
ON MINIMUM CUTS AND
THE LINEAR ARRANGEMENT PROBLEM

by

S.B. Horton∗, R. Gary Parker† and R. B. Borie‡

Abstract

In this paper we examine the problem of finding minimum cuts in finite
graphs with the side constraint that the vertex sets inducing these cuts must
be of a given cardinality. As it turns out, this computation is of interest not
only from a combinatorial perspective but also from a practical one, pertain-
ing to the linear arrangement value of graphs. We look at some graph classes
where these cuts can be efficiently computed (in general this computation is
NP-hard) as well as some cases where their value can be determined in closed
form.

*Department of Mathematical Sciences, United States Military Academy,
West Point, NY, 10996.
†School of Industrial and Systems Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA, 30332-0205.
‡Department of Computer Science, University of Alabama, Tuscaloosa, AL,
35487-0290.

Key Words: Cuts, linear arrangement, bounds.

1 INTRODUCTION

Let G = (V,E) be a finite, simple graph of order n. Then a cut in G is a
partition of V , say 〈A,A〉 (i.e., A = V \A) and its size, c(A,A) is the number
of edges having exactly one vertex in A and the other in A. A minimum cut
of order i is a cut with |A| = i that has a least number of edges induced by
the respective partition. Denoting these values by σi, we have,

σi = min
A⊆V

{c(A,A) : |A| = i}.
That is, σi is the size of a smallest cut in G induced by exactly i vertices.

For arbitrary graphs, the problem of determining σi values is NP-hard
(cf . Garey and Johnson (1976)). On the other hand, there are some special
classes where these values are easy to determine. For example, if G = Cn, a
cycle on n vertices, then we know that σi = 2 for 1 ≤ i ≤ |V | − 1; for paths,
Pn, it is trivial to see that σi = 1 for 1 ≤ i ≤ |V | − 1. Other cases where
the σi values are easy to compute appear in Horton (1997). The paper is
organized in the following way. In the next section, we show how to compute
successive σi values, in polynomial time, on arbitrary recursive graph classes,
also known as partial k-trees. This outcome is meaningful since it is not so
obvious that such a computation should be polynomial on these graphs, at
least not in the same sense by which we have come to expect similar questions
to be resolved on recursive structures (cf. Borie, et al. (1992)). We then
demonstrate the algorithm on a simple example.

We begin section 3 with a brief examination of the optimal linear arrange-
ment problem (OLA). OLA is well-studied and known to be NP-hard in gen-
eral. We next state and briefly explain some old results that relate the σi

values to linear arrangements. In section 4, we conclude with a discussion of
some issues that are directly motivated by the results reported.

2 COMPUTING σi FOR RECURSIVE GRAPH

CLASSES

Often, otherwise NP-hard questions on graphs can be resolved when the
latter are restricted to special classes. Classic among these are series-parallel

graphs, Halin graphs, and in general, partial k-trees. It turns out that this
is also the case relative to the determination of σi although it is less than
immediate that this should be so. We begin with some background.

2.1 Recursive Graph Classes

Informally, a recursive graph class is one in which any sufficiently large mem-
ber in the class can be formed by successively joining smaller members in
the class at specific vertices called terminals. Letting the maximum allow-
able number of terminals be k, we sometimes refer to these as k- terminal
graphs, or partial k-trees. More formally, a k-terminal graph G = (V, T, E)
has a vertex set V , edge set E, and a (possibly ordered) set of distinguished
vertices or terminals T ⊆ V specified such that T = {t1, t2, . . . , tt(G)}, where
t(G)= |T | ≤ k. For some k, we let U be the set of all k-terminal graphs.
Then, a recursively constructed graph family, F = (B,R) in U , has base el-
ements (graphs) B ⊆ U and a finite set of recursive composition operations
R = {f1, f2, . . . , fn} where each fi : Upi → U . Here, pi denotes the arity
of the operation fi. Generally, we consider only base elements in which all
vertices are terminals. In this case, it follows that all such structures decom-
pose in the trivial way into edges, so we can simply take B to be a singleton
consisting of K2.

Now we define more precisely the notion of a composition operation f .
For 1 ≤ j ≤ m, let Gj = (Vj , Tj, Ej) where V1 − T1, V2 − T2, . . . , Vm − Tm

are mutually disjoint. Then define f(G1, G2, . . . , Gm) = G = (V, T, E) where
V = V1 ∪ V2 ∪ . . .∪ Vm, E = E1 ∪E2 ∪ . . .∪Em, and T ⊆ T1 ∪ T2 ∪ . . .∪ Tm.
Each possible subset T yields a distinct composition operation.

A decomposition tree of a k-terminal graph G is a rooted tree with vertex
labels g and f such that

•gv = G if v is the root,

•fv ∈ R if v is an interior node,

•gv = fv(gv1 , gv2, . . . , gvm) if interior node v has children v1,v2, . . . , vm, and

•gv = B if v is a leaf.

Decomposition trees are key in the general problem solving approach on
k-terminal recursive graphs; if we know the solution to a given problem
(i.e.,vertex cover, dominating set, chromatic number, etc.) on the leaf graphs
of a decomposition tree (base graphs), then the postorder traversal of the tree
with appropriate recurrence formulae (relevant to a given problem) would
produce an efficient (often linear) algorithm for the problem on the given
k-terminal instance.

For example, let G = (V, {t1, t2}, E) and let Gj = (Vj, {t1(j), t2
(j)}, Ej) for

j = 1, 2 be 2-terminal graphs. Define the series operation as s(G1, G2) = G
if t1

(1) = t1, t2
(1) = t1

(2), and t2
(2) = t2. Define the parallel operation as

p(G1, G2) = G if t1
(1) = t1

(2) = t1 and t2
(1) = t2

(2) = t2. Figure 1 demon-
strates both of these operations as well as the notion of a decomposition
tree.

To develop appropriate recurrence relations, one starts by construct-
ing a multiplication table f

′
for each composition operation f . If G =

f(G1, G2, . . . , Gm) then the table exhibits the outcome forG that corresponds
to each m-tuple of compatible subgraph property-tuples for G1, G2, . . . , Gm.
It is then straightforward to construct the recurrence relations directly from a
complete table. These formulae simply compute the optimal property values
from among the possible compositions of compatible pairs. For some simple
illustrations of this strategy, the interested reader is directed to any of a host
of references among which are Richey and Parker (1985) and Horton (1997).
More formal models of the methodology appear in Wimer (1986) and Borie,
et al.(1992).

2.2 Calculating σi on any Recursive Graph Class

For ease of illustration, we will consider only binary composition where
G = f(G1, G2). The extension to the m-ary case is cumbersome but straight-
forward. Suppose G = (V, T, E) is a k-terminal graph, S ⊆ T and 0 ≤ i ≤
n = |V |. Then we shall define m(G, S, i) to be the smallest number of cut
edges that partition V such that i vertices are in one component of the bi-
partition (call this the “blue” side) and n− i are in the other (“red”), where
vertices in S are entirely blue and those in T − S entirely red. We further
define m(G, S, i) = ∞ if no cutset exists that satisfies the stated conditions.

Figure 1: A Decomposition Tree

We can easily compute m(G, S, i) at the leaves of the decomposition tree,
since each corresponding graph is typically either K2 or, if B is defined dif-
ferently, a graph with V = T and therefore |V | = k. Now, assume that
G = f(G1, G2) where Gj = (Vj, Tj , Ej) for j = 1, 2; then, compute m(G, S, i)
for each non-leaf node by the following procedure:

Algorithm 2.1

For each of the 2k subsets S ⊆ T do

For each i such that 0 ≤ i ≤ n do

Let m(G, S, i) = min{m(G1, S1, i1) +m(G2, S2, i2)} such that

conditions a, b, and c hold.

• condition a : S1 ∩ T2 = S2 ∩ T1

• condition b : S = (S1 ∪ S2) ∩ T

• condition c : i = i1 + i2 − |S1 ∩ S2|

Then when m(G, •, •) is found at the root graph G of the decomposi-
tion tree, we can obtain each σi as

σi = min{m(G, S, i) : S ⊆ T}. (1)

✷

The coloring of G must be color compatible with the colorings of G1 and
G2. That is, if some vertex v of G appears in both G1 and G2, then it must
appear in both S1 and S2 (in which case it is blue) or in both T1 − S1 and
T2 − S2 (in which case it is red). Note that condition a above insures that
composition is color compatible, whereas conditions b and c describe how
S and i, respectively, are determined. We can think of each m(Gj , •, •) as
a table with 2k rows (one for each subset of T) and n + 1 columns, where

n = |Vj|. Thus if G = f(G1, G2), m(G, •, •) is completely determined from
m(G1, •, •) and m(G2, •, •).

It is easy to verify that the running time of Algorithm 2.1 is polynomial
in the size of the input graph. Clearly the number of columns of these
tables grows linearly with the order of the graph, but the number of rows
remains the same. Every composition adds at least one edge, so there are
O(n) nodes in the decomposition tree (for members of any recursive graph
class, |E| = O(n)). For each node there are O(2kn) values of m(G, S, i) to
calculate. For each m(G, S, i) the recursion involves taking the minimum
of O(2k2kn) = O(22kn) expressions; to see this, select any S1 (there are 2k

choices), choose any S2 (again, there are 2k choices), then choose i1 (there
are O(n) choices). Now the value of i2 is determined, and since each such
expression can be computed in O(1) effort, the total running time is O(n3)
for fixed k.

Next, we shall verify correctness. If G = f(G1, G2), we know that as
long as merged terminals of G1 and G2 have the same colors (i.e., they are
either both blue or both red), then the status of any e ∈ E(G) is the same
as it was in G1 or G2, depending on which child in the decomposition tree
it is dervied from. Observe that by “status”, we refer to whether or not the
edge in question connects a red vertex with a blue one and is hence a cut
edge. Condition a above insures that this color compatibility holds. Since
E(G) = E(G1) ∪E(G2) and E(G1) ∩E(G2) = ∅, we can obtain the number
of cut edges in G with a given S ⊆ T colored blue, by simply adding the cut
edges present in G1 and G2 under compatible conditions for S1 and S2. But
requirements b and c insure these conditions are maintained.

We have thus established

Theorem 2.1 Let G = (V,E) be a member of any recursive graph family F .
Then in effort bounded by a polynomial function of the size of G, Algorithm
2.1 will compute every value σi for i = 1, 2, . . . , |V | − 1.
✷

It is worth noting that Algorithm 2.1 is not (so far as we can judge)
“anticipated” in the same sense that other fast algorithms are, for problems
restricted to recursively constructable instances. That is, it is not evident
that the problem of computing σi values is expressible in any of the formal
contexts that have been developed for graph problems on recursive structures.

Among these is the previously mentioned predicate calculus developed in
Borie, et al.(1992) (and extended in Borie, et al.(1993)) where if a given
problem is shown to be expressible in the calculus, then a polynomial-time
algorithm for its solution is guaranteed for the problem on any recursive
graph. Thus, if a legal expression for the given problem can be formed, it
is generally straightforward to create a practical algorithm; above all, the
algorithm’s existence itself is not in question. On the other hand, the more
interesting outcome is to find a fast algorithm for a problem whose formal
expressibility status is, if not explicitly known to be impossible, at least
ambiguous. This is the case with the computation of σi thus lending interest
to the creation of Algorithm 2.1.

2.3 An Example

Now we demonstrate Algorithm 2.1 by describing a procedure for computing
the σi values for series-parallel graphs. This is a 2 terminal class, and |T | = 2
means there are 22 = 4 subsets of T to be accounted for. We shall denote
these subsets by N,L,R, and B indicating neither, left, right, or both terminal
vertices are colored blue, respectively. We use the notation m(G, S, i) as
defined in the previous section.

First, to initialize the recursion, we observe that the values of m(K2, •, •)
are as indicated in Table 1.

Table 1: m(K2, •, •)
0 1 2

N 0 ∞ ∞
L ∞ 1 ∞
R ∞ 1 ∞
B ∞ ∞ 0

Using these values at the leaf nodes (G1, G2, G4, G6, G7, and G10) of the de-
composition tree of Figure 1, it is easy to apply Algorithm 2.1 to compute
the m(G, S, i) values for the other graphs in the tree. Table 2 gives the values
for G3 and G8, Table 3 for G5, Table 4 for G9, and Table 5 for G11.

Table 2: m(P3, •, •)
0 1 2 3

N 0 2 ∞ ∞
L ∞ 1 1 ∞
R ∞ 1 1 ∞
B ∞ ∞ 2 0

Table 3: m(G5, •, •)
0 1 2 3 4

N 0 2 2 ∞ ∞
L ∞ 1 1 1 ∞
R ∞ 1 1 1 ∞
B ∞ ∞ 2 2 0

From m(G11, •, •) and equation (1), it is easy to obtain the values of σi

for G11 which are σ = [σ0, σ1, σ2, σ3, σ4, σ5, σ6] = [0, 1, 2, 2, 2, 1, 0].

In the next section, we briefly investigate the celebrated optimal linear
arrangement problem and its relationship to a graph’s σi values in order to
motivate the discussion that follows. The results of section 3 are certainly
not new but merit restating in light of Algorithm 2.1.

Table 4: m(G9, •, •)
0 1 2 3 4 5

N 0 2 2 4 ∞ ∞
L ∞ 2 2 2 2 ∞
R ∞ 2 2 2 2 ∞
B ∞ ∞ 4 2 2 0

Table 5: m(G11, •, •)
0 1 2 3 4 5 6

N 0 2 2 3 3 ∞ ∞
L ∞ 2 2 2 2 1 ∞
R ∞ 1 2 2 2 2 ∞
B ∞ ∞ 3 3 2 2 0

3 CUT VALUES AND LINEAR ARRANGE-

MENT

Given a simple, finite graphG = (V,E) of order n, the optimal linear arrange-
ment problem (OLA) seeks a vertex labeling f : V → {1, 2, . . . , n} such that∑

(u,v)∈E |f(u) − f(v)| is minimum over all such labelings. For ease, let us
denote the value of an admissible labeling of a graph G, by L(G). Optimal
labelings are denoted by f ∗ and their values by L∗. OLA is well-known to be
NP-hard in general but solvable on trees following work reported in Shiloach
(1979) and more recently, in Chung (1984). The problem is also solved on the
class of outerplanar graphs; planar graphs without subgraphs homeomorphic
to K4 or K2,3 (Frederickson, et al. (1988)). It is interesting to note that the
problem’s status remains open on the larger class of series-parallel graphs.
In fact, the status of OLA is unknown for recursive graphs in general.

In this section, we present some old results that show how the σi values
are related to L(G). We do this to facilitate and motivate the discussion
that follows. To begin, let Si be a subset of vertices of order i and as defined
before, σi denotes the size of a smallest cardinality cut formed over all choices
for Si, i.e., by the respective 〈Si, V \ Si〉. Then, we will call a graph σ-good
if there exist sets S1, S2, . . . , Sn where each produces the respective σi and
S1 ⊂ S2 ⊂ . . . ⊂ Sn. The subsets formed in this way are said to be nested.
The graph shown on the left in Figure 2 is σ-good; admissible sets Si are
indicated by the given labeling, i.e., S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3},
etc. Alternately, the graph to the right is not σ-good since clearly σ2 = σ3 = 1
but the only subsets realizing these values are S2 = {a, b} and S3 = {d, e, f}
but S2 �⊂ S3.

Figure 2: Graphs Demonstrating the Concept of σ-Goodness

Observe that for a cycle, Cn, we have σi = 2 for 1 ≤ i ≤ |V | − 1 and thus

∑
1≤i≤n−1

σi = 2(n− 1)

which is precisely L∗(Cn). On the other hand, for the tree in Figure 2, the
reader can easily verify that σ1 = σ2 = . . . = σ6 = 1. It is also easy to see, in
this case, that

L∗ = 8 >
∑

1≤i≤n−1

σi = 6.

Following, we show that these outcomes are not unanticipated.

Theorem 3.1 Let G = (V,E) be an arbitrary graph having an optimal label-
ing f ∗(G) producing value L∗(G). Then, L∗(G) ≥ ∑

i σi.

Proof: The proof is easy; simply map f ∗(G) to the integer line and form
the implied sets Si in the natural way, i.e., v ∈ Si whenever i ≥ f(v). But
obviously, the cardinalities of the cutsets induced by these Si are bounded

from below by the respective optimal cut values σi, produced over all sets of
the stated cardinalities. This is sufficient to establish the relationship and
the proof is complete.
✷

From Theorem 3.1, we have that
∑

i σi provides a lower bound on the cost
of any arrangement value and hence on an optimal value, for any graph. The
next result underscores a stronger relationship for graphs that are σ-good.

Theorem 3.2 Let G be an arbitrary finite graph. Then G is σ-good if and
only if there exists an optimal labeling, f ∗(G) such that L∗(G) =

∑
i σi.

Proof: (⇐) As indicated in the proof of Theorem 3.1, any labeling of G de-
fines nested sets S1 ⊂ S2 . . . ⊂ Sn where v ∈ Si whenever i ≥ f(v). Summing
the sizes of the cut sets implied by these Si, yields the arrangement value.
Then for f ∗(G) and the induced sets Si, suppose we have

L∗(G) =
∑

1≤i≤n−1

c(Si, Si) =
∑

1≤i≤n−1

σi.

But then it must be the case that c(Si, Si) = σi, ∀i, and thus, it follows that
G is σ-good.
(⇒) Alternately, suppose that G is σ-good. Then there are nested sub-
sets S1, S2, . . . , Sn ⊆ V and that moreover, define an ordering of G given as
f(v) = i where v ∈ Si \Si−1 for 1 ≤ i ≤ n with S0 = ∅. But the value of this
labeling is

∑
1≤i≤n−1

c(Si, Si) =
∑

1≤i≤n−1

σi

which must be an optimal value following the inequality of Theorem 3.1.
This is enough to establish the result and we are done.
✷

So, given any graph, if we can constructively verify σ-goodness we will
have also solved OLA on the instance, since the nested subsets S1, S2, . . . , Sn

define an optimal labeling. Also, there are graph classes for which OLA can
be efficiently solved on all instances accordingly, but where the latter may
not be σ-good in general. For example, all trees are not σ-good yet we know
that OLA is solved on trees. This is also the case for outerplanar graphs as
well as for certain, restricted Halin graphs (cf. Easton, et al. (1996)).

Unfortunately, verifying σ-goodness is not easy since the problem of de-
termining σi values themselves is NP-hard in general. So, while

∑
i σi might

be useful in bounding L∗(G) as per Theorem 3.1, it is not likely that we can
evaluate the explicit bound value efficiently for arbitrary graphs.

As mentioned above, the ideas captured by Theorems 3.1 and 3.2 have
been reported in the research of others. Harper (1966) appears to have been
the first to describe the relevant relationships; others include Adolphson and
Hu (1973), Liu and Vannelli (1995) and Bezrukov (1996).

4 DISCUSSION

4.1 Using
∑

i σi

By the results described in Section 2, we are able to compute
∑

i σi for any
recursive graph G. However, it is not at all clear that this outcome helps us
find a labeling that solves OLA for these graphs. Of course, if we can find
a labeling with value equal to

∑
i σi, then by Theorem 3.1 we are done since

no arrangement can have a value smaller than this. On the other hand, if
we can find sufficient evidence to conclude that G is not σ-good, then we
know from Theorem 3.2, that the

∑
i σi bound is not attainable and hence,

an optimal labeling must have value at least 1 greater than this.
While we should not hope to be able to decide if an arbitrary graph is

σ-good, it is open as to whether or not this issue is resolvable for restricted
classes. To illustrate a case where this can be done, consider a particularly
restricted (albeit infinite) class of Halin graphs. The latter are planar graphs
having the property that the respective edge sets can be partitioned into
a tree, T no vertex of which has degree 2 and a cycle, C which spans the
pendant vertices of T . Let vertices and edges of T and C be given by V (T),
E(T), V (C), and E(C) respectively. Now, consider a subclass of Halin graphs
that are regular with degree 3 and where T is a caterpillar, i.e., a tree (of at
least 4 vertices) where the elimination of its pendant vertices leaves a path.

An example is shown in Figure 3; T is denoted in bold.

Figure 3: A 3-Regular Caterpillar Halin Graph

First we establish a lemma about these graphs.

Lemma 4.1 For every member of the class of 3-regular Halin graphs where
T is a caterpillar,

σi =

{
3 for i odd
4 for i even

for 1 ≤ i ≤ |V | − 1.

Proof: First we establish an upper bound on σi. For i odd, we can establish
that σi ≤ 3 by finding A ⊆ V such that c(A,A) = 3 and |A| = i. To do this,
select e ∈ E(T) such that T \ e contains two components, one having exactly
i vertices. We call these vertices A. Since T is a caterpillar, this is possible
for every odd i. Then 〈A,A〉 is as desired since c(A,A) counts precisely one
edge from E(T) and two from E(C). For i even, we can establish that σi ≤ 4
inductively from the (odd) case of i − 1 simply by adding to A any vertex
adjacent to any member of A.

To establish the lower bound, consider an arbitrary cut c(A,A). Define
X = A ∩ C. First suppose X �= ∅ and X �= C. Then c(A,A) counts at least
2 edges in E(C). If |A| and |A| are odd (observe |V | is always even for these

graphs), then c(A,A) also counts at least 1 edge in E(T), so c(A,A) ≥ 3. If
|A| and |A| are even, then c(A,A) also counts at least 2 edges in E(T), and
c(A,A) ≥ 4.

Next suppose X is empty. If |A| = 1, then c(A,A) counts exactly 3 edges
in E(T). If |A| > 1, then c(A,A) counts at least 4 edges in E(T). The case
of X = C can be treated analogously by interchanging A and A.
✷

Using this result we can calculate
∑

i σi = 3(n − 1) + �n−1
2
� which, by

Theorem 3.1, bounds from below the value of any admissable labeling. Now,
consider the following labeling strategy. First, embed the instance graph in
the plane and identify the subgraph corresponding to T . Denote a longest
path in T by P and let xi ∈ V (T) be the internal vertices on P . Next, assign
the label 1 to one pendant of P and n to the other. Then beginning with
the vertex labeled 1, assign labels to the vertices xi in strictly increasing
order using only and all the even integers between 1 and n. Complete the
total labeling of the graph by assigning the remaining (odd) integers to the
unlabeled vertices u ∈ V (C) such that f(u) = f(xi) + 1 if (xi, u) ∈ E. The
labeling shown in Figure 3 was formed this way.

Now, the value of a labeling conforming to this scheme is easy to write
in closed form. There are always three edge-disjoint paths connecting the
vertices labeled 1 and n. This follows as a property of Halin graphs. One
of these paths is P and the other two define C. Since the labels on each
of these paths increase monotonically, the total value of the arrangement on
these paths is 3(n − 1). Further, if these three paths are removed from G,
a set of n

2
− 1 independent edges remain and each is labeled by consecutive

integers per the stated procedure. Hence, the cost of the total labeling is
3(n−1)+ n

2
−1 but since 3-regularity requires that n is even, this is equal to

3(n−1)+�n−1
2
�. This agrees with the value of

∑
i σi determined from Lemma

4.1, so the given labeling is optimal. In addition, it is easy to see that the
stated labeling always induces nested sets and we have thus established

Theorem 4.1 Any member in the class of 3-regular Halin graphs where T
is a caterpillar is σ-good.
✷

Actually, since we can compute σi values on any recursive graph, it is

natural to wonder if such results can be extended in some way in order to
resolve the general σ-goodness recognition issue accordingly. Unfortunately,
the characterization of σ-goodness given in Theorem 3.2 does not seem in a
practical sense to extend the class of σ-good graphs, since in every case we
have examined where we can show a labeling with L∗(G) =

∑
i σi, the graph

can easily be shown to be σ-good directly from the definition. Beyond the
issue of σ-goodness recognition, extreme good fortune might suggest a way
to modify the σi-finding computation in order to resolve OLA on recursive
graphs altogether. Unfortunately, however, our pursuits in this regard have
not yielded the desired outcome. Still, some insights have been produced
even though the overall issue remains unresolved. The interested reader is
directed to Horton (1997).

Finally, it may also be that
∑

i σi can provide some meaningful insight
(e.g., bounds) relative to labeling problems other than OLA. For example,
suppose we seek a labeling that minimizes max(u,v)∈E |f(u)− f(v)|. This is
the well-known bandwidth problem and in contrast to its OLA counterpart,
remains NP-hard even on trees. Although we make no claim regarding the
strength of the relationship, it is clear that

∑
i σi also yields a lower bound

on a graph’s bandwidth value. Letting this be α(G), we have

Theorem 4.2 Let G = (V,E) be an arbitrary graph. Then

α(G) ≥
⌈∑

i σi

|E|
⌉
.

Proof: We have from Theorem 3.1 that L∗(G) ≥ ∑
i σi. But certainly,

|E|α(G) ≥ L∗(G) and the result follows.
✷

To illustrate, consider again the graph in Figure 3. The
∑

i σi (and L∗(G))
value is 31 and |E| = 15 so after rounding, α(G) must be at least 3. The
labeling shown in Figure 4 achieves this value and is thus an optimal band-
width labeling.

4.2 Further Research

There are various issues that deserve additional study. Among these is a
closer examination of the value of the

∑
i σi bound as it relates to L∗(G). It

Figure 4: An Optimal Bandwidth Labeling

turns out that the bound is (in the limit) quite close for some graph classes.
For example, in Mitchison and Durbin (1986), an optimal labeling scheme
for the n × n discrete torus is demonstrated. In Horton(1997), it is shown
that this labeling has value

n(431n2 + 350n− 900)

250

for n ≡ 0 (mod 10). But Horton (1997) also shows that the value of
∑

i σi

for n ≡ 0 (mod 2) is

⌊
n(10n2 + 9n− 16)

6

⌋

which yields a ratio, with L∗ for this class of graphs, of 1.0344 for n ≡ 0
(mod 10).

On the other hand, we can also create graphs, even fairly primitive ones
such as series-parallel graphs, where this ratio is substantially distant from 1.
And of course, the gap between the two values notwithstanding, it remains
that we need to be able to compute the relevant σi values in the first place.

An intriguing issue that remains is the recognition question, particularly
for graph classes where the σi values can be efficiently computed: given a

graph G (belonging to such a class), is G σ-good? To date, we know of no
fast algorithm to answer this question, but no complexity result is evident
either. A deeper discussion of this issue appears in Horton (1997).

5 REFERENCES

1. D. Adolphson and T.C. Hu, Optimal linear ordering, SIAM J. Appl.
Math 25 (1973) 403-423.

2. S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, Journal of Algorithms 12 (1991) 308-340.

3. S.L. Bezrukov, Edge isoperimetric problems on graphs, Graph Theory
and Combinatorial Biology, Bolyai Soc. Math. Stud. 7, L. Lovasz, A.
Gyarfas, G.O.H. Katona, A. Recski, L. Szekely eds., Budapest, (1999)
157-197.

4. R.B. Borie, R.G. Parker and C.A. Tovey, Deterministic decomposition
of recursive graph classes, SIAM Journal of Discrete Mathematics 4
(1991) 481-501.

5. R.B. Borie, R.G. Parker and C.A. Tovey, Automatic generation of
linear-time algorithms from predicate calculus descriptions of problems
on recursively constructed graph families, Algorithmica 7 (1992) 555-
581.

6. R.B. Borie, Generation of polynomial time algorithms for some op-
timization problems On tree-decomposable graphs, Algorithmica 14
(1995) 123-137.

7. F.R.K. Chung, On optimal linear arrangements of trees, Comp. &
Maths. with Appls. 10 (1984) 43-60.

8. B. Courcelle and M. Mosbah, Monadic second-order evaluations on
tree-decomposable graphs, Graph-Theoretic Concepts in Computer Sci-
ence, 17th International Workshop, Springer-Verlag (1991).

9. T. Easton, S.B. Horton and R.G. Parker, A solvable case of the linear
arrangement problem on Halin graphs, Congressus Numerantium 119
(1996) 3-17.

10. P. Fishburn, P. Tetali and P. Winkler, Optimal linear arrangements of
a rectangular grid, to appear in Discrete Mathematics.

11. G.N. Frederickson and S.E. Hambrusch, Planar linear arrangements
of outerplanar graphs, IEEE Transactions on Circuits and Systems 35
(1988) 323-332.

12. M.R. Garey and D.S. Johnson, Computers and Intractability (W.H.
Freeman and Company, New York, 1979).

13. L.H. Harper, Optimal numberings and isoperimetric problems on graphs,
Journal of Combinatorial Theory 1 (1966) 385-393.

14. S.B. Horton, The optimal linear arrangement problem: algorithms and
approximation, Ph.D. Thesis, Georgia Institute of Technology (1997).

15. M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of
graphs, Discrete Applied Mathematics 36 (1992) 153-168.

16. W. Liu and A. Vannelli, Generating lower bounds for the linear arrange-
ment problem, Discrete Applied Mathematics 59 (1995) 137-151.

17. G. Mitchison and R. Durbin, Optimal numberings of an N ×N array,
SIAM Journal of Algebraic Discrete Methods 7 (1986) 571-582.

18. D.O. Muradyan and T.E. Piliposjan, Minimal numberings of vertices
of a rectangular lattice (in Russian), Akad. Nauk. Armjan. SSR. Dokl.
70 (1980).

19. M.B. Richey and R.G. Parker, On finding spanning eulerian subgraphs,
Naval Research Logistics Quarterly 32 (1985) 443-455.

20. T.V. Wimer and S.T. Hedetniemi, K-terminal recursive families of
graphs, Proceedings of the 250th Anniversary Conference on Graph
Theory, Fort Wayne, IN (1986).

