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Abstract: 

 What if every day of a probability and statistics class was a computer laboratory day? 
How would this change your method of teaching an introductory course in probability and 
statistics? At the United States Military Academy at West Point wireless laptop computers have 
become a permanent part of the classroom and have changed our approach to teaching. Over the 
last three years,  we have made a concerted effort to find the improvements technology has to 
offer and to steer clear of the pitfalls technology can bring to the classroom. Our method of 
teaching a calculus-based probability and statistics course has evolved into data-oriented 
approach to understanding distributions.  We present some methods that we have developed that 
use spreadsheets and computer algebra systems to create an environment that helps students 
understand the foundations of probability theory and statistical inference. 
 
1. INTRODUCTION. 

 The introduction of wireless laptop computers into the classroom at the United States 

Military Academy has made a profound impact on the way we teach introductory probability and 

statistics.  Simply bringing technology in the classroom is no guarantee of an improved learning 

environment.  The complexity of the issue begins with a large number of software choices, 

ranging from the friendly (Minitab), to the free ( R ), to the fiendish (SAS, no offense).  Next 

there is the choice of which text, as they all highlight technological issues differently.  Also 

compounding the problem are the difficult issues of the faculty accepting the vision of 

technology in the classroom (welcome to the math wars) as well as the faculty development 

necessary to make the effort viable.  We have in the end adopted a time honored principle in our 

approach to incorporating technology into our classroom:  we keep it simple.  We will present 
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our use of basic spreadsheet technology to introduce the notion of ‘distribution’ in a modeling 

context.  We then will share our efforts at exploring fundamental probability theory by having 

students create their own statistical software from first principles using a computer algebra 

system.  We purposefully do not use existing software packages, as we believe their use pre-

supposes some statistics education.  Instead we find greater learning value in having cadets 

create their own spreadsheets, templates, files, and software that teach probability and statistics 

notions.  Then when they use a commercial package later on, they will have some understanding 

of its underlying principles.  

All students are issued laptop computers with a pre-loaded software package upon their 

arrival at West Point. They are required to bring them to mathematics classes every day for their 

two years of core classes. Every cadet regardless of  academic major, approximately 1100 

students per year, must take our probability and statistics course in the fourth semester.  Thus we 

see the gamut of abilities from students confident in their mathematics talents to students 

insecure in their technical skills.  Prior to our course, all students have successfully completed 

the first three semesters of core mathematics at West Point: Mathematical Modeling, Differential 

Calculus (single and multi-variable), and Integral Calculus (single and multi-variable). Thus, not 

only does each student bring a calculus-based, modeling background into our classroom, but they 

also come with experience with Mathematica and Excel.  Additionally, our small class sizes (no 

more than 18 students per class) facilitate excellent student-teacher interaction and more 

flexibility for instructors to assist students in troubleshooting computer problems that may arise 

during class.  Typically, most mathematics classes consist of about 20 minutes of lecture and 35 

minutes of exercises and problem solving.  Under these conditions, in which every day can be 

treated as a laboratory day by the instructor, our classrooms are the ideal setting for exploring the 
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appropriate way to integrate computer technology within a probability and statistics education. 

The two major innovations we will discuss here are 1) a data-driven modeling introduction of 

random variables and 2) the creation of basic, first-principled software to understand the 

essential properties of distributions.  

2. A DATA ORIENTED APPROACH: RANDOM VARIABLES AS MODELS. 

 Rather than beginning our program of instruction with the usual definition of a random 

variable followed by the introduction of discrete random variables, we begin our semester with a 

sample of n data points.  Our intent is to graphically model data in order to foster a better 

understanding of what a “distribution” function actually represents without immediately 

overwhelming our students with the myriad notations and symbols associated with probability 

theory. After calculating and discussing the importance of basic sample statistics (mean, median, 

variance, and standard deviation), we teach an algorithm using a computer spreadsheet to create 

an empirical distribution function (EDF) of the data. We define the EDF as 

n
xnsobservatioxFn

≤
=

#)(  and explain to our students that the EDF represents the accumulation 

of the proportion of the sample data and is thus a non-decreasing, step-function that ranges from 

0 to 1 and has a domain of the entire number line with steps of height 1 / n at the sample points. 

We demonstrate to our students the usefulness of the EDF by using it to approximate various 

probabilities and percentiles about the population from which we drew the sample data. We 

ensure that every student can master the algorithm in class so that they can produce their own 

EDFs in out of class exercises. 

 After noting that the EDF is merely a graphical representation of the cumulative 

distribution of our sample, we next turn our attention to modeling the EDF with a smooth 

continuous function. Although the continuous functions we choose to model with are the 
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exponential and Weibull cumulative distribution functions (CDFs), we only identify them as 

models of the EDF. In fact, at this point in our course, we have not yet even introduced terms 

such as the CDF and probability density function (PDF). We simply characterize these models as 

potentially useful functions that are widely used to model real-world distribution accumulation. 

We are able to save the new terminology and acronyms for future lessons once our students are 

firmly grounded in the notion of building such accumulation models.   

An example is offered. A data set of 251 car weights for all 2002 model cars is provided 

at Oswego University’s econometrics website (link provided in References). An EDF of the data 

is illustrated in Figure 1.  
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Figure 1: EDF of Car Weight Data 
 

The first function we attempt to fit to the EDF is the model . We 

find the parameter a that ensures the best fit by minimizing the sum of squared error (SSE) 

between F(x) and the EDF. We use Excel as the technology of choice for modeling EDFs by 

setting up separate columns for the sample, the EDF, the model, the error, the squared error, and 

a SSE cell. A separate cell contains the parameter a. Initially we graph the EDF and the model on 

0,1)( ≥−= − axexF ax
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the same set of coordinates. As we vary a, we see the model move in relation to the EDF, 

sometimes improving, sometimes not. Eventually we show the use of the “Solver” tool in Excel 

which will vary the parameter until a minimum SSE is attained. An example of a few rows of 

such modeling can be seen in Figure 2. 

eight percentile model error error^2 SSE  Parameter 
2035 0 0.346716 0.346716 0.120212 25.033  a 0.000209
2035 0.003984 0.346716 0.342732 0.117465         
2055 0.003984 0.349443 0.345459 0.119342         
2055 0.007968 0.349443 0.341475 0.116605         
2183 0.007968 0.366633 0.358665 0.128641         
2183 0.011952 0.366633 0.354681 0.125799         
2242 0.011952 0.374403 0.362451 0.131371         

 
Figure 2: Excel Screen Capture showing the Modeling of the EDF with F(x) 

 
As the graph in Figure 3 indicates, F(x) is an inadequate model of the EDF, clearly stemming 

from using a one parameter model when one is insufficient. SSE is minimized when a = 

0.000209, but the convex nature of the function produces a poor fit. This introduces the learning 

point for students that there is a trade off between number of parameters and complexity of 

models.   
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Figure 3: Modeling the EDF With F(x) 
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Once our students become comfortable with using F(x), we then ask them to fit the more 

robust, two-parameter model, , to the same EDF. When they find 

the parameters a and b that minimize the SSE between G(x) and the EDF, they discover that G(x) 

fits at least as well as F(x) because when b=1, G(x) is equivalent to F(x). They further realize 

that the presence of the parameter b in the new model G(x) greatly increases the flexibility (and 

hence the usefulness) of the fitted model. The two parameter model 

, indeed, does model the classic S-shaped accumulation well as we 

can see in Figure 4. Using this model, a minimum SSE of 0.2197 (much lower than the previous 

SSE of 25.033) is achieved when a = 0.000274 and b = 6.145.  
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Figure 4: Modeling the EDF With F(x) and G(x) 

 After modeling EDFs, we next move on to exploring the derivative of the model. In this 

example, we choose to explore the derivative of G(x) since it was the best model for this 

particular problem. Before we even attempt to compute the derivative of G(x), we already 

recognize two properties that it must possess. First of all, since the EDF is a non-decreasing 
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xtbook’s more common PDF-based approach to 

underst

function and the best fit model G(x) must likewise be non-decreasing, we know that the 

derivative g(x) = G’(x) must always be a positive function. Furthermore, because the range of th

EDF and therefore the model G(x) is from 0 to 1, this tells us that the total area under the curve 

of the derivative g(x) must be equal to exactly one. At this point in our course, we also begin to 

introduce some of the more conventional probability and statistics terminology by identifyin

model G(x) as the cumulative distribution function and its derivative g(x) as the probability 

density function. We also reveal for the first time that the function G(x) we have been studying 

for several lessons is a well-known continuous distribution called the Weibull CDF and the one

parameter model is the exponential CDF. This marks the point at which we begin to transit

from our data-oriented approach to our te

anding continuous distributions. 
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The general form of the computed derivative of G(x), or the PDF, is as follows: 

. For this particular problem, substituting in values for the parameters a 

5

xexg = . The graph of g(x) is shown 

1)( )()( −−= bax axabexg
b

and b yields 145.5)000274.0( 14.6x−

in Figure 5.   
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Figure 5: The Probability Density Function, g(x) 

As expected, the graph verifies that g(x) is always positive and a quick check will reveal that the

∞

0

legitimate PDF which we will use to illustrate a number of useful properties of continuous 

distributions.  

3. NINE PROPERTIES O

 
 

total area under the curve of g(x), represented by )( dxxg , is equal to one. Therefore, g(x) is a 

NTINUOUS DISTRIBUTIONS. 

 

. The purpose of learning 

∫
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After modeling EDFs to help give students an understanding of a distribution function, 

our next task is to establish a framework to study some continuous and discrete probability 

distributions. In order to do so, we use the computer algebra system Mathematica and a 

methodology based on nine basic properties of continuous distributions
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probability theory with these nine properties is twofold.  First, one sees that all distributions have 

these common elements that are derived from the same principles.  Second, we develop the nine 

properties in such a fashion that the code is very portable.  In fact, by changing only a few lines 

in the preamble of the ‘notebook’, different distribution ‘notebooks’ are created with their own 

nine properties.  We call each of these computer files a ‘notebook’ as that is the naming 

onvention Mathematica uses

standard deviation, and 

alculating percentiles.   

As an example of how we create these nine-pro

 to 

c  for its files.  The nine properties themselves are very 

straightforward: verifying and plotting the PDF, deriving and plotting the CDF, calculating 

probabilities with PDFs and CDFs, calculating m an, variance and e

c

perty ‘notebooks’ we will use the model 

G(x) from above to work on the Weibull distribution.  Perhaps it would also be appropriate

name them ‘distribution templates.’ For the Weibull distribution, we begin by entering the low 

and high support, the parameter values and the PDF into a notebook.   

 

Figure 6: Defining the PDF for car weights 
 
Now we begin building the nine properties into the notebook.   

Properties 1 and 2: Verify that a function g(x) is a legitimate PDF. 
 

 xxg ∀≥ 0)(  (1) 

 1)( =∫
∞
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As we enter these properties into Mathematica, we do so in such a way that our electronic 

worksheet can be reused in the future for other distributions without completely rewriting every 

line of code. For example, in Property 2 below, we use the already defined terms lowsupport and 

highsupport for our limits of integration rather than 0 and ∞ . While the actual values of these 

variables will be different for every subsequent distribution, we will not have to change the 

references to the variables lowsupport and highsupport. 

 

Figure 7: Verifying the legitimacy of our PDF for car weights 
 

We proceed to cover the remaining seven properties, entering each of them into our electronic 

Property 3

notebook as we discuss, analyze, and show examples of them in class. 

: The probability assigned to any particular value of a continuous random variable is 

zero (this property does not require entry into Mathematica). The primary use of the property is 

to distinguish between discrete and conti  variables later in the course. 

 0

nuous random

)( == cXP  (3) 
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Property 4: Create the CDF using a continuous random variable's PDF. 

 (4) 
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 for a car’s weight 
 

Figure 8: Creating the CDF

Properties 5 and 6: Calculate probabilities associated w  variables using 

eith r the PDF or the CDF. 

 (5) 

 

ith continuous random
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a car weighs between 2000 and 3000 lbs 
 

Properties 7 and 8

Figure 9: Calculating the probability that 

: Calculate the expected value and variance of a continuous random variable. 
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Figure 10: Determining nd variance of a car’s weight the mean a
 

Property 9: Find the (100p)th percentile of a continuous random variable. 

 Set  and solve for x* (9) )( *xGp =

 

Figure 11: Finding the 90
 

th percentile of a car’s weight 

Clearly, the strength of this approach lies not in the nine properties themselves, since th

are simply a restatement of the material found in any text, but rather in the method in which w

implement these nine properties. For instance, once our students have successfully completed 

their first notebook for the Weibull distribution, they can very quickly and easily modify th

notebook for use with other continuous distributions such as the exponential, uniform, gamma, 
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 and using the standard normal tables in order to calculate probabilities is no 

longer 
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normal distributions, t, and chi-squared distributions.  They return to the beginning of the 

notebook, enter the new PDF, add its associated parameters (if any), and input the high and low 

support values. Once that task is complete, a student can execute any or all of the nine properties

at their discretion without changing the code for the nine properties at all. This approach makes

precise measures of the once formidable distributions such as the gamma, chi-squared, normal, 

and t distributions attainable. Furthermore, as each of these distributions is introduced, we are 

able to discuss certain features of each, such as what the distribution best models, any special 

features of the moments, or perhaps the memoryless property of the exponential. Students 

longer constrained by charts and tables in the back of their textbooks, nor are they limited by p

established degrees of freedom or book-imposed limits on significant digits when solving 

problems.  For example, consider the normal distribution. With our approach, conducting

transformation

as necessary.  Probabilities can be calculated from a normal distribution with any 

parameters.    

Another benefit to teaching probability principles with these nine properties is evident i

our third block of instruction, statistical inference.  We give students the PDFs of the t and c

square distribution and have them produce the nine-property notebooks for each distribution.  

When it is necessary to calculate a critical value for a confidence interval, the student uses 

property number nine to calculate the appropriate percentile from the appropriate distribution, 

e.g., the t distribution with 31 degrees of freedom or the chi-square distribution with 44 degr

of freedom.  When it is necessary to calculate a p-value for an hypothesis test, the student u

property 5 from the t distribution, calculating a probability with the PDF.  All the statistical 

measures they need for this block are found from first principles with “software” that they 
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stics but who are not as mathematically inclined 

jors are will have a better understanding of what the software is doing by 

ulation 

e, 

, 

These 

hat much 

created, as opposed to using some software package and/or set of tables that may or may not be 

intuitive to the novice statistician.  They never use a table or chart and they are not required to 

interpolate or reduce degrees of freedom.  We opine that the connection to first principles make 

the understanding of these statistical inference procedures more attainable the first time students 

encounter them.  Our vision is not that statistical software will be eclipsed by these first-principle

notebooks.  In fact, we would predict (and prefer) that students taking a follow-on elective would 

move on to a professional statistical package and leave these notebooks behind.  But in creatin

these notebooks, those students who rely on stati

as most statistics ma

having created their own software at one time.   

4. CONCLUSION. 

 This paper reports our experience of what has been done for the last three years at an 

institution that has been working diligently to find the appropriate use of technology in the 

classroom.  We appeal, in effect, to the art of statistics instruction, not the science.  Furthermore, 

this paper does not completely describe the entire course, nor does it describe all the ways that 

we use technology in the classroom.  For instance our project work with Monte Carlo sim

and our statistical subjects have their own ‘technology’ implications, but we leave them out her

highlighting only what we view as the fundamental changes to probability and statistics 

education that the ubiquitous presence of laptops in the classroom can provide.  Also, we have 

not addressed how assessment changes with technology in the classroom.  (We allow open book

open notes, and open computers without access to wireless connections during our tests).  

conditions make test-writing a challenge for our instructors.  We also must point out t

of our course content is not in any single text, thus we must create our own supplemental 
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arning.  We intend for this summary of our experiences to be another contribution to the 

tistics professors on how best to incorporate technology in the classroom.   

 Link to Oswego University’s econometrics data accessed on May 6, 2006.  

http://www.oswego.edu/~kane/econometrics/data.htm 

readings (available on course web pages).  Finally we have not addressed the faculty 

development issues that have arisen with our implementation.  All the subjects are worthy of 

their own conversations.  We have, however,  found that this data-driven approach to 

understanding continuous distributions is highly effective for our students. As the presence of 

laptops becomes the norm, and we believe it will, all institutions will have to struggle to so

degree with finding the most appropriate way they will use technology in the classroom to help 

le

discussion among sta
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