0,n + 1)* + 6Polygamma(1, n + 1)}, (2)
remembering that this equation is multiplied by -55 to represent V(Y'). From the

& 1 ” -1

Appendix, Polygamma(0,n+ 1) = ; TR and Polygamma(l,n+ 1) = ; m



T

1
The first sum is equivalent to » T which diverges (Fulks, 1978). The second sum is

k=1"
n

equivalent to ; 72 which converges to

same sign and equation (2) is divergent.

72

% in the limit. The two divergent series have the

4.5 Theorem 5

CV(W,,1) increases as a concave function and as n — oo the CV (W, 1) is of quadratic
order.
Proof: From equation (2), the term Polygamma(0,n + 1) dominates Polygamma(0,n + 1)

for large n and also the constant terms. Hence for large n,

V(W) x (Z %)2 and CV (W) Z %/% This ratio clearly diverges and is n( Z %) The
k=1

k=1 k=1

n 1
derivative is n Polygamma(1l,n+ 1) + T The increase in the first term dominates the

k=1 "
increase in the second term as n — n + 1. Hence the coefficient of variation is concave and

of quadratic order, since if f = an?, % is of order 2an or linear in n. Plots of CV(W,, ;)

show that (n, CV (W, )) is flat for 3 <n < 10, see Figure 3.

(Il
4.6 Theorem 6
Increases in reliability of W depend on increases in %
Proof: The marginal gain of adding each new component is E(W,, 1) = m As +
increases, marginal gain increases.

|

5 Conclusions

These general results allow the following conclusions and design procedures to be executed.
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e The ability to compute exact distributions of Y, Z, and W is of great benefit over what
has been customary for complex systems, i.e., concentrating on characteristics such as p, o,
and so forth. Now that APPL allows for calculating exact distributions, the following
characteristics can be found:

- Exact Percentiles of the Y and W can be calculated, assisting statistical procedures in
warranty design.

- The CDF can be computed, allowing exact probabilities and p-values to be calculated
for statistical tests.

- The inverse CDF' can be found or solved for numerically, useful in variate generation
for simulation of systems.

- The marginal distribution of the order statistics of Y and W can be computed, which
could be useful in model verification and outlier detection.

- All these functions are currently possible in the APPL environment.

e If A is the smallest marginal gain worthwhile due to cost and other constraints, then n is
1

An+1)

e Theorem 2 Corollary 1 shows reducing A will not reduce or increase CV(W). CV is a

determined by = A, useful in optimization scenarios.

measure of a type of risk. In this special (though frequently occuring) case, we do not
increase risk by increasing component variation in reliability.

e Trade-off models of reliability gain versus cost, volume, and weight constraints can now
be made explicit.

e Increasing % increases variance for a given n which increases reliability.

e The concavity of CV(W,, ;) as a function of n implies as n increases the left hand tail of
the pdf of W decreases in probability and the right hand tail increases in probability.

e The flat concave nature of the increase in CV(W,, 1) implies the series nature of the
reliability loss due to adding a component representing the reliability of the physical
connections of the parallel circuit need to be explored by further research.

e Since C'V is a measure of a type of risk, the flatness of CV (W, ;) shows that this risk
does not increase as we increase parallelism, see Figure 3.

e We are not limited to the Exponential distribution for components, nor are we limited to

strictly parallel systems:
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- A W3 gain distribution when all components are distributed as Weibull(1/2, 2) has
been computed, a much more complex distibution because the convolution ¥ — Z is a
difficult computation with a Weibull random variable. The PDF is a two page-long formula
(omitted for brevity, but available from the second author). The PDF is shown in Figure 4.

- A System with one exponential(\) component in series with two parallel Weibull(e, 3)

components has pdf:
_ _ B8 _ _ BB _ _ _ BB _ _9 B0 _
f(CC):Qe Ar—« m’)\+2€ Ar—aPx Oé’HJI’H 1/6—6 Ar—2 m’)\_ze Ax—2alx OC’BCC’B 1/6

for0 <z and A\, o, 3 > 0.

- We are currently researching these more complex cases.

6 Appendix

The following functions describe the complexity of variance calculations for the case of a
parallel system with the components having the memoryless property. The series involving
the binomial coefficients divided by j and j? often simplify (using Maple and Mathmatica)

d
7 (InT'(n)). For n integer,

to variations of the ¢ function, ¥(n) = —
n

n—1 1 n—1 1 d°
Y(n)=> - = ) —, the harmonic series. Also, let Polygamma(c, n) = (¥(n)).
—n—1i ;k dn¢

Hence, for n integer,
d n—1 1 n—1 1
olygamma(l, n) dn(;n—z> ;(n—z)Q

Finally, the constant v = 0.577216 (called EulerGamma in Mathmatica) appears in some of
the simplification.
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Figures

Figure 1: Reliability Block Diagram of 3 components with an optional fourth component

addition being considered.

Figure 2: The PDF of W3 1, the increase of the system from 3 to 4 components.
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Figure 3: The CV of W,, 4, asn = 3,...,10 and k = 1,...,4, when the underlying com-
ponents are exponentially distributed for any A\. Note the flatness of CV even though it is

concave for k = 1 and convex for k = 2, 3,4.

ROF

Figure 4: The pdf of W5; with each component having a reliability distribution of
Weibull(1/2, 2).
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