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CHAPTER I

INTRODUCTION

A. Graph Approximation

It is well known that many problems are formally
intractable on arbitrary graphs. It is also often the case
that these problems can be solved by polynomial time
algorithms when instances are confined to special classes.
For example, the subclass of planar graphs might yield to a
fast algorithm for a problem which is otherwise difficult.
Bipartite graphs are also known to act as suitable special
cases as do trees, claw-free graphs, and others.

In this regard, much recent attention has been given to
the class of so-called recursively constructed graphs [4,
5]. Among these are series-parallel graphs, Halin graphs,
and partial k-trees. Important here is that an enormous
number of problems are solvable (often in linear time) on
such recursive graph classes by employing (understandably)
dynamic programming-like strategies. In fact, these
strategies are so well understood that various formal models

of the inherent recursive computation have been constructed

(41



It is precisely this success in dealing with recursive
graph classes that leads us to a fairly natural question;
one which provides motivation for the work reported in this
thesis: Given a graph which is not a member of any (known)
recursive class, how reasonable is it to attempt to
approximate the graph by one which is in a well-solved
recursive class? The purpose of this approximation is to
solve a given problem on the latter and transform its
solution so as to be admissible on the original structure.
For example, a graph might be, in some sense, "almost"
series-parallel. A maximum/maximal subgraph is formed which
is series-parallel, the problem of interest is solved
accordingly, and the solution is "patched" back in to the
original graph.

Of course, there are some obvious issues that emerge in
this notion of graph approximation. Are the approximations
dependent or influenced by the problem? Upon what sort of
recursive class should we base our approximation? Should
approximating subgraphs or supergraphs be sought and in
either case, can they be exhibited efficiently? The aim of
this research is to examine these sorts of questions.

B. Outline of Thesis

In Chapter II, we describe some fundamental properties
and results pertaining to recursive graph classes. We then
demonstrate the problem solving strategy on these graphs by
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giving a procedure for solving the spanning eulerian
subgraph problem on the recursive class of Halin graphs. We
conclude with issues that are pertinent in terms of
employing the sort of approximations described above.

In Chapter III, we present some negative results.
Specifically, we establish the difficulty of producing
certain natural approximations for two well-known recursive
classes: series-parallel, and Halin graphs. In the case of
Halin graphs, we prove that both a subgraph as well as a
supergraph approximation is hard to find. The final chapter

describes some directions for further work.







CHAPTER II

RECURSIVE GRAPHS: ALGORITHMS AND APPROXIMATIONS

A. Background

Informally, a recursive graph class is one in which any
sufficiently large member can be composed by joining smaller
members in the class at specific vertices called terminals.
Letting the number of terminals be k, we often refer to
these as k-terminal graphs. More formally, a k-terminal
graph G = (V,T,E) has a vertex set V, an edge set E, and a
(possibly ordered) set of distinguished vertices or
terminals TV such that T = {t;,t,,...,t,}, where t(G) =
|T| £ k. For some k, let U be the set of k-terminal graphs.
Then, a recursively constructed graph family F = (B,R) in U
has base elements BgU and a finite set of recursive
composition operations R = {R,R,,...,R )}, where each R;: uP -
U. Here, p refers to the arity of R;. Generally, we
consider only base elements in which all vertices are
terminals. However, it is easy to see that all such
structures decompose trivially into edges, so we often take

B to be a singleton consisting of K,.




The notion of composition can be described by the same
general form. For 1 < i <m, let G, = (V;,T;,E;) € U, where
v

v , V, are mutually disjoint. Let G = (V,T,E) € U

'y 20 e

as well. A valid vertex mapping is a function f: wu ;. V; =V
such that four conditions are satisfied. First, vertices
from the same G; must remain distinct after composition.
Second, only terminals can map to terminals. Third, only
terminal vertices can merge, and last, edges are preserved
upon composition. If f is a valid vertex mapping, then we
shall write the corresponding m-ary composition operation as
£(Gy,Gyy o0+ ,G,) = G
A decomposition tree of a k-terminal graph G is a

rooted tree with vertex labels g and f such that

e g, = G if v is the root,

e f € R if v is an interior node,

e g, = £,(9,1:9pr -9, 1if interior node v has
children v,, ... ,v,, and

@ g, € B if v is a leaf.
Decomposition trees are very important in the underlying
strategy of problem solving on k-terminal recursive graphs.
If we know the solution to a given problem (i.e. vertex
cover, dominating set, etc.) on the leaf graphs of a
decomposition tree (base graphs), then the postorder

traversal of the tree with appropriate recurrence formulae




(relevant to the given problem) would produce an efficient
algorithm for the problem on the given k-terminal graph.

To develop appropriate recurrence relations for a
dynamic programming solution, one starts by building a
multiplication table f' for each composition operation f.
If G = £(G,,G,) then the multiplication table f' exhibits
the outcome for G that corresponds to each pair of
compatible subgraph property vectors for G, and G,. It is
now straightforward to construct the recurrence relations
directly from the multiplication tables. These formulae
simply compute the optimal property values from among the
compositions of the compatible pairs [3,4].

B. Spanning Eulerian Subgraphs on Halin Graphs

We can demonstrate the basic algorithmic strategy on k-
terminal graphs by considering the following problem: Given
a graph G=(V,E) and an integer K, does G possess a spanning
eulerian subgraph of size (edge cardinality) at least K?
Referring to this problem as Py, suppose our interest is in
solving it on the particular recursive class of Halin
graphs. This is meaningful, since Py  is known to be hard
in general (in fact it is hard on cubic, planar graphs
[10]). First we consider the structure of Halin graphs.

Halin graphs are planar with the property that their
edge sets can be partitioned into a spanning tree, L, having
no degree-2 vertices, and a cycle, C, on the leaves of L.

6




We shall call these leaves pendants. A Halin graph appears
in Figure II.B.1 with L and C denoted. These graphs have
some interesting properties which we return to in the next
chapter. Our interest at this point, however, is confined
to their recognition as members of a well-solved class. 1In
particular, Borie et al [3] demonstrated that Halin graphs
are contained in a three terminal class and can, moreover,
always be decomposed (efficiently) by the repeated
application of a finite set of binary operations.
Therefore, if G is a Halin graph we may, without loss of
generality, assume its decomposition tree to be part of any

associated problem instance.

Let G be a Halin graph (observe that we can do so
without loss of generality since testing for the Halin
property is easy [5]), and further let us assume a plane
embedding of G as shown in Figure II.B.2. Here vertex t, is
a terminal corresponding to any nonleaf vertex of L. The
other terminals are given by t, and t; and correspond to the
rightmost and leftmost leaves of L as indicated.

our decomposition of G follows by applying a
generalization of the well-known series and parallel
operations. We leave specific details of these in [3];
however recall that in a series operation, certain vertices

lose (gain) terminal status after composition



Figure II.B.2




(decomposition) while for a parallel operation, such status
is preserved.

Now, let us define a hypoHalin graph to be a planar
graph whose edge set can be partitioned into a spanning tree
and a path from its leftmost to its rightmost leaf (we
assume a plane embedding exists as described above) and
which passes through the other leaves of the tree. Then if
G is a Halin graph with terminals t,, t,, and t; (with the
stated embedding), G can be decomposed by a parallel
operation into a K, with edge e = {t,,t;} and a hypoHalin
graph G' = G\e. Our claim is that any nontrivial hypoHalin
graph is decomposable into two smaller hypoHalin graphs or
spanning subgraphs of hypoHalin graphs by either the
generalized series or parallel operations.

For a given hypoHalin graph G' or a spanning subgraph
thereof, we can eliminate any edge with both of its vertices
terminal by a parallel operation. Otherwise, let P be a
leaf (not t, or t;) which is nearest to t, such that it 1is
reachable from t; by a path that passes through neither
other leaves nor t,. Then decompose G' by a series
operation into two graphs, one with terminals t,, t,, and P
and the other having terminals t,, P, and t;. Such a
decomposition must be possible since there is only one path

from P to t, which does not include leaf vertices (other

than P itself).



If the stated vertex P does not exist, then G' must
possess only terminal vertices and is therefore trivially
decomposable into edges by successive parallel operations or
else possesses degree-1 vertices, which can be eliminated
using series operations. We must also be specific when
operations are applied to fewer than three terminals.
Regardless, the decomposition proceeds in this manner,
stopping when all leaves are single edges. A decomposition
tree for the Halin graph in Figure II.B.1 is given in Figure
II.B.3.

Now, let us return to Py . In order to develop an
algorithm suitable for any Halin graph, we need to construct
the multiplication tables corresponding to the series and
parallel composition operations. To this end, we must
determine suitable properties relative to the terminals of
the component subgraphs that allow us to decide whether or
not a spanning eulerian subgraph exists for a given
instance, and if so, to ascertain exactly which edges make
up this subgraph. It is an obvious exercise to deal with

cardinalities. Consider the following properties:

1) A spanning eulerian subgraph of G,. We will

use the notation [SES] to indicate this property.
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Figure II.B.3
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2) A spanning subgraph of G, consisting of three
(possibly nonsimple) cycles; one incident to each
terminal, but none incident to more than one. We use

the notation [TRI] to describe this property.

3) A spanning subgraph of G; consisting of two
(possibly nonsimple) cycles; one incident to exactly
two terminals and one incident to only the other
terminal. This can happen three different ways, since
the cycle on two terminals can extend between the left
and top terminals, the right and top terminals, or the
left and right terminals. We use the notation [LTBI],

[RTBI], and [LRBI] to describe these properties.

4) A spanning subgraph of G, consisting of a
(possibly nonsimple) path connecting two terminals and
a (possibly nonsimple) cycle incident to only the third
terminal. As before, there are three such
possibilities. We shall call these properties "paths™

and use the notation [LTPA], [RTPA], and [LRPA].

5) A spanning subgraph of G; consisting of a
(possibly nonsimple) path starting at one terminal,
passing through another terminal, and finishing at the
third terminal. Again there are three such

13



possibilities which we call "forks" and denote by
[LFRK], [TFRK], and [RFRK], where the specified
terminal is the terminal that is of even degree in the
(path) subgraph. Note that since this path can be
nonsimple, it can pass through the end-of-path
terminals in addition to ending there. Thus an
admissible [LFRK] might start at the top terminal, go
from there to the left terminal, then back to the top
terminal, and finally end at the right terminal. (This
is called a "fork" because it can be thought of as two
edge disjoint paths starting at the named terminal,
each ending at a different terminal, and thereby

connecting all three terminals).

Illustrations of these subgraph properties are given in

Figures II.B.4 - II.B.S8.

Although Halin graphs are efficiently decomposable into
base graphs which are edges, we will, as a convenience, halt
our decomposition when either a K, or a K; is reached. As a
consequence, we establish initialization rules for both of
these cases.

A single edge can be either in a subgraph or out of a

subgraph, so we assign a value to these two conditions.

Since we seek a maximum cardinality spanning eulerian

14



All edges in these Figures may
proceed through other vertices,
but they must begin and end at
the Terminal vertices as shown.

Figure I1.B.4
Spanning Eulerian Subgraph
(SES)

& &

Figure IIL.B.5
(TRI)

G

Figure 11.B.6
(BI)

(LTBI in this
case)
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Figure IIL.B.7
(Path)
(LTPA in this
case)

Figure II.B.8
(Fork)
(RFRK in this
case)
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subgraph, each edge in the subgraph contributes 1 towards
this goal, while an edge out of the subgraph contributes 0.
Thus we have

e P [K,] =1 and

o Py, [K,] = 0.

The case of the K; is only slightly more complicated.

The K; can take on most of the properties of our general
three terminal cases. Following, we examine each of the

possible properties:

1) Pg [K;] = 3, with all edges included in the

subgraph.
2) P [K3] = 0, with no edges included.
3) Pl [Kg] = P [K3] = Py [Kg] = =, since these

conditions cannot be met with a K;.
4)  PlpalKzl = PorpalKsl = Pl (K] = 1, including only one
edge in each case.
5) Pll[Ks] = P [Ki] = Po [K3] = 2, including two
edges in each case.
Note that by simply substituting edge weights for the above
values, the maximum weighted spanning eulerian subgraph

problem can be easily solved as well.

Now, since these series and parallel operations take
place on certain subsets of the terminal set, we will form

seven multiplication tables. We will present one such table
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here and demonstrate how it is derived. The complete set of
seven tables appears the appendix.

Consider the series operation where K, is merged with
the vertex t, of a three terminal graph (Operation Type 2).
Note that the operation must be specifically defined; here
the right vertex of the K, (G,) merges with the top vertex
of G,. Also observe that this vertex then loses its
terminal status in the resultant composed graph (see Figure

II.B.9). The following multiplication table represents this

operation:

Table 2.B.1 Composition Rules for Operation Type 2

- SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK

N - - - - - LTPA | RTPA | - LFRK | - RFRK

ot LRBI - TRI TRI - - - - - LRPA -

This table is derived simply by attempting to combine
G, and G, in the manner described above, with each possible
property as indicated in the table. For example, if the
edge of G, was in a subgraph, and the edges in the subgraph

of G, formed a TRI, we would observe the cell in row 1,

18




Figure I1.B.9
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column 2 of the table II.B.1. To represent these
properties, we would write P, [G,] and Py, [G,].

Now consider the case of P,;[G,;] and P . I[G,]. This
produces a TRI for the resultant composed graph since the
connection between the left and top terminals that existed
in G, is severed by the addition of the out edge from G,
(this case is possible since the even degree requirement is
maintained at the newly "buried" terminal). Observe that a
"-1 entry in the table signifies incompatible subgraph
pairs.

Once the multiplication tables are constructed,
recurrence formulae need to be derived for each table. The

following formulae apply to the above table:

Pgs[G] = -

P [G] = Max{Py;[Gy] + Py [Gyls Prrg[Gq] + Preg[Gol}
Pl [G] = =

rer [G] = —®

a1 [G1 = Pour[Gy] + P (G

teal[G1 = P [Gy1 + Piyp, (G

arealG1 = P [Gy] + Prrpal Gyl

P

P

P

P

PepalGl = Poyr[G] + Prepc[G]
P e [G] = PGyl + PGy
Prc[G] = =

P

rek [G1 = P [Gy] + Prepy[G]

20




This computation is made explicit by solving Py, on the
Halin graph shown in Figure II.B.1l. We summarize the work

in table II.B.2. Note that:

(In, out) for the case of K,, and

e P[G]

e P[G] (SES, TRI, LTBI, RTBI, LRBI, LTPA, RTPA, LRPA,

LFRK, TFRK, RFRK) for the every other case.
Note also that connections 1, 2, and 3 are identical to
connections la, 2a,and 3a, respectively, except for the
designations of the edges involved. Entries that are

underlined will be seen to aid in solution retrieval.

21



Table II.B.2 Solution Summary

Graph Graph Properties

P[G,] (1,0)

P[G,.] (1,0)

P[G,] (3,0,~0,=-0,-0,1,1,1,2,2,2)
P[G,,] (3,0,-0,=0,-0,1,1,1,2,2,2)
P[G.] (-0, =00, =0, =0,3,2,2,2,3,-%9,3)
P[G,. ] (=00, =00, =00, =00,3,2,2,2,3,-9,3)
P[G,] (1,0)

P[G,.] (1,0)

P[G:] (=0,3,=00,=0,~0,3,3,3,-0,=00,4)
P[G.,] (=»,3,=-00,=0,=-0,3,3,3,-0,-0,4)
P[G,] (1,0)

P[G, ] (1,9)

P[G,] (5,3,4,=0,-0,4,3,3,4,4,4)
LP[Gh] (5,3,4,=0,-©,4,3,3,4,4,4)
P[Gg] (1,0)

P[G] (=0,4,-0,-0,5,5,4,4,5,~0,5)
P[Gyg) (1,0)

P[(G,,] (=0,4,-0,5,-0,5,4,4,-0,5,5)
P[G,,] (10,9,10,10,-©,9,9,8,10,9,10)
P[G)] (1,0)

P[GM} (10,9,10,10,9,9,9,10,11,11,11)

22




From the computation of P[G,], we see that the largest
spanning eulerian subgraph of the given instance has 10
edges (and that the largest tri has 9 edges, etc). We
simply retrace our steps to determine which edges from the
basic K,'s and K;'s are in the spanning eulerian subgraph
and which ones are out.

As stated above, the underlined entries demonstrate the
"pbacktracking" method of retrieving the solution. For
example, P [G,,] was formed by Pg.[G,,] and Py;,[Gs]. Hence,
edge (1,6) is out of the spanning eulerian subgraph.
Continuing in this fashion will produce the stated subgraph
as indicated by the bold edges in Figure II.B.10.

It is clear that this algorithm operates in linear time
because there is only a constant amount of information to be
computed for each node of the decomposition tree, and the
size of this decomposition tree is linear in the cardinality
of the edge set of G. It should also be obvious that a
similar method will work for any class of recursively
constructed k-terminal graphs for fixed k, once the
decomposition tree for a graph in the class is found. Note
that the value of k must be bounded. Indeed, if this were
not so, the amount of information required could grow

exponentially, or even faster for some problems.
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Spanning Eulerian
Subgraph edges in bold

Figure IL.B.10
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C. Approximation Issues

Now, we turn our attention to issues that must
inevitably be raised in any attempt to generate heuristic
solutions for arbitrary graphs by employing an approximation
approach as described in sections A and B above. The first
of these involves examining the problem of finding a
subgraph or supergraph of a given instance graph that is
recursively constructable. A second issue pertains to
questions related to the transformation of solutions on our
recursive sub/supergraph approximations back to the original
instances. These questions are not unrelated and as we
shall see in the next chapter, certain of them may not be
easy to resolve.

The notion of finding an approximating recursive graph
of one not so structured can certainly invite uninteresting
strategies. For example, assuming the original graph is at
least connected, we could always "approximate" it with a
spanning tree. Most problems are well-solved on trees, but
this would likely be of little consequence when the tree
solution was applied to the original graph. Indeed, it
would probably not even be admissible (i.e. vertex cover,
chromatic index, etc.). Further, even if admissible, its
guality would almost certainly be suspect.

But our interest, of course, is in approximations which
are "close" to the original structures. That is we want to

25



approximate graphs which are "nearly series-parallel" or
"nearly Halin" by graphs in the respective recursive
classes. It would also seem logical, in say the subgraph
case, to prefer a subgraph on edge set E, to one on edge set
E, where |E,| 2 |E,| (in the supergraph case the opposite
relation woﬁld be desirable). Unfortunately, this need not
be meaningful either as the following apparent anomaly
suggests.

Consider the graph G in Figure II.C.la and suppose we
are solving Py . Further, let us create a series-parallel
subgraph of G to serve as an approximation. Recall that
series-parallel graphs are exactly those without subgraphs
homeomorphic to K,. Moreover, it is well known that
biconnected series-parallel graphs are members of a 2-
terminal recursive class. In any event, let us create a
maximal, 2-terminal series-parallel subgraph of G upon which
we solve Py .. This can be done in linear time following a
result in [10].

Now, the graph G in Figure II.C.la has edge cardinality
(7k+11) /2 where k = 1 mod 4. A maximal series-parallel
subgraph is easy to find and one such possibility is given
by G' in Figure II.C.1b. G' has edge cardinality 3k+5.
Observe also that the solution to Py, on G' is a hamiltonian
cycle in G' having 2k+1 edges. On the other hand, G" in
Figure II.C.1c could have been our maximal

26




k segments, k=9 in this case.

Bt = (7Tk + 11)/2

Figure II.C.1a

IEl = 3k + 5, SES shown in bold with IEl = 2k + 4

Figure II.C.1b

IEl = (5k + 13)/2, SES shown in bold with IEl = (9k + 15)/4.

Figure II.C.1c
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construction. It has (5k+13)/2 edges but, as illustrated,
yields a solution to Py, of size (9k+15)/4 or on the order
of a k/2 improvement over G'! Thus we have a phenomenon
where a conceivably better (in one sense) approximation
leads to a poorer solution. Clearly, structure can be more
important than size.

But there are troublesome issues beyond this. Observe
that in our illustration above, we produced a maximal
subgraph. That we did so is due to the ease with which this
is accomplished for series-parallel subgraphs. That we did
not seek a maximum cardinality subgraph (the anomaly
notwithstanding) follows, as we show later, from the
intractability of finding same.

At least our solution to Py, on a subgraph of G say G’
would be a feasible solution on G. As suggested earlier,
however, for a problem like vertex cover this would not
generally be true. But if we had a supergraph approximation
of G, G', we would not have such a problem since any cover
on G* would be admissible on G. It is also true, however,
that the solution from G' might be very poor for G.
Consider the vertex cover problem on G in Figure II.C.2a.
First, observe that G is not series-parallel and so
trivially no (series-parallel) G' exists. However, let us
create a Halin supergraph of G to act as G'. A suitable
construction is shown in Figure II.C.2b. Now, on G' an

28




k vertices (k even) k vertices (k even)

k/2 vertices in each
triangular face.
(k=8 in this case)

Figure II.C.2a

Figure II.C.2b
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optimal cover is denoted by the darkened vertices of which
there are 2(k+1). Unfortunately, this solution is very poor
on G which can be covered by at most k+3 vertices as shown
by the darkened vertices in Figure II.C.2a.

More discouraging than the quality issue, however, is
that in the case of at least Halin approximations, forming
any G' can be difficult. Note the distinction on this point
with regard to series-parallel graphs. If G is not series-
parallel then, as suggested earlier, adding edges cannot
rectify this situation. But there are non-Halin graphs
which can be made so by adding edges. Conversely, there are
also non-Halin graphs where no Halin G' can be formed at
all.

Consider G in Figure II.C.3. Clearly, G is not Halin
(since vertices 5 and 11 are degree 2). But adding edges
(2,5), (2,8), and (11,14) creates G' which is Halin. This
G* and its corresponding sets L and C are shown in Figure
II.C.4. Solving vertex cover on G' produces the vertex set
V. = {2,4,5,6,8,9,10,12,14,16} (note that the explicit
algorithm for vertex cover on Halin graphs and a solution
summary for the above result is given in the appendix). Now
suppose we alter the instance by adding edge (5,11) as shown

in Figure II.C.5. It is easy to verify that no Halin

supergraph is even possible in this case!
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Instance Graph G=(V,E)

Figure II.C.3

Supergraph G+

-Added edges in bold: — 2.5 2.8 11-14

-Halin cycle more bold: mewss 1-.5-9-10-11-16-12-7-4-3-6-1
{(Halin cycle denotes C)

Figure II.C.4
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Instance Graph G=(V,E)

with no Halin Supergraph.
Edge 5-11 makes this
different from Figure H.C.3.

Figure II.C.5
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In the next chapter, we provide results which have to
be considered discouraging insofar as certain subgraph and
supergraph approximations are concerned. Indeed, these
results, in some sense, anticipate the sorts of concerns

raised and demonstrated in this section.
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CHAPTER III

COMPLEXITY OF SUBGRAPH AND SUPERGRAPH CONSTRUCTIONS

A. Background

Series-parallel and Halin graphs were defined
previously. Not mentioned before, however, are some
properties possessed by Halin graphs which will help us in
developing the results of this chapter. Below, we state
some of these.

First, Halin graphs are minimally 3-edge connected [5]

and as an obvious consequence of this we have:

Property: Subgraphs of Halin graphs are not Halin.

Thus, the class of Halin graphs is not closed under the
subgraph operation. That is, given a decomposition tree of
a Halin graph, every descendant graph is not Halin. This,
of course, is typically not the case with graphs constructed
in a recursive fashion. For example, Halin graphs are
distinctly different from series-parallel graphs in this

reqgard.

34




In fact, distinctions between Halin and series-parallel
graphs are quite fundamental. We have
Property: No Halin graph is series-parallel.
Proof: The property is immediate following a result of
Dirac [4] which asserts that any (simple) graph with minimum
vertex degree 3 possesses a subgraph homeomorphic to K, and
is thus not series-parallel. But a necessary condition for
a graph to be Halin is that every vertex degree be at least
3 and the property follows.
|

The number of edges in any Halin graph is easy to
determine. If L and C are the tree and cycle edges,
respectively, then for a Halin graph of order p and for
|c|=k the corresponding total edge cardinality is p+k-1.
Now, since C passes through only and all the pendants of L,
there are exactly k pendants in L. The maximum number of
such pendants is p-1 which is achieved by star graphs,
Ky o1 Hence, the largest Halin graph on p vertices has 2p-2
edges. Interestingly, this is essentially the same as for
series-parallel graphs (edge cardinality of any series-

parallel graph is bounded from above by 2p-3 [9]). The

following property comes in handy later:

Property: Let G be Halin with |C|=k. Then k is bounded as
p/2 +1 <k<p-1
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Proof: The upper bound was just established. Let k be the
size of the smallest cycle. Since G is Halin, there are p-k
vertices in L which are not pendants and which are connected
by p-k-1 edges. Total degree generated by these "tree"
edges is therefore 2(p-k-1). Also, there are k tree edges
that connect pendants to the tree. These add k to the total
degree of the non-pendant vertex structure just described
for a total of 2p-k-2. But since every vertex in a Halin
graph has degree at least 3, there must exist degree at
least 3(p-k) contributed by the stated p-k vertices. Thus

3(p-k) < 2p-k-2 which implies k > p/2 + 1 as claimed.

As a consequence, we have that for fixed k, every
maximal Halin graph on p vertices has the same size. From
the subgraph property given earlier, it is also the case
that every such graph is minimal. We now proceed with the

key results of this chapter.

B. Subgraph Results

1. Series-Parallel

We direct our attention first to the problem of finding
a maximum cardinality biconnected series-parallel subgraph
of a graph G. We state the problem in the following way:
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P Given a graph G=(V,E) and an integer k, does

SPSUB *
there exist a biconnected series-parallel subgraph of G

having edge cardinality no less than k?

Theorem: Py, is NP-complete.

Proof: We will employ a reduction from the problem of
testing which cubic, planar graphs are Hamiltonian [8].
Accordingly, let G=(V,E) be a cubic, planar instance and
construct G' as follows: replace each vertex in G with a
plane representation of K,. For each K, "module" so
constructed, connect the three vertices incident to the
infinite face (of K,) to the corresponding adjacent module
preserving the adjacencies in G. The construction is
demonstrated in Figure III.B.la Let this graph be
G'=(V',E') and set k = 6]|V]|.

Now, assume G is Hamiltonian with cycle E, £ E, and let
us form disjoint subsets of E' as A' and B' where A' is the
set of edges in E' between the K, modules corresponding to
E, and B' is the set of edges inside the modules. We can
now form the desired subgraph of G', say G'=(V',E") as
follows: set V' = V and construct E' as A' u B' where B'"
contain all edges in B' except one, say e = {i,j}, from each
K, module where i and j are not both incident to edges in

. Since

A'. Each K, module loses one edge so |[B'| = 5|V
A' corresponds exactly to E_ we know that |A'| = |V]| and so
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|E*| = 6|V|. The constructed graph G' is easily seen to be
biconnected and series-parallel. Figure III.B.1lb

demonstrates.

For the converse, suppose there exists a biconnected
series-parallel subgraph of G', G=(V,E) with |E| = 6|V].
Accordingly, let us partition E° into disjoint sets A" and B’
such that A~ is the set of "intermodular" edges in set E’
and B° is the set of "“intramodular" edges in E'. A" and B
are nonempty since G~ is biconnected and are proper subsets
of A' and B' since G is series-parallel.

First, note that if more than 5|V| intramodular edges

are in E’, then at least one module would exist as K, and we

deny that G  is series-parallel. Therefore |B’| < 5|V]|.

Now we consider the intermodular edges. Since G is
cubic, each module in G” must be incident to 0, 1, 2, or 3
edges in A°. Clearly, a module cannot be incident to zero
or one edges from A, since otherwise G° would not be
biconnected.

Suppose a module is incident to three edges in A’.
This case will be divided into several sub-cases based on
the number of the B edges in the module. Note that there
could not be six edges in a module since G' is series-
parallel. Thus, the case for five edges will be handled

below, while the case for four or fewer will be addressed
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Figure IIL.B.1la

G*:

A

Figure IIL.B.1b
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(and dismissed) using an algebraic argument.

In the five edge case, we can employ a distinction
based on whether or not the "missing" edge in the module is
incident to the infinite face of the module.

Suppose an infinite face edge is missing. Then the
structure that results appears in figure III.B.lc But since
there is only one edge disjoint path from x to z going
through the module, we see by hypothesis (biconnectedness)
that a path exists from x to z independent of the stated
module (denoted by the dashed, bold line). But then a K,
homeomorph is evident on vertices a, b, ¢, and d, and so G’
cannot be series-parallel.

Now, suppose an edge incident to the central (not
incident to the infinite face) vertex is missing, as shown
in figure III.B.1d. Then by hypothesis there must exist two
edge disjoint paths from x to y, and two from x to z. But
then a K, homeomorph is evident on vertices a, b, ¢, and x,
and we deny again that G is series-parallel.

So, each module has 2 or 3 A  edges incident to it, and
further, a module with 3 such incident edges can have no
more than 4 B  edges inside it.

Now we employ an algebraic argument to show that |A7|
must be exactly |V|. Recall that [B| < 5|V|, so |A| 2 |V]|

must hold in order that |E| > 6|V| is satisfied.
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Figure III.B.1c

Figure III.B.1d
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Let us establish the following notation:

L)

a 2 the number of A' edges in A’ exceeding |V

H

1pd

c the number of degree-2 modules in G'.

d 2 the number of degree-3 modules in G'.
Now suppose |A°| = |V| + a. Then there must be 2(|V]| + a)
edge-module incidences for the intermodular edges in A’.
Clearly, the number of edge-module incidences for A" edges

is also equal to three times the number of degree-3 modules

in G plus twice the number of degree-2 modules in G  or

2|v| + 2a = 2c + 3d (1)

Also, since every module must be either of degree-2 or

degree-3, we must have

[V = c + 4d (2)

Now upon substitution of (2) in (1) we have 2a = d and so
for each edge by which |A"| exceeds |V|, we must have two
degree-3 modules in G° in order to account for total degree
in G°.

Now recall that |B| < 5|V]| in general, but since we
have established that degree-3 modules can have at most 4 B
edges, we see that |B'| < 5|V| - d (reducing the bound by

one for each degree-3 module in G°) or equivalently,
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|B"| < 5|Vv] - 2a (3).

We initially supposed that |A"| = |V| + a (4) and also
recall that |A"| + |B| = |E'|. Now we add (3) and (4),
obtaining |E| < 6|V|] - a. Therefore to satisfy |E| 2
6|v|, we must have a = 0, so |A'| = |V|[. Now since 2a = d,

we see that d=0 which implies that there exist only degree-2
modules in G°. Since G  is biconnected and each module in G’
is incident to two A" edges, these edges correspond to a
hamiltonian cycle in G. It is certainly easy to test if a
graph is biconnected and series-parallel and so the proof is

complete.

It should be noted that the above is an independent
proof of a result given in [1].
The following corollary is immediate.

Corollary: Py, remains hard on planar graphs.

2. Halin
It would not be surprising that a result similar to the
theorem in section III.B.1 also existed in the case of Halin

subgraphs. The corresponding problem is:
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P,: Given a graph G=(V,E) and an integer j, does
there exist a Halin subgraph of G, G'=(V,E")
where E* ¢ E and with |E7| 2 j?
Following, we show that resolving P, is just as
difficult as Py

Theorem: P, is HP-complete.

HS
Proof: We will show a reduction from the HP-complete
problem of finding a longest cycle the statement of which
appears below [7]:

P.: Given a planar graph G=(V,E) and an integer

|E|>k>3, does there exist a cycle in the graph

of length at least k?

From an instance of P, let us create an instance of P

as indicated in Figure III.B.2a. Add a vertex to every edge

in G and also add a "supervertex", v,. Connect the
supervertex to every vertex of the stated homeomorph of G.
Set j = 4k.

Let the constructed graph be G'= (V',E'), where

<
*
Kb

Vertices inserted on each edge in E

<
Ko

The supervertex

<
o

VuV*uvx
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*

E %‘Edges formed by the "division" of E edges by v

E, 4 Edges connecting v, vertex to V u V' vertices

E'2 E'" UE,.

X

Note that:
V'] = |E|
|jve] = |v| + |[E] +1
|E"| = 2|E|
|E,] = [V| + [E]
|E'| = 3|E| + |V].

Now assume there exists a cycle in G of length at least
k. Clearly, k < |V|. By construction, a cycle of length k
in G implies a cycle of length 2k in G', since each E edge
was split to form two E* edges and one V' vertex. Now this
cycle in G' passes through 2k vertices in G', each of which
is connected to v, by an edge in E,. These 2k edges form a
star graph with 2k + 1 vertices with v, at the "hub".

Adding the 2k cycle edges produces a wheel graph and hence
the desired Halin subgraph of size 4k. This construction is
demonstrated in Figure III.B.2b.

Now suppose there exists a halin subgraph of G', say G
=(V ,E’) where V' g V' and E ¢ E' and with edge cardinality
at least 4k. Observe that each element of E' must be either
a cycle edge in E, a tree edge in E', or out of E (€ E'\E
).
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= (V,E")

G = (V,E)
- Add 2 degree D
vertex on each edge
V* denoted by Vi=V U V¥U w
- Create the
Supervertex @ Vx denoted by @ E'=E*UE
E are edges incident to @
- Connect Supervertex to
every other vertex in G' E* are edges between D and O

Figure IIL.B.2a

Example with cycle size = 4
Cycle indicated in bold print
G = (V,E) G' = (VLE)
Halin subgraph of G'
indicated in bold print
-/

Figure IILB.2b
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First we establish that v, must be in V'. Suppose
otherwise; i.e. that v, f V. Then none of the E edges can
be in the stated subgraph. This leaves each V' vertex in G'
incident to only two edges. But no vertex in a halin graph
can be of degree less than three, so these vertices and the
edges incident to them, E', also cannot be in the stated
subgraph. This leaves no edges at all, so no halin graph is
possible, contrary to hypothesis. Therefore, v, € V.

Now we establish that v, is not a pendant. Suppose
otherwise. Then the hypothesized cycle passes through v,
implying that exactly two of the edges in E, are cycle
edges, and exactly one edge in E, is a tree edge. Now,
except for trivial cases, the cycle must pass through at
least one V' vertex that is not connected directly to v, by
a eycle edge. Then, the remaining edge incident to that v
vertex must be a tree edge in E'. But that edge connects
the stated V' vertex directly to v, which denies that G is
Halin (see Figure III.B.2c). Therefore, v, cannot be a
pendant, which means it has no cycle edges incident to it.

Now in G', v, is connected to every other vertex by an
edge in E,. Since v, € V', one of these E, edges is a tree
edge connecting v, to another vertex y in G'. Then there
are four possibilities: (a) y is in V and is a pendant, (b)
y is in V and is not a pendant, (c) y is in V' and is a
pendant, or (d) y is in V' and is not a pendant. We shall
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examine cases (b) and (d) now and show that they are
impossible.
e case (b). Since we suppose that y is not a

pendant, at least two E" edges incident to y must also
be tree edges. Both of these edges lead to degree-3 v
vertices. Pick one of these vertices, say p. If p is
a pendant, then both of the other two edges incident to
it must be cycle edges. But one of these edges leads
back to v, which contradicts that v, is not a pendant.
If p is not a pendant, then both of the other two edges
incident to it are tree edges, but the one that leads
back to v, forming a cycle among the edges picked thus
far and G° could not be Halin. Therefore, case (b) is

impossible.

o case (d). Since we suppose that y is not a pendant
and y is in V", both of the other two edges incident to
y must also be tree edges. These two edges lead to V
vertices a and b. Now suppose a and b are both
pendants. Then the cycle passes through both a and b.
This defines two edge-disjoint simple paths from a to b
that do not pass through non-pendant vertices v, and y.
Furthermore, since a and b are both in V, there must be
at least one vertex in V' on each of these paths. Name
any V* vertex on one path u, and any V' vertex on the
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other path v. Now, since u is of degree three in the
subgraph, the non-cycle edge incident to u (which leads
back to v,) must be a tree edge. The same is true for
vertex v. However, this induces a subgraph
homeomorphic to K; 34 since the six specified vertices
can be partitioned into two sets, as {v,, a, b} and {y,
u, v} accordingly (see Figure III.B.2d). Similarly, if
one or both of a and b are not pendants, then the
additional tree edges required to connect them to
pendants will again produce a K; 5 homeomorph when added
to the previous construction. 1In either case we deny
planarity in the hypothesized subgraph. Therefore,

case (d) 1is impossible.

Now we have contradicted each case except those where
vertex y is a pendant. Since y was chosen arbitrarily, we
conclude that all vertices in the Halin subgraph except
vertex v, must be pendant vertices. This can only occur
with the tree edges forming a star with the "hub" v,.
Clearly, such a (Halin) graph has exactly half of its edges
in the cycle and half in the tree, all of the latter
incident to the "hub" vertex v,. Since we have supposed the
existence of a halin subgraph with |E| > 4k, we see that at
least 2k edges must form the cycle in G'. This cycle is
represented by a vertex sequence alternating between
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¢ . Dashed line indicates some
. ‘e path exists between these
¢ *, vertices

-

Figure IIL.B.2c

Vy y
a u
b v

Figure IIL.B.2d
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vertices in V and those in V'. But recall that during the
construction of G', each edge of G was "split" into two
edges by the insertion of a V' vertex. Thus, the cycle
portion of G° having at least 2k edges corresponds exactly
to a cycle in G of length at least k.

We can test for the Halin property in polynomial time

and the result of the theorem follows.

An easy corollary results by fixing k in the theorem

above. Letting k = |V| we have:
Corollary: Deciding if G=(V,E) possesses a spanning Halin

subgraph is HP-complete.

Realistically, our two subgraph results are somewhat
expected following a pattern exhibited for similar problems.
Oon the other hand, the analogous questions regarding
supergraphs might be more interesting. In the next section,

we show this to be the case.

C. Supergraph Results

As discussed earlier, the supergraph version is not
meaningful for series-parallel graphs. Thus we will

consider only the following problem:

51




P,: Given a graph G=(V,E), does there exist a set of
edges E' = E, such that the supergraph G'=(V,E') is

Halin?

Recall that we may assume that G is not Halin since
testing for this property is easy. We may also assume that
G is not 3-connected, following from the fact that Halin
graphs are 3-connected and minimal in this regard.

Oour next result suggests that resolving P, is no easier
then the Halin subgraph version.

Theorem: P, is HP-complete.
Proof: We will show a reduction from the (strong sense) HF-
complete problem of 3-Partition the statement of which

appears below [7].

Pyt Given a set A of 3m elements, an integer bound B,
and an integer size s(a) for each a¢A such that B/4 <

s(a) < B/2 and such that X s(a) = mB, can A be

ac¢A
partitioned into m disjoint sets A,, A,,...,A such

that, for 1<ism, %, _,s(a) = B ?
)

(Observe that each A, must contain exactly three elements
from A).

From an instance of P;, let us create an instance of P,
as indicated in figure III.C.1l. Attached to vertex t are
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"tails" which correspond to the elements in A with the
length of each tail related to the size of the respective
element. The upper part of the graph and in particular the
m "segments" correspond to the sets A,, A,,...,A,, each with
size B where the latter is denoted by the B vertices
inserted within each segment as indicated. We shall use the
terms "intersegment" vertex and "intrasegment!" vertex to
address these vertices near the top of the figure, as shown.
Certainly, G in figure III.C.1 is not Halin nor is it 3-
connected.

Now, given a suitable 3-partition of A, we can
construct a "Halin completion" of G in the following manner.
For each A;, place the three relevant tails in an interior
face bounded by intersegment vertices, intrasegment
vertices, and t (we call each of these faces a "sector").
From each pendant (degree-1) vertex of the tails create two
edges from the pendant to an adjacent pair of intrasegment
vertices. For each (if any) other (degree-2) vertex on a
tail, create one edge from the tail to an intrasegment
vertex. In this way, we add EaeA;(s(a)—l) + 3 = B edges.

It is easy to see that planarity can be maintained in
this connection. The construction is thus complete yielding
a Halin graph H=(V,E,) with E, defined by E augmented with

the new edges described; the cycle edges are those defining
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Sector Face Sector Face

Sector Face

3m total 00

tails s(a) -~ 1
\lb vertices in

m total each tail

sectors

O-O— Tail with s(a)=3

D Intersegment vertex

Figure III.C.1
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face f, say E;, and the tree edges are given by E/\E.
Figure III.C.2 demonstrates this.

Conversely, assume there exists a Halin completion of
G, say G'=(V,E’). ©Let E®' = E uy E'. Vertex t must be a non-
pendant vertex, since its degree in G exceeds 3 (we avoid
trivialities in the statement of P;). Thus, edges x and y
are tree edges implying the edge c is a cycle edge.
Accordingly, the intersegment vertices incident to edge ¢
must be pendants, which implies that edges a and b are cycle
edges as well. But this means that the cycle component in
G¢ is either defined by face f of G or a subface of f
created in G°. Accordingly, the tails of G must be part of
the tree in G’. Observe also that the upper portion of G
exscribed by edges x, y, and ¢ is 3-connected and we
therefore may assume an embedding of it as shown in figures
IIT.C.1 and IITI.C.2.

If the number of cycle edges in G' = k, we must have
that k < dim(f) < m(B+1) + 1, where dim(f) denotes the
dimension of face f. Also recall that k has a natural lower

bound:

k > |V|/2 + 1= (2(m(B-1) + 1))/2 + 1 = m(B-1) + 2.

But the vertices in the tails of G have degree less than 3
and therefore have total deficiency at least mB. This
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Al = (2,2,3)
A2 = {2,2,3)
A3 = {2,2,3)
m=3,B=7

Cycle of Halin
graph indicated in
bold.

Figure III.C.2
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deficiency has to have been satisfied by edges attached to
the tail vertices but not extending between distinct tails
nor between distinct vertices of the same tail which in
either case denies that the tails are part of a tree.
Hence, |E'| = mB.

On the other hand, the intrasegment vertices in G all
have degree 2 and thus a deficiency of mB as well. But in G
we have |E| = 2mB - m + 2 and in any Halin graph of order p
with a cycle of length k, we have p + k - 1 edges. 1In our
construction, G® must then have size 2(m(B-1) + 1) + k - 1.
Letting © be the number of edges to add to G to create G,
it is easy to see that © = k - m - 1. Let us suppose that k
is different from its upper bound of m(B+1) + 1. Then © <
mB and E' cannot be formed as required. Hence, k = m(B+1) +
1 and the cycle in G® is defined explicitly by face f. Thus
all the vertices on f are pendant vertices and their
deficiency is exactly mB. The only way this deficiency can
be satisfied is by edges connected to tail vertices.
Exactly B of these are required in each sector face and
these edges connect exactly those vertices of the tails
which must be embedded in the sectors. Moreover, if any
tail vertex is connected to a vertex in a given sector so
must every other vertex in that tail since G° is planar.
Thus, every one of the m sectors has exactly three tails
from G embedded within it with each connected by exactly B
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edges to the respective vertices on face f. But then each
of these sector-tail embeddings forms a triple which
corresponds to a suitable 3-partition of A.

The transformation from P;, to form G is valid
following the strong sense status of P;,. This along with

P,'s inclusion in KNP yields the desired result.
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CHAPTER IV
CONCLUSIONS

This thesis has addressed some of the issues associated
with graph approximation. In Chapter II, we demonstrated
some anomalistic behavior of possible approximation schemes.
This suggested to us that finding appropriate approximating
graphs might be difficult. The results of Chapter III show
this to be the case. Halin graphs, in particular, were
shown to pose significant problems when used for
approximation. This was somewhat surprisingly true even for
the Halin supergraph case, despite the fact that finding
series-parallel supergraphs is generally less interesting.
In conclusion, although we began this effort seeking
approximation strategies, our research lead us in the
direction of the negative but strong results of Chapter III.

There is room for further research into graph
approximation. Certainly other recursive graph classes
could be explored in the manner that we investigated Halin
and series-parallel graphs. Alternatively, liberalized
definitions of subgraph and supergraph could be used,
allowing vertices to be removed and added along with edges.

Finally, the notions of subgraph and supergraph could be
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combined, allowing some edges and/or vertices to be removed

and others to be added in the same approximation.
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APPENDIX

A. Complete Solution Methodology for P

Here we present the multiplication tables used to solve

P on Halin graphs. The following guidelines will assist

SES
the reader in using the tables: Read G, on left column, and

G, in first row. The "offspring" graph that results from
those two parents in that order is indicated in the table.

A "-% jndicates this composition not possible.
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Operation Type 1, {(3,3,3)} (see Figure APP.A.1)

Table APP.A.1 Composition Rules for Operation Type 1

Gz-* SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
G1l

SES SES LTBI LT8I SES SES - LFRK - LFRK - -
TRI RTBI - TRI - TRI - - - RTPA - -
LTBI SES - LTBI - LTBI - - - LFRK - -
RTB! RTBI TRI TRI RTBI RTBI - RTPA - RTPA - -
LRBI SES TRI LTBI RTBI LRBI - RTPA - LFRK - -
LTPA RFRK - LTPA - LTPA - - - TFRK - -
RTPA - - - - - TRI - RTPA - RTPA RTBI
LRPA - - - - - LTPA - LRPA - TFRK RFRK
LFRK - - - - - LTBI - LFRK - LFRK SES
TFRK - - - - - LTPA - TFRK - TFRK RFRK
RFRK RFRK LTPA LTPA RFRK RFRK - TFRK - TFRK - -
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Operation Type
RIGHT terminal

see Figure APP.

Table APP.A.2

2, {(3,3,4)} (adding K, to the TOP terminal,

of K, (G,) connects to TOP terminal of G, -

A.2).

Composition Rules for Operation Type 2

SES TRI

LTBI

RTBI

LRBI

LTPA

RTPA

LRPA

LFRK

TFRK

RFRK

LTPA

RTPA

LFRK

RFRK

LRBI

TRI

TRI

LRPA

Operation Type

RIGHT terminal

3, {(3,3,4)} (adding K, to the LEFT terminal,

of K, (G,) connects to LEFT terminal of G, -

see Figure APP.A.3).

Table APP.A.3 Composition Rules for Operation Type 3
G~ | SES TRI LTBI | RTBI | LRBI [ LTPA [ RTPA | LRPA | LFRK | TFRK | RFRK
Gyl
IN - LTPA LRPA TFRK | RFRK
out RTBI TRI TRI RTPA
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Operation Type 4, {(3,3,4)} (adding K, to the RIGHT
terminal, LEFT terminal of K, (G,) connects to RIGHT
terminal of G, - see Figure APP.A.4). Note that in this

case, G, is on the left and G, is on the right.

Table APP.A.4 Composition Rules for Operation Type 4

Gy SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
Gyt

IN - - - - - - RTPA LRPA LFRK TFRK -
ouT LTBI - - TRI TRI - - - - - LTPA

Operation Type 5, {(3,3,3)} (adding K, between TOP and LEFT

terminals of G, - see Figure APP.A.5).

Table APP.A.5 Composition Rules for Operation Type 5

GZ-' SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
Gqd

IN RFRK LTPA LTPA RFRK RFRK LTBI TFRK LFRK TFRK LFRK SES
ouT SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
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Operation Type 6, {(3,3,3)} (adding K, between TOP and RIGHT

terminals of G, - see Figure APP.A.6).

Table APP.A.6 Composition Rules for Operation Type 6

Gy~ SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
G1 1

IN LFRK RTPA LFRK RTPA LFRK TFRK RTBI RFRK SES RFRK TFRK
ouT SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK

Operation Type 7, {(3,3,3)} (adding K, between LEFT and

RIGHT terminals of G, - see Figure APP.A.7).

Table APP.A.7 Composition Rules for Operation Type 7

Gy~ SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
Gyl

IN TFRK LRPA TFRK TFRK LRPA LFRK RFRK LRBI RFRK SES LFRK
out SES TRI LTBI RTBI LRBI LTPA RTPA LRPA LFRK TFRK RFRK
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Figure APP.A.1

Figure APP.A.2
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Figure APP.A.3

G1:

Figure APP.A4
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Figure APP.A.S

Figure APP.A.6
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B. Complete Solution Methodology for Pw

In this section we present solution methodology for P,
on Halin graphs, and we show the solution to an example

problen.

First we observe that we use the same "operations" for

P, as we did for Py ,. Now since every vertex in a vertex

Ve
cover is simply either "in" the cover or "out" of the cover,
we see that our data storage system only needs to keep track
of the status of each terminal vertex with respect to the
above property. We also note that the only initial elements
for our construction will be K, and K; (K; again is used only
as a computational convenience, since K; easily reduces to
edges). Thus we establish No, L, R, and B to indicate no
vertex, the left vertex, the right vertex, and both
vertices, respectively, as being "in" the cover for the K,
case. Similarly, we let No, L, R, T, LR, LT, RT, and LRT
denote all eight possible permutations of the three terminal
case with respect to the above property.

Next we establish initialization rules for our two
initial cases. Since we are attempting to find the minimum
cardinality vertex cover, we observe that to determine the
"impact" of a subgraph on our objective function, we simply
need to count vertices "in" the cover, and each vertex so

counted adds 1 to the value of the objective function, while
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an "out" vertex adds 0. Where a vertex cover is not

possible, the value « is assigned. Thus for the K, case:

P, [K,] = o
P [K,] =1
P[K,] =1
P, [K,] = 2

For the K; case, we have:

Prolks)l ==
P, [K] =
Py [Ks] = o
P, [Ky] = o
PolK;l = 2
P, (K] = 2
Pp [K,] = 2
P (K] = 3

Note that by substituting vertex weights for the above
values, this method could be used to solve the minimum
weighted vertex cover problem on halin graphs.

Now we consider the seven "Operation Types" and develop
tables to determine what "offspring" graph results from each
possible "parent" configuration.
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Operation Type 1, {(3,3,3)} (see Figure APP.A.1).

Table APP.B.1 Composition Rules for Operation Type 1

Gé-* Mo L R T LR LT RY LRT
4
1

No No - R - - - - -

L L - LR - - - -

R - No - - R - - -

T - - - T - - RT

LR - L - - LR

LT - - - LT - - LRT -

RT - - - - - T - RT

LRT - - - - - LT - LRT
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Operation Type 2, {(3,3,4)} (adding K, to the TOP terminal,
RIGHT terminal of K, (G,) connects to TOP terminal of G,,
see Figure APP.A.2).

Table APP.B.2 Composition Rules for Operation Type 2

Gy No L R T LR LT RT LRT
g,

Mo No L R - LR

L T LT RT - LRT - - -

R - - - No - L R LR

B - - - T - LT RT LRT

Operation Type 3, {(3,3,4)} (adding K, to the LEFT terminal,
RIGHT terminal of K, (G,) connects to LEFT terminal of G,,
see Figure APP.A.3).

Table APP.B.3 Composition Rules for Operation Type 3

Gy~ No L R T LR LT RY LRT
&

No No - R T - - RT

L L - LR L7 - = LRT -

R - No - - R T - RT

B - L - - LR LT - LRT
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Operation Type 4, {(3,3,4)} (adding K, to the RIGHT
terminal, LEFT terminal of K, (G,) connects to RIGHT
terminal of G,, see Figure APP.A.4). Note: In this case,
G, is on the left and G, is on the right.

Table APP.B.4 Composition Rules for Operation Type 4

Gy Mo L R T LR LT RT LRT
&1

No No L - T - LT - -

L - - No - L - T LT

R R LR - RT - LRT

B - - R - LR - RT LRT

Operation Type 5, {(3,3,3)} (adding K, between TOP and LEFT
terminals of G,, see Figure APP.A.5).

Table APP.B.5 Composition Rules for Operation Type 5

G,» | Ne L R T LR LT RT LRT
&,

No No - R - - - - -
L - L - - LR - - -
R - - - T - - RT

B - - - - - LT - LRT
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Operation Type 6, {(3,3,3)} (adding K, between TOP and RIGHT
terminals of G,, see Figure APP.A.6).

Table APP.B.6 Composition Rules for Operation Type 6

[ No L R T LR LT RT LRT
(N

No No L - - - - - -
L - - - T - LT

R - - R - LR - - -
B - - - - - - RT LRT

Operation Type 7, {(3,3,3)} (adding K, between LEFT and
RIGHT terminals of G,, see Figure APP.A.7).

Table APP.B.7 Composition Rules for Operation Type 7

Gy No L R T LR LT RT LRT
B

No No - - T - - -

L - L - - - LT - -

R - - R - - - RT -

B - - - - LR - - LRT
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Table APP.B.8 Solution Summary to P, on Halin graph in
Figure II.C.4. The decomposition tree for this graph is

given in Figure APP.B.1.

Graph Graph Properties
P[G,] (©,1,1,2)
P[G,] (0,00,00,00,2,2,2,3)
P[Gy] (0,2,©,2,3,3,3,3)
P[G,] (©,1,1,2)
P[G.] (0,0,0,2,3,3,3,3)
P[G] (©0,1,1,2)
P[G,] (©0,3,%,3,4,3,3,4)
P[Gy] (©,1,1,2)
P[G,] (0,0,0,3,4,3,3,4)
P[Gyy] (®,1,1,2)
P[G,,] (3,3,3,4,4,4,4,5)
P[G;] (©,1,1,2)
P[G,.] (o0,00,00,0,2,2,2,3)
P[G,,] (0,0,2,2,3,3,3,3)
P[G,] (0,0,5,5,5,5,5,6)
P[Gy] (©,1,1,2)
P[G,,] (5,5,6,5,6,6,6,6)
P[Gyg] (»,1,1,2)

76




Table APP.B.9 Solution Summary Continued

Graph Graph Properties

P[Gy] (0,00,0,0,2,2,2,3)

PIG,,] (0,2,2,0,3,3,3,3)

P[G,,] (©,1,1,2)

P[G,,] (2,3,3,3,3,3,4,4)

P[G,s] (©,1,1,2)

P[G,, ] (0,0,3,3,3,3,4,4)

P[Gy] (©0,1,1,2)

P[G,, ] (3,3,4,4,4,4,4,4)

P[Gy] (0,1,1,2)

P[Gyy] (00,0,00,0,2,2,2,3)

P[Gy] (0,2,2,©,3,3,3,3)

P{G.,] (5,5,5,5,5,5,5,5)

P[Gq] (©0,1,1,2)

P[Gs,] (5,5,5,6,5,6,6,6)

P{G:] (10,10,10,10,10,10,10,10)
PGy (©,1,1,2)

| P[Gy] (,10,10,%,10,10,10,10)

As a result, we see that the minimum cardinality vertex
cover for G has size 10, and one such cover consists of the

following vertices: {2,4,5,6,8,9,10,12,14,16}.
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Figure APP.B.1
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