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Abstract

In this paper, we present (wo complexity results, The first pertains to the problem of finding
Halin subgraphs while the second is a supergraph version which asks if a given graph is
a subgraph of any Halin graph. Both of these problems are shown to be hard which, in turn,
provides somewhat damaging evidence relative to the veracity of heuristic approaches employ-
ing Halin graphs as approximations.

1. Introduction

Let G = (V, E) be a finite planar graph with the property that the edge set, [, can be
partitioncd into a tree, T, no vertex of which has degree two, and a cycle, €, on the
degree-1 or pendant vertices of 7. Structures having this property arc referred to as

Halin graphs and were introduced in [8] in the context of minimal k-connected

graphs. Indeed, Halin graphs yield an example of a class of edge minimal, planar
3.connected graphs. The graph in Fig. | is Halin.

But Halin graphs are also interesting from an algorithmic perspective. Most recent
in this regard, they have been shown by several authors (i.e., [3,13]) to be members of
a4 so-called 3-terminal recursive class. Morcover, as shown in Borie ct al. [47, this is
enough to guarantee linear time algorithms for many otherwise hard problems when
instances are confined to Halin graphs.

In fact, it is precisely this problem solving richness of Halin graphs that has led us,
as well as others, to raise the possibility of their employment in a broader context;
namely as a device useful in heuristic problem solving. For example, Cornuejols et al,
[5] solved the traveling salesman problem (TSP) on Halin graphs and then suggested
2 heuristic strategy for the general problem as one whereby a “low cost Halin
subgraph” is (heuristically) found upon which the TSP is solved optimally. Our
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Fig. 1. A Halin graph,

general intent would aim to exploit this notion as follows: Given a graph G which is
not Halin, how reasonable is it to approximate G by another graph, G', which is
derived from G, is Halin and upon which a given problem is solved, thereby producing
a candidate solution on 7

That we would require solutions on G’ to be candidates (i.e., admissible) on
G implies that we should allow G’ to be either a supergraph or a subgraph of G. That
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Non-Halin graph Halin subgraph Halin subgraph

Non-Halin graph Halin supergraph

Non-Halin graph (no Halin supergraph possible)

Fig. 2. Halin subgraphs and supergraphs.

is, if G” is a Halin subgraph of G and we possessed an optimal vertex coloring on G,
the resultant coloring may not be admissable on G. Alternately, a Hamiltonian cycle
on G’ would be admissable on G and if G’ were a supergraph of G, these two outcomes
would be reversed. Halin subgraph and supergraph constructions are demonstrated in
Fig. 2.

Regardless, in what follows, we provide evidence that this sort of Halin graph
approximation strategy may be doomed or at least may require a different perspective
than that heretofore suggested. We begin with some disquieting outcomes.
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2. Motivation: some properties of Halin graphs and approximation issues

There are a host of interesting properties of Halin graphs, many of which have been
described elsewhere. Readers are directed to references such as [11, 12] for appropri-
ate coverage (e.g., all Halin graphs are Hamiltonian, 1-Hamiltonian, bicritical, etc.). As
suggested previously, however, a key property providing some of the original motiva-
tion leading to the present work is that while Halin graphs are easy to recognize in
general, they are also easily recognizable in the context ol k-terminal recursive graph
classes. In this regard, their so-called decomposition trecs can be easily exhibited
which, in turn, leads directly to the existence of the aforementioned fast algorithms for
many problems when confined to Halin graphs.

But, it is not clear that Halin graphs occur very often in natural settings (any more
than do various other recursive graph classes which admit fast algorithms, e.g., partial
k-trees, etc.). So while a great many problems are provably solvable on Halin graphs,
it would be fairly difficult to argue the merits of this attribute from other than
a theoretical perspective. On the other hand, it seems natural (as apparently it was in
[5]) to raise the question of their potential use in the stated context of approximation.

Let us restate the basic notion: From a given non-Halin instance, form an approxi-
mating Halin subgraph or supergraph, solve the problem of interest on the latter, and
exhibit the outcome as a candidate solution on the original graph. Again, we assume
the resulting subgraph or supergraph, whichever is relevant, yields a candidate
accordingly and that the stated problem is solvable on Halin graphs in general. Still,
the resultant heuristic strategy can be expected to be heavily linked to the quality of
the approximating graphs and these, in turn, depend as much on structure as on size.
The point is easy to demonstrate.

Consider the non-Halin graph G'in Fig. 3(a) and suppose the problem is one of
producing a minimum dominating vertex set (a subset of vertices having the property
that every vertex in the graph is adjacent to at least one vertex in the subset). But the
dominating set problem is solvable on Halin graphs and the subgraph version of our
approximation tactic will certainly produce a candidate on the original instance (the
supergraph case is without interest in any event since the original graph is not even
planar). Now, to proceed, consider the Halin subgraph to the left in Fig. 4(a).
Denoting this as H, it is easy to verily that a smallest dominating set (on H, ) consists
of the circled vertices shown. Moreover, this minimum number would grow as the
number of replications of the shaded segment indicated on the original graph in Fig.
3(a). On the other hand, if better insight had prevailed and the Halin subgraph to the
right in 4(a), say H,, had been formed, the single, circled vertex indicated there would
be optimal and would remain so relative to the original graph and regardless of the
number of the aforementioned segments. Clearly, subgraph H, is much preferred to
H, in this case.

On the other hand, suppose we change the problem to one of finding a maximum
(edge) cardinality subgraph which spans and which is Eulerian (connected with even
degree). Again, this is a hard problem on arbitrary structures but is linear-time
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Fig. 3. Approximation tllustration.

solvable on Halin graphs. Now, the subgraph form of our approximation approach
remains relevant so let us again examine Hy and H,. For H, the largest spaning
Fulerian subgraph is shown to the left in Fig. 4(b) while to its right we exhibit the
largest such subgraph in H,. The latter is better and can be shown to be gencrally so,
again depending upon the number of graph segments present as indicated earlier. We
have no interest in belaboring this particular point further but do note that while the
subgraph candidate formed by operating on H, is betler, even it is quite distant {from
an optimal spanning Eulerian subgraph of G which is shown in Fig. 3(b). As a general
aside, the reader will be quick to note that if any Halin subgraph is found in a graph of
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(a)

(b)

Fig. 4. Approximation outcomes for dominating set and spanning Eulerian subgraph problems.

order p, we would be guaranteed a spanning Eulerian subgraph of size at least p since
all Halin graphs are Hamiltonian.

Naturally, these outcomes are circumstantial, but they do suggest potential difficul-
ties (at least they raise issues) relative to heuristics motivated by graph approximation
and, in particular, when Halin graphs play the approximating role. Not the least of
these is our implicit assumption to this point that simply finding Halin sub-
graphs/supergraphs is less an issue than finding ones that are in some sense “good”.
But as intimated by the last sentence of the preceding paragraph and as we will show
more directly in the next section, this assumption may be misguided.




o]
N

S.B. Horton, R.G. Parker | Discrete Applied Mathematics 56 (1995) 19~ 35

3. The complexity of finding Halin subgraphs and supergraphs

In this section, we present the main results of the paper. In particular, we show that
the problems of finding Halin subgraphs and supergraphs are both hard. Following,
we take up the subgraph problem first.

3.1. Halin subgraphs
The problem of interest can be stated in the following way:

P, : Given a graph G = (V, E) and an integer t, does G have a Halin subgraph
G =V ,E Ywhere V eV, E-<cEand |[E"|>t7

We have the following theorem.
Theorem 3.1. Py, is NP-complete.

Proof. Our reduction is from the longest cycle problem restricted to planar graphs. Its
statement is given below:

P.: Given a planar graph G = (¥, E) and an integer k with |V] = k = 3, does there
exist a cycle in G of length at least k?

Now, from P let us create an instance of Pjj as indicated in Fig. 5(a) where on every
edge of G from P. we insert a single vertex. To this homeomorph, we add a single
“supervertex” v, and connect it to every other vertex. Set t = 4k,

Then, letting the constructed instance graph for Py be G’ = (V', k'), we have

V£ vertices inserted on edges in E,

V'eE Vo VEoing,

>

E* & edges formed by the subdivision induced by V¥,

Ec & (o) eV, j# v,
E' & E*UE,
= 2|E

E* EJ =1V +|E|, and |E'| =

V' = V] + |E| + 1,

Observe that |V*| = |E
31E + V.

Clearly, if there exists a cycle in G of length at least k, then by construction, such
a cycle implies a cycle of length 2k in G, since each edge in E was split to form two £*
edges (identifiable with one V* vertex). So this cycle in G’ passes through 2k vertices,
cach of which is connected to v, by an edge in E.. These 2k edges form a star on 2k + 1
vertices with v, at the “hub”. Adding the 2k cycle edges produces a wheel and hence
the desired Halin subgraph of size 4k. The construction is demonstrated in Fig. 5(b)
(k =4).

> »
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Fig. 5. Construction example for Theorem 3.1

Conversely, let us assume there exists a Halin subgraph of ', denoted as
Goo= (V" E ywhere V7 2 V' and E7 < E' and with edge cardinality at least 44,

Observe that each edge in E' must be cither a cycle edge in E 7, a tree edge in £, or
out of 7. In addition, we will abuse the terminology somewhat by referring to
a“pendant” in a Halin graph when what we really mean is a degree-| vertex in the tree

portion of such a graph.

Now, supposc v, is not in 7. Then none of the £, edges can be in the stated
subgraph which leaves each J7* vertex in (' incident to only two edges. But since no
vertex in a Halin graph can have degree less than three, these vertices and the edges
incident to them (edges in £*) also cannot be in the stated subgraph. This leaves no
edges at all, so no Halin graph is even possible, contrary to our assumption. Hence,
v.elVo.
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Fig. 6. Hlustrations in proof of Theorem 3.1.

Next we establish that v, is not a pendant. Suppose otherwise. Then the hy-
pothesized cycle would pass through v, implying that exactly two of the edges in £,
are cycle edges, and exactly one edge in E, is a tree edge. Now, except for trivial cases,
the cycle must pass through at least one * vertex that is not connected directly to
v, by a cycle edge. Then, the remaining edge incident to that J'* vertex must be a tree
edgein £ . But such an edge connects the stated V* vertex directly to v, which denies
that G~ is Halin (see Fig. 6(a)). Therefore, v, cannot be a pendant, and thus has no
cycle edges incident to it

Now in G, v, is connected to every other vertex by an edge in E,. Since v, e V™,
each of these £, edges in E " is a tree edge connecting v, to another vertex y in G,
There are four possibilities: (a) y is in " and is a pendant, (b) y is in V and is not
a pendant, (c) y is in V* and is a pendant, or {d) y is in V* and is not a pendant.
Following, we examine cases (b) and (d) and show that they are not possible.
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o Case (b). Since we suppose that y is not a pendant, at least two E* edges incident to
y must also be rree edges. Both of these edges lead to degree-3 vertices in V. Pick
one of these vertices, say p. If p is a pendant, then both of the other two edges
incident to it must be cycle edges. But one of these edges leads back to v, which
contradicts that v, is not a pendant. If p is not a pendant, then both of the other two
edges incident to it are rree edges, but the one that leads back to v, forms a cycle
with the edges selected thus far and G~ could not be Halin. Therefore, case (b) is
impossible.

o Casc (d). Since we suppose that y is not a pendant and y is in V*, both of the other
two edges incident to y must also be tree edges. Let these two edges be incident to
vertices a and b in V. Now suppose a and b are both pendants. Then the cycle passes
through both a and b. This defines two edge-disjoint simple paths from a to b that
do not pass through nonpendant vertices v, and y. Further, since ¢ and b are both
in V, there must be at least one vertex in V* on each of these paths. Let any }™*
vertex on one path be u, and any V* vertex on the other path be v. Now, since u is of
degree three in the subgraph, the noncycle edge incident to u (which leads back to v,)
must be a tree edge. The same is true for vertex v. However, this forms a subgraph
homeomorphic to Kj, 3, with bipartition {{v.,a, b}, {y, u,v}} (see Fig. 6(b)). Sim-
ilarly, if one or both of @ and b are not pendants, then the additional tree edges
required to connect them to pendants will again produce a K3 ;3 homeomorph
when added to the previous construction. In either case we deny planarity in the
hypothesized subgraph so case (d) is also impossible.

Having chosen vertex y arbitrarily, we may conclude that every vertex in the
hypothesized Halin subgraph with the exception of v, must be a pendant vertex. But
this can occur only with the tree edges forming a star having hub v,. Clearly, such
a (Halin) graph has exactly half of its edges in the cycle and half in the tree, all of the
latter incident to v,. Since we have supposed the existence of a Halin subgraph with
|E~| = 4k, we know that at least 2k edges must form the cycle in G . This cycle is
represented by a vertex sequence alternating between vertices in J and those in J™*
But in the construction of G', cach edge of G was “split” into two edges by the
insertion of a J* vertex. Thus, the cycle portion of G~ having at least 2k edges
corresponds exactly to a cycle in G of length at least k.

We stated earlier that it is easy to test if a graph is Halin so Py is in NP and the
result of the theorem follows. [

An easy corollary results by fixing k in the above theorem. Letting k = |V we have
Corollary 3.2.

Corollary 3.2. Deciding if G = (V,E) possesses a spanning Halin subgraph is NP-
complete.

Before moving to the supergraph case for Halin graphs, it is worth pointing out that
results similar to Theorem 3.1 exist for other classes of graphs. Most of these are
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familiar in the context of so-called edge and/or vertex deletion problems, among
which are the results reported in Yannakakis [ 14-16] and, in particular, in Asano [ 1]
where a result analogous to Theorem 3.1 for series—parallel graphs (holding even on
planar instances) is given. In this latter regard, we point out that the same result was
obtained independently and reported in [10].

3.2. Halin supergraphs

Especially in view of the aforementioned references, subgraph decisions often
produce a complexity status that is not unexpected. In fact, many are NP-complete.
On the other hand, corresponding questions regarding supergraph constructions
appear to be more interesting (complexity status notwithstanding). Typical of these is
the (NP-complete) Hamiltonian Completion problem [7]: Given G = (V,E) and
k < |V] does there exist a superset E' 2 E such that |[E'\E| < k and G' = (V,E) is
Hamiltonian?

There are, of course, uninteresting versions of the supergraph problem. For
example, if a graph is not series-parallel (indeed, not a partial k-tree for some k) then
adding edges cannot make it so. Trivially, this does not carry over for the case of Halin
graphs.

Let us state our supergraph problem as follows:

P,i: Given a graph G = (V, E), does there exist a set of edges E' 2 E, such that the
supergraph G* = (V, E*) is Halin?

(Equivalently: Is G a subgraph of any Halin graph?) Recall that we may assume that
G is not Halin since testing for this property is casy. We may also assume that G is not
3-connected, following from the property that Halin graphs are necessarily 3-connee-
ted and minimal in this regard.

We now show that resolving Py} is no easier than the previous, subgraph version.
We begin with an easy lemma which will prove to be useful.

Lemma 3.3. Let G be Halin with p vertices and with |C} = k. Then k is bounded as

pl2+1<k<sp-—1.

Proof. The upper bound is clear. The cycle passes through only and all the pendants
of T and there are exactly k of these. Accordingly, the maximum is p — | which is
achieved by stars K, ,.. For the lower bound let k be the size of a smallest cycle.
Since G is Halin, there are p — k vertices in 7 which are not pendants and which are
connected by p—k — 1 edges. Total degree generated by these “tree” edges is
therefore 2(p — k — 1). Also, there are k tree edges that are incident to these pendants.
These add k to the total degree of the nonpendant vertex structure just described
producing a degree total of 2p — k — 2. But since every vertex in a Halin graph has
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degree at least 3, there must exist degree at least of value 3(p — k) contributed
by the stated p — k vertices. That is, 3(p — k) < 2p — k-2 and so k= p/2 + 1 as
claimed. (I

Our supergraph result can now be given. We have the following theorem.
Theorem 3.4. P} is NP-complete.

Proof: We will show a reduction from the (strong sense) 3-Partition problem the
statement of which appears below:

Psp: Given a set 4 of 3m elements, an integer bound B, and an integer size s(a)for each
a e A such that B/4 < s(a) < B/2 and where ¥ . ,s(a) = mB, can A be partitioned
into m triples A, A,, ..., 4, such that, for 1 <i<m, ¥, ., s(a) = B?

{Observe that each A; must contain exactly three elements from A).

From an instance of Pjp let us create an instance of P as indicated in Fig. 7.
Attached to vertex t are “tails” which correspond to the elements in 4 with the length
of each tail related to the size of the respective element. The upper part of the graph
and in particular the m “segments” correspond to the desired sets A, 4,,..., 4,, each
with size B where the latter is denoted by the B darkened vertices inserted within each
segment. Segments are connected by the large, open vertices as shown. For ease, we
shall use the terms “intrasegment” vertex and “intersegment” vertex to denote these
vertices. Note that the graph in the figure is not Halin nor is it 3-connected.

Let us assume that a suitable partition of A exists. Accordingly, we can construct
a Halin supergraph of G in the following manner. For each A;, place the three relevant
tails in an interior face bounded by intersegment vertices, intrasegment vertices, and
t (we call each of these faces a “sector”). From each pendant vertex of a tail create two
edges from the pendant to an adjacent pair of intrasegment vertices. For each (if any)
other (degree-2) vertex on a tail, create one edge from the tail to an intrasegment
vertex. In this way, we add ¥, .. (s(¢) — 1) + 3 = B edges.

It is easy to see that planarity is maintained in this construction. The construction is
thus complete yielding a Halin graph H = (V, Ej) with Ej; defined by E augmented
with the new edges just described; the cycle edges are those defining the face denoted
by [, say E,, and the tree edges are given by E,\ E,. Fig. 8 demonstrates the
construction,

Conversely, assume there exists a Halin completion of G, say G¢ = (V, E). Let
E® = E U E'. Now, vertex t must be a nonpendant vertex, since its degree in G exceeds
3 (we avoid trivialities in the statement of P3p). Thus, edges x and y (in Fig. 7) are tree
edges implying that edge ¢ is a cycle edge. Accordingly, the intersegment vertices
incident to edge ¢ must be pendants, which implies that edges a and b are cycle edges
as well. But this means that the cycle subgraph in G€ is either defined by face f of G or
a subface of f created in G Thus, the tails of G must be part of the tree in G€.
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Fig. 7. Construction example for Theorem 3.4.

If the number of cycle edges in G =k, we must have that k < dim(/)=

=3

m(B + 1) + 1, where dim (/) denotes the dimension or number of edges defining face f.

Also recall from Lemma 3.3 that k has a natural lower bound given by
kzV2+1=Q2QmB-)+1)2+1=m(B-1)+ 2

But the vertices in the tails of G have degree less than 3 and therefore have total
deficiency at least mB. This deficiency has to have been satisfied by edges attached to
the tail vertices but not extending between distinct tails nor between distinet vertices
of the same tail which in either case denies that the tails are part of a tree. Hence,
[E'| = mB.

31
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Fig. 8 Halin completion

On the other hand, the intrasegment vertices in G all have degree 2 and thus
a deficiency of mB as well. But in G we have |E| = 2mB — m + 2 and in any Halin
graph of order p with a cycle of length k, we have p + k — 1 edges. In our construction,
G must then have size 2(n(B — 1) + 1) + k — 1. Letting 0 be the number of edges to
add to G to create G, it is easy to see that 0 = k — m — 1. Let us suppose that k is
different from its upper bound of m(B + 1)+ 1. Then 0 < mB and E' cannot be
formed as required. Hence, k = m(B + 1) 4+ 1 and the cycle in G© is defined explicitly
by face /. Thus all the vertices on fare pendant vertices and their deficiency is exactly
mB. The only way this deficiency can be satisfied 1s by edges connected to tail vertices.
Exactly B of these are required in each sector face and these edges connect exactly
those vertices of the tails which must be embedded in the sectors. Moreover, if any tail
vertex is connected to a vertex in a given sector so must every other vertex in that tail
since G° is planar. Thus, every one of the m sectors has exactly three tails from
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G embedded within it and connected by exactly B edges to the respective vertices on
face f. But then each of these sector-tail embeddings forms a triple which corresponds
to a suitable 3-partition of A.

The transformation from Py, to form G is valid following the strong sense status of

P,p. This along with Pji’s inclusion in NP yields the desired result. [

4. Discussion and summary

Following the complexity outcomes above, and particularly so for the subgraph
case, we would not expect it to be a challenge to exhibit edge weights for a given
complete graph in order that the corresponding task of finding a Halin subgraph of
small total (edge) weight is difficult. Assuming these weights can be arbitrary, the point
is casily demonstrated by the structure in Fig. 9 (note that in the figure, some heavily
weighted edges are missing for ease of presentation). Now, there are only two possible
Halin subgraphs of G and these are given by H, and H, as shown. Il we weight all
edges that are common to both subgraphs by | and then assign a weight of 1 to (x, y)
and to (y, z), a slightly larger value, say | + ¢, then edge (x, z) can be made arbitrarily
large which, in turn, makes H, the much preferred choice. Yet, a “greedy” strategy
whereby edges are selected in nondecreasing weight order would clearly produce
subgraph H, (note that we arc not intimating that a conventional greedy strategy is
even viable as a heuristic which follows by recalling that subgraphs of Halin graphs
are not Halin).

But, if edge weights are restricted in some well-defined sense such as by satisfying
the triangle inequality, then this sort of arbitrarily bad behavior tends to be control-
lable. The classic evidence in this regard is the effect such weight restrictions have on
the quality of traveling salesman heuristics. In any event, we have given no serious
thought to this issue in connection with heuristically generated Halin sub-
graphs/supergraphs but rather suggest that it might be worthy of some attention.

On the other hand, it would be particularly interesting to weaken the conditions of
Theorem 3.1 to ask if a given graph admits any Halin subgraph. Again, such
a question is often without interest in other settings such as for series-parallel graphs.
(Recall that the complexity result alluded to ecarlier pertains to scries—parallel sub-
graphs of at least some predetermined size (cl. [10]).) Also the sorts of complexity
questions raised in this paper relative to Halin graphs could be examined in the
context of other recursive structures. Among these are partial k-trees.

Still, it would seem that the more interesting pursuit would be to return to the
approximation theme articulated in the introduction and, moreover, to do so with
a view towards formulating different approximation strategies. That is, cven if struc-
tures other than Halin graphs are employed in the approximation context herein, and
the complexity status of even finding corresponding subgraphs or supergraphs not-
withstanding, it is not clear that they would serve as quality approximations in any
general context anyway.
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Fig. 9. Halin subgraphs on weighted, complete graphs,

Consequently, one alternative that is intriguing can be identified, loosely, as
a “decomposition” approach: Given a graph G not known to be in any well-solved
class, can the edges of G be partitioned into at most k subsets each of which forms
a graph which is in such a class. If so, we would solve our particular problem on these
pieces and try to find a way to relate the result in terms of a candidate solution for G.

[t seems reasonable to require that k be small and fixed for a given graph class. In
addition, we would like for the solvable classes into which these edges are partitioned
to be robust in that a large number of diflicult problems are well-solved accordingly.
Here again, recursive structures are notable candidates.

In this regard, a useful starting point for such a tactic can be found in a recent result
by Heath [9] which establishes that the edge set of every planar graph can be
partitioned into at most two outerplanar graphs. But outerplanar graphs are recur-
sively definable (they are all series-parallel) and thus by [3], most otherwise hard
problems are linear-time solvable when instances are so restricted. Important also is
that this outerplanar bipartition can be efficiently exhibited. So, since many problems
remain hard on planar graphs, heuristic strategics are still legitimate alternatives and
the decomposition notion alluded to presently may have some merit in that regard.
This seems worth mvestigating,
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