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Figure 1: Circles at different latitudes

Estimating Distances in Meters

The location data we download from a GPS unit is given in terms of latitude and
longitude. These units are not the usual units in which we discuss length. We want to
work with units like feet, miles, meters, or kilometers. This note discusses a rough method
for converting distances given in degrees to distances given in meters.

Many programs, like Google Earth, give you the option of expressing latitude and
longitude in degrees with decimals rather than degrees, minutes, and seconds. For example
latitude 42 degrees 30 minutes can be expressed in decimal degrees as latitude 42.5. We
will work with latitude and longitude expressed in degrees with decimals because it is much
easier to work with this form than degrees, minutes, and seconds.

The earth is shaped like a slightly squashed sphere. Its polar radius is roughly 6,357
kilometers and its equatorial radius is roughly 6,378 kilometers. The difference between
the two is about 21 kilometers, or 0.3%. Our model of the earth will be a sphere of radius
6,367.5 kilometers, or 6,367,500 meters. See Figure 1. This model will be good enough for
our purposes.

Suppose that two points have the same longitude but that their latitude is different.
Suppose that the latitude of one point is y1 and the latitude of the second point is y2. The
distance measured in degrees between these two points is just |y2 − y1|. Since the radius
of the earth is 6,367,500 meters we can convert this distance to meters using the formula

|y2 − y1| ×
2× π × 6, 367, 500

360
or, roughly,
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111, 134× |y2 − y1|.

Next we look at two points with the same latitude but different longitudes, x1 and x2.
The same formula would work if the two points were on the equator but most of us do not
live on the equator. Circles going around the earth at latitudes close to either of the poles
are much smaller than circles going around the earth at latitudes close to the equator.
Using Figure 1 we see that the radius, S, of the circle around the earth at latitude θ is

S = 6, 367, 500 cos θ.

Before using the cosine function on the latitude we must convert latitude expressed in
degrees to latitude expressed in radians. This give us the formula

|x2 − x1| ×
2× π × 6, 367, 500× cos

(
2πy
360

)
360

or roughly

111, 134× |x2 − x1| × cos
(

2πy

360

)
where y is the latitude in degrees of the two points. We can summarize our two formulas
using the notation ∆x for the east-west distance in meters and ∆y for the north-south
distance in meters by

∆x = 111, 134× |x2 − x1| × cos
(

2πθ

360

)
∆y = 111, 134× |y2 − y1|.

Unless you’re a pilot or an astronaut, you probably live your day-to-day life as if the
world were flat. For example, if you walk west for 1.53 hours at 4 miles per hour you can
be quite confident that you will be 6.12 miles from your starting point and the fastest way
back is to walk 6.12 miles east. The International Space Station, however, is flying so fast
that we cannot ignore the fact that the earth is not flat. After flying in the same direction
for 1.53 hours it is right back where it started.
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Figure 2: The distance between two points

As long as our data is collected in a relatively small area, we can work with a flat
model for our part of the earth. Using the triangle on the left side of Figure 2 and the
Pythagorean Theorem we see that the distance between two points (x1, y1) and (x2, y2),
using latitude and longitude coordinates in decimal degrees, is approximately1

√
∆x2 + ∆y2 = 111, 134

√
(x2 − x1)2 cos2

(
2πy1

360

)
+ (y2 − y1)2.

Note that x1 and x2 are the longitude coordinates and that y1 and y2 are the latitude
coordinates.

We might have used the the second triangle, on the right side of Figure 2, to compute
the distance between the two points. If we weren’t working with points on a sphere, the two
figures would give exactly the same results. Because we are working on a sphere, however,
the results are slightly different. Using this second triangle in Figure 2 we compute the
distance, using ∆x∗, by

√
∆x2

∗ + ∆y2 = 111, 134

√
(x2 − x1)2 cos2

(
2πy2

360

)
+ (y2 − y1)2.

The only difference between the two computations is in the use of

cos
(

2πy2

360

)
instead of cos

(
2πy1

360

)
.

1We must use the qualifying adverb “approximately” because this formula relies on a less than perfect
model.
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In practice, the difference between these two approximations is very small if the points
are close together. In fact, comparing both estimates is a good way to get some feeling
for the difference between our flat model and the nearly spherical earth over the distances
of interest. One thing that is a bit disturbing about either of the two estimates is that
the formulas are not symmetric – that is, the distance from (x1, y1) to (x2, y2) is slightly
different than the distance from (x2, y2) to (x1, y1). One way to avoid this is to use the
formula

111, 134

√
(x2 − x1)2 cos2

(
π(y1 + y2)

360

)
+ (y2 − y1)2.

This formula is the result of using the average

y1 + y2

2
instead of either y1 or y2 in the factor

cos
(

2πy1

360

)
or cos

(
2πy2

360

)
.


