The Linear Arrangement Problem on Recursively

Constructed Graphs

S. B. Horton

Department of Mathematical Sciences, United States Military Academy, West Point, New York, 10996

T. Easton

Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas

66506-5101

R. Gary Parker

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205

The linear arrangement problem on graphs is a relatively
old and quite well-known problem. Hard in general, it
remains open on general recursive graphs (i.e., partial
k-trees, etc.), which is somewhat frustrating since most
hard graph problems are easily solved on recursive
graphs. In this paper, we examine the linear arrange-
ment problem with respect to these structures. Included
are some negative (complexity) resuits as well as a solv-
able case. © 2003 Wiley Periodicals, Inc.

Keywords: optimal linear arrangement; complexity; Halin
graphs

1. INTRODUCTION

1.1. Linear Arrangement

Given a simple, finite graph G = (V, E) of order n, the
optimal linear arrangement problem (OLA) seeks a one-to-
one function f: V — {1, 2,..., n} such that L(G)
= Zmeelf(u) = f(v)| is minimum over all such label-
ings. For ease, we shall denote optimal labelings by f* and
their values by L*,

OLA is well known to be NP-complete in general [9],
but has been solved on trees following algorithms of Ado-
Iphson and Hu [1], Shiloach [13], and Chung [5] and on
outerplanar graphs following an algorithm of Frederickson
and Hambrusch [7]. The latter are graphs having no sub-
graphs homeomorphic to either K or K, , (topologically,

Received September 2001; accepted July 2003
Correspondence to: S. B. Horton

Published online 21 August 2003 in Wiley
(www.interscience.wiley.com). DOI 10.1002/net.10093

© 2003 Wiley Periodicals, Inc.

InterScience

NETWORKS, Vol. 42(3), 165-168 2003

these are structures embeddable in the plane in such a way
that all vertices lie on the outer face).

Of interest to us here is that both trees and outerplanar
graphs are recursively constructible; however, none of the
above algorithms appears to be extendable to general recur-
sive graphs. Furthermore, no complexity result is known for
OLA on such graphs. The open status of OLA on recursive
graphs is particularly frustrating, because the status of the
majority of N%-complete graph problems is known on these
structures, that is, most are polynomially solvable. This
paper focuses on adding greater resolution to some of these
issues.

1.2. Recursive Graph Classes

Our descriptions and notation for this section follow
Borie et al. [3]. Informally, a recursive graph class is one in
which any sufficiently large member in the class can be
formed by successively joining smaller members in the
class at specific vertices called rerminals. In letting the
maxim_um allowable number of terminals be k, we some-
times refer to these generically as k-terminal graphs. Com-
mon classes that are describable as k-terminal graphs in-
clude trees, series-parallel graphs, Halin graphs,
bandwidth-k graphs, partial k-trees, and others. More for-
mally, a k-terminal graph G = (V, 7, E) has a vertex set V,
edge set £, and .a (possibly ordered) set of distinguished
vertices or terminals 7 C V specified such that 7 = {t,,
I3, .-y Loy}, where 1(G) = |T| = k. For some k, we let
U be the set of all k-terminal graphs. Then, a recursively
constructed graph family, F = (B, R) in U, has base
elements (graphs) B C U and a finite set of recursive
composition operations R = {h, h,, ..., h,}, where each
h;: UP"— U. Here, p, denotes the arity of the operation #,.

Generally, we consider only base elements in which all
vertices are terminals. But, in this case, it follows that all
such structures decompose trivially into edges, so we can
simply take B to be a singleton consisting of K.

A decomposition tree of a k-terminal graph G is a rooted
tree with vertex labels g and /& such that

i

e g, = G if vis the root,

e i, € R if vis an interior node,

08, = h (8 Gop s &) I interior node v has chil-
dren v, v, ..., 1, and

+ g = Bif vis aleat

Decomposition trees are central to the general problem-
solving approach on k-terminal recursive graphs. Early re-
sults demonstrating this were given in Bern et al. [2] and
Wimer and Hedetniemi [14]. In the former, a general mode!
was proposed for the construction of linear-time algorithms
on recursive graph classes. Loosely stated, the tactic was
based on a homomorphism that mapped graph—subgraph
pairs to a finite number of equivalence classes; the authors
called a subgraph property or predicate regular if such a
finite homomorphism existed for the predicate P. Important
in this is that if P (e.g., vertex-edge incidence, membership,
independence) is regular, and if the decomposition tree for
a graph is available, then there exists a linear-time algorithm
for finding optimal values of the variables satisfying P using
straightforward dynamic programming.

Originally, this outcome was somewhat limited in that
the set of regular predicates was only known to be closed
under logical negation, conjunction, and disjunction. How-
ever, in Borie et al. [4], it was shown that this attribute could
be extended to include the important operations of existen-
tial and universal quantification (there are some restrictions
to the use of these quantifications, which can also be found
in Borie et al. [4]). This important extension formed the
basis for the creation of a powerful predicate calculus which
allowed concise descriptions of many well-known hard
graph problems. This essentially provided a new formal
model of linear-time computation on general recursive
graphs (other models exist as well; details are given in [4]).
Hereafter, we shall refer to this predicate calculus as the
BPT predicate calculus. Important is that the majority of
N -complete graph problems (independent set, colorings,
Hamiltonian cycle, etc.) are expressible in the BPT predi-
cate calculus and are thus solvable in linear time on recur-
sive graphs.

The BPT predicate calculus is rarely applied in practice
due to the amount of detail required. Its role is typically
existential in that if a problem is expressible accordingly
then its complexity status is settled. Typically, one can
obtain the anticipated linear-time algorithm by constructing
a small multiplication table " for each composition oper-
ation h. If G = h(G,, G,, ..., G,,), then the table exhibits
the outcome for G that corresponds to each m-tuple of
compatible subgraph property-tuples for G, G, ..., G,,.
It is then straightforward to construct the recurrence rela-

166 NETWORKS—2003

tionship and obtain the linear time algorithm by dynamic
programming. The interested reader is directed to Richey
and Parker [12] and Horton [10] for illustrations of this
strategy.

The paper is organized in the following way: The next
section establishes that OLA cannot be expressed in the
BPT calculus unless # = N®. Section 3 provides an
algorithm that solves OLA on a particular subclass of Halin
graphs. We end the paper with some concluding remarks
and some directions for further research.

2. NONEXPRESSIBILITY OF OLA

Again, so far as we know, the status of OLA on arbitrary
recursive graphs remains open. Obviously, if OLA were
expressible in a formal way such as in the BPT calculus, this
open status would be resolved (in a positive sense). But this
seems difficult to do. To establish this, we begin by exam-
ining a restricted version of OLA.

An interesting modification to OLA results if we assume
that some (possibly empty) subset V C Vis prelabeled from
integers in & C {1, 2, ..., n} and the notion now is to
label the remaining vertices in VAV with the other, “unused”
labels and to do so in an optimal way overall, given the fixed
label value imposed by the initial labeling. Calling this
version the partial optimal linear arrangement (POLA), it is
not at all clear what its status is, even for graph classes
where it is trivial to solve OLA. For example, if G is a
simple path P,, we do not know how to solve POLA, but
neither do we have an N9-hardness outcome, even though
OLA is trivial on paths. On the other hand, if we are allowed
to slightly relax the instances, then we can produce some
negative complexity results.

Theorem 1. POLA is N®-complete on multipaths, cater-
pillar trees, and a forest of paths.

The proof follows a reduction from 3-PARTITION (cf.
Garey and Johnson [8]), the details of which appear in
Horton et al. [11]. For this note, it suffices to observe that
POLA is N®-complete even if G is restricted to recursive
graphs (each of the graphs in Theorem | is a partial 2-trec).
We can now proceed to prove the main result of this section.

Theorem 2. OLA is not expressible in the BPT predicaie
caleulus unless % = NP,

Proof. Suppose to the contrary that there is a valid BPT
expression for OLA and that @ # N%. Now, this formal
expression for OLA must allow a report of an assignment of
integer labels to vertices, but this implies that the fixed
portion of an instance of POLA is also expressible in the
BPT predicate calculus. Moreover, a valid expression for
the restricted OLA instance that creates the POLA instance
is easily formed as a conjunction of the expression for OLA
and that used to state the fixed portion. Since the set of
regular predicates is closed under conjunction in the BPT

FIG. 1.

A Halin graph.

calculus, it must be that POLA is BPT-expressible and,
hence, regular, which then means that it is linear-time
solvable on recursive graph classes. But, from the result in
Theorem I, this would deny that P and N@ are different
and we have the desired contradiction. "

With a few additional restrictions, the result of Theorem
2 can be strengthened to include any such predicate calculus
that formalizes polynomial-time solutions on recursive
graph instances. The extension is straightforward and left to
the reader,

Corollary 3. [f C is a predicate calculus that allows
conjunction and any problem that is expressible in C can be
solved in polynomial time on recursive graphs, then OLA is
not expressible in C unless % = NP,)

3. A SOLUTION ON A SUBCLASS OF HALIN
GRAPHS

Halin graphs are planar graphs having the property that
their edge set E can be partitioned as £ = T"U C with T N
C =, where T is a tree and C is a cycle on only and all
of the pendant vertices of 7. A simple illustration is given
in Figure 1 (tree edges are indicated in bold).

The status of OLA on the class of Halin graphs remains
open. On the other hand, these structures are contained in
the recursive class of partial 3-trees (cf. Borie et al. [3]). In
this section, we state a procedure for solving the problem on
a restricted class of Halin graphs. Consider an easy lemma
regarding OLA on arbitrary graphs.

Lemma 4. Given G = (V, E), let G|, G,, ..., G, be
edge-disjoint subgraphs of G that partition E. Then,

m

> LG = L¥G).
i=|

A caterpillar is a tree having the property that if the
degree 1 (pendant) vertices are removed the resulting sub-
graph is a path. Now, suppose that G is a Halin graph where
T is a caterpillar. In the following, we state an algorithm for
solving OLA on these special graphs (Easton et al. [6]).

Consider the tree component 7 and label its vertices in
the following way: Find a fongest path in 7, say P, and labe]
the terminal vertices of P by | and n. We claim that the
edge set E(T)\E(P) is a collection of stars and, accordingly,
we then partition the integers {2, ...,n — 1} as {2, ...,
ki}y, {k, + Loy k) oo {k, + 1,00, n — 1} and
label each of the ¢ + 1 stars formed by E(T)\E(P) in an
optimal way with the integers in the respective components
of the stated partition. Now, with 7 labeled as described,
append E(C). We assume that the vertices on C that extend
from those labeled 1 and n are labeled in monotonic fashion.
This is a mild assumption since it requires only some care in
how the pendant vertices were labeled as part of the labeling
for 7. In any event, this induced labeling for the vertices of
C produces a total labeling for the stated graph G. We will
now show that this labeling is optimal.

Let all of the nonpendant vertices of 7" be collected in a
set 0 and denote by n, = deg(v;) — 1 the order of the ith
star formed by v; € 6 and its adjacent vertices, other than
those in 6. We have

Theorem S. Let G be a Halin graph with cycle C and tree
component T which is a caterpillar. Then, the labeling
produced by the stated algorithm is optimal for G and has
value

LYG)=3(n—-1)+ > [%J

I=i=¢

Proof. It is an casy exercise to verify that a correct
application of the algorithm yields an arrangement with the
stated value. Now, to show that no smaller value exists, let
/' be an arbitrary (but admissible) labeling of any graph G
in the specified class. Since Halin graphs are minimally
three-connected, there are three paths connecting the verti-
ces labeled 1 and » that are vertex disjoint except for the
vertices labeled 1 and n and such that one of these paths
consists entirely of edges in the tree component of G, while
the other two paths have at least one edge that is part of the
cycle component of G. Let the subgraph defined by these
three paths be G, and let G, = G\G . It is trivial to see that
degg (v) = dego(v) — 2 unless f'(v) is 1 or n, in which
case }legc2(v) = degs(v) — 3. Observe also that any
labeling of G, has value L'(G,) = 3(n — 1). In the
following, we specify two cases:

Case 1. Assume that f"(u) = | and f'(v) = n, where u or
v or both are vertices lying on the spine of the caterpillar
tree. For ease, we will consider only vertex u; the analysis
for v is identical. Let us define S, to be a star in G, with u
as the hub. Note that §,, may be a single vertex. Now, since

f) =1,

o . (= 1)n;—2)
5yl ey

I=j=n-2

L'(S,) =

NETWORKS—2003 167

18]
w
o
ot
<
—
3
—
>n
—
-~

19
1 7

FIG. 2. An optimally labeled Halin graph.

Recall that deg;(v;) — 1 = n;. Butsince u is on the spine,
there exists at least one edge in G, which is contained in the
cycle component of G. Hence, a vertex that is on the spine
and labeled 1 contributes at least

when n, = 2. Since deg(v,) = 3 for all Halin graphs, this
inequality holds in all cases specified. Thus, L'(G,)
= D=, Ln,~2/4J, and combining this with the bound value
for G, we have

LG =3n-1)+ 3 “‘J

1 =it

Case 2. Assume that f'(u) = | and f'(v) = n, where u and
v are vertices on the cycle component of G. Then, deg; (w)
= deg(w) — 2, where w is any vertex on the spine of the
caterpillar, Thus, L'(G,) = E]S[S,Ll’l?/éu, and upon ap-
pealing to Lemma 4, we see that

n;
L(G)y=3n—1)+ 2 LlJ

I=i=t

These cases account for any placement, under f', of
labels | and n on G, both yielding the same lower-bound
value. But a correct application of the stated algorithm
always produces a labeling with this value. This is enough
to establish its optimality and the proof is complete. u

In Figure 2, we exhibit a labeled graph of the prescribed
class and, accordingly, demonstrate the overall procedure
suggested above.

4. CONCLUSIONS

There are some worthwhile questions regarding OLA
and recursively constructed graphs that merit further study.

168 NETWORKS—2003

Section 2 shows that the “standard” approach to solving
graph problems on recursive structures may not work for
OLA. Consequently, future algorithms for solving OLA on
recursive graphs are likely to focus on the specific graph
structure and not a general framework. Of course, a proof
that OLA is hard on recursive graphs such as partial 2-trees
or general Halin graphs would settle much as well.

REFERENCES

[1] D. Adolphson and T.C. Hu, Optimal linear ordering, SIAM
J Appl Math 25 (1973), 403-423.

[2] M. Bern, E. Lawler, and A. Wong, Linear time computation
of optimal subgraphs of decomposable graphs, J Alg 8
(1987), 216-235.

[3] R.B. Borie, R.G. Parker, and C.A. Tovey, Deterministic
decomposition of recursive graph classes, SIAM J Discr
Math 4 (1991), 481-501.

[4] R.B. Borie, R.G. Parker, and C.A. Tovey, Automatic gen-
eration of linear-time algorithms from predicate calculus
descriptions of problems on recursively constructed graph
families, Algorithmica 7 (1992), 555-581.

5] F.R.K. Chung, On optimal linear arrangements of trees,
Comp Maths Appl 10 (1984), 43-60.

[6] T.Easton, S.B. Horton, and R.G. Parker, A solvable case of
the linear arrangement problem on Halin graphs, Cong Num
119 (1996), 3-17.

[71 G.N. Frederickson and S.E. Hambrusch, Planar linear ar-
rangements of outerplanar graphs, IEEE Trans Circuits Syst
35 (1988), 323-332.

[8] M.R. Garey and D.S. Johnson, Computers and intractability,
W .H. Freeman, San Francisco, 1979.

[9] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some sim-
plified N®-complete graph problems, Theor Comput Sci |
(1976), 237-267.

[10] S.B. Horton, The optimal linear arrangement problem: ‘al-
gorithms and approximation, Ph.D. Thesis, School of In-
dustrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, 1997.

[11] S.B. Horton, T. Easton, and R.G. Parker, On the complexity
of certain completion problems, Cong Num 145 (2000),
9-31.

[12] M.B. Richey and R.G. Parker, On finding spanning eulerian
subgraphs, Nav Res Log Q 32 (1985), 443-455.

[13] Y. Shiloach, A minimum linear arrangement algorithm for
undirected trees, SIAM J Comput 8 (1979), 15-32.

[14] T.V. Wimer and S.T. Hedetniemi, K-terminal recursive
families of graphs, Proc 250th Anniversary Conf on Graph
Theory, Ft. Wayne, IN, 1986, Cong Num 63 (1988), 161-
176.

