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SUMMARY

Given afinitegrgoh G = (V, E) of order n, the optimd linear arrangement problem

(OLA) seeksavertex labding f:V ® {12,...,n} suchthat & |f(u)- f(v)| isminimum

(uWTE
over dl such labelings. The problem ishard in generd but is known to be solved in certain
gpecia cases among which are paths, cycles, trees, and outerplanar graphs. After asurvey of
what is known about OLA aswell as about variations such as minimum bandwidth and other
“p-sum” problems; this thesis describes new dgorithms for OLA on other graph classes.
Severd bounds on the cost of arrangements as well as anew agorithm for calculating one of
these bounds for recursvely constructed graphs are examined. Various heuristic procedures for
OLA are a0 discussed, both from the literature as well as new ones resulting from this

research. The thesis concludes with some directions for further research.



CHAPTER |

INTRODUCTION

1.1 Definitions and Status of OL A and Rdated Problems

Givenagraph G = (V,E), an optimal linear arrangement is a one-to-one function

f:V® {12,...,V}} suchtha & |f(u)- f(v) isminimized. For ease, we shdl denotethe

(UWTE
problem of finding such alabeling by “OLA”. The related decison problem is NP-Complete
for arbitrary graphs but efficiently solvable for certain restricted graph classes[17], [18]. Inthis
chapter, we describe what is known about OLA and introduce a new problem that is related to
linear arrangement. In Chapter I1, we present anew class of graphswhere OLA can be solved.
Chapter 111 presents theoretica methods for providing bounds on the cost of linear
arrangements while in Chapter IV we demonstrate how certain of these bounds can be
employed to find good arrangements for a class of graphs. We then show how these bounds
can be efficiently caculated for any graph belonging to arecursvely congtructed family.
Chapter V addresses the notion of gpproximation by investigating heuristicsfor OLA. We
conclude with Chapter VI which describes some directions for further research.

OLA iseasy to formulate. Letting



_11if vertex i takeslabel k
10 otherwise

Xik

the formulation

.. . [¢]
minimize @ X, X;|K - ||
(i) E

subjectto § X, =1 & X, =1 andx, 1 {03}"ik (11)

iTv ki{12,.Jv|}

provides a suitable description. Of course the modd in (1.1) is a quadratic assgnment problem
which isaso hard.

The primary gpplications of the linear arrangement problem arein the area of circuit
design and circuit layout. Here, we are concerned with the optimal placement of pinson a
circuit board. The pins are represented by vertices, the locations on the circuit board are the
labels, and the tota wire length required to connect the pins appropriately is represented by the
objective function.

There are interesting variations on the linear arrangement theme. For example, rather

thenminimizing & |f(u)- f(v)|, the objective function could be  § (| (u) - f(v))°

(uwTE (uwTE

where p1 (0,¥). Of course, for p =1 thisis smply the standard problem. However, for



p =¥ theproblem isknown as bandwidth and accordingly, we seek alabeling that minimizes
the largest edge cost. The bandwidth problem is also NP-Hard, and remains so even when the
input graph is atree having maximum degree 3 [17]. Although there are referencesin the
literature that informally treet the generdization shown for other vaues of p (specificaly for

p=2 [4],[26], [27] and for O < p <1 [28]), the complexity status of these so-called
minimum-p-sum problems remainsopen for p 1 {1,¥} [26].

In the standard version of OLA, vertices are embedded intheline, {12,... [} .
Another varidion isto embed the vertices of agraph G inad-dimensiond grid. The objective
function is then some measure of the distance between the rdlevant points. In this case, any
norm could be used aswell. For example, under the |, norm, if d =2 and two vertices that

are adjacent in G are embedded at (0,0) and (3,4), then the “vaue’ that edge contributes to the

total arrangement cost would be J(S- 0)>+(4- 0)* =5.
There are other extensions and modifications to the basic problem. For example,

weights can be added to the edges, changing the objective functionto  § w,|f (u) - f(v)|.

W E
The problem can aso be examined on hypergraphs, dlowing an edge to “connect” more than
two vertices. Thisvariant has substantia application to VLS and circuit layout problems.
Findly, an interesting modification alows an ingance of the problem to be defined by a“partid

arangement.” That is, Some vertices may have their labels under f fixed and theamisto



minimize the stlandard objective function subject to these fixed labels. Thistopic isaddressed in

section 1.3.

1.2 Casess Where OLA(G) isKnown

The linear arrangement problem is solved for anumber of graph classes. Let us usethe

notation s (G, f) to represent the cost of alabding f. That is

s(G,f)= alf- fw)

(uVI E

We then express the objective function value as

OLA(G) = min, s (G,f) =s (G) =min, §|f(u)- f(v).

(uvIE

First we consder thetrivial case where the grgph isapath on n vertices, P,. The
labdling f theat minimizes s (P,, f) isobvious, amply take any monotonic ordering along the
path. For each n there are exactly two such orderingsand OLA(G) =n- 1.When G isa
cycleon n vertices, C,, optima labelings are more numerous but just astrivia to determine.

The labels 1 and n can be assgned anywhere, and then any assgnment of the remaining labds

that is monotonically increasing aong both paths from 1 to n will be optimal. There are n2™ 2



such labelingsand OLA(C,) =2(n- 1). Inthe case of the complete graph K, the problemiis

_ (n- Yn(n+1)

. Trividly, this
6 y

without interest. All n! labelings are optimal and OLA(K,,)

vaue yieds an upper bound on OLA(G) for any smplegraph G of order n.
A star on n vertices, S, isagraph with ahub vertex of degree n- 1 and n- 1
pendants each adjacent to the hub. Ecquivdently, S, = K, ., wherethelatter isthe complete

bipartitegraph of order 1° n- 1. A gar on 5 vertices gppearsin Figure 1.1 below. When G

isastar on n vertices for n odd, the optima labeling fixes the labd n7+1 on the hub and assigns

the pendants the remaining labels. If niseven, ether g or 2+1 can be assigned to the hub

vertex and again the pendants are assgned the remaining labels. In ether case, itisshownin

2 -

(D: D
D
o\ C

[10] that OLA(S,) = &

Figure 1.1 TheGraph S



A wheel on n vertices, W, , isagtar with acycle onits pendants. If G isawhed and H
isits underlying star subgraph, then alabeling f thet minimizess (H, f) aso minimizes
s (G, f), subject to the placement of the pendant labelsin away that minimizes the cycle cogt.

Thisfact is established formaly in Chapter 11 where amore generd result is proved for aclass
of Halin graphs that contains all wheds. By combining results above for stars and cycles, we

havethat if G isawhed on n vertices, then

2

[0

n

s

OLAW,) = 82+ 2(n- 3.
u

This concept of finding optima arrangements of graphs by decomposing them into smaller
pieces is arecurring theme of this dissertation and will gppear again in subsequent chapters.
Another class of graphs for which OLA is solved is complete bipartite graphs. We use

the standard notation of K . to denote the complete bipartite graph with m verticesin one

component of the bipartition and n in the other. Juvan and Mohar show in [26] that for m3 n,

I—(Bm +6m - n” +4), if m+niseven, and
OLA(K,,,) =
%1—2(3m2 +6mn - n? +1), if m+nisodd.

Note that OLA remains hard for arbitrary bipartite graphs [17].



OLA has dso been solved when G isatree following agorithms of Adolphson and Hu
[1], Goldberg and Klipker [20], Shiloach [34], and Chung [11]. Among these, Chung's
agorithm has the best time complexity to date; it solves the problem on treesin O(n') time

where | isany red number satisfying

IogB
log2

@1585.
Frederickson and Hambrusch [16] have given an dgorithm that solves OLA when G is
outerplanar. Recall that outerplanar graphs are characterized by the absence of subgraphs

homeomorphicto K, and K, ;. Topologicaly, these are structures embeddable in the plane in
such away that dl verticeslie on the outer face. Some examplesare shown in Figure 1.2, In
particular, the Frederickson and Hambrusch agorithm solves OLA on outerplanar graphsin

time O(d*n+n?), where d isthe number of biconnected components containing a central

aticulation point a”. A centra articulation point is a vertex the removal of which resultsin

N( )

connected components with at most ——— verticeseach. The graph in the lower right portion

of Figure 1.2 has a central articulation point a” and d = 3.



Figure 1.2 Some Outerplanar Graphs




Findly, consider the cases of the grid graph (dso known as the lattice graph) and the
discretetorus. Firgt, the mby ngrid graphisagraph G=(V,E) where
V={i"j"1£i£m1£ j£n} and ((i,]).(k,))T E whenever (i=k and j+1=1)or
(j=1andi+1l=k). Themby ndiscretetorusisagraph G=(V,E) where
V={i"j'1Ei£m1£ j£n} and ((i,]),(k,1))T E whenever (i = k and
j+1° 1 modn)or (j =1 andi+1° k modm). Weshdl usenotation G, , ad T_ ,,

respectively, to denote these graphs. Figure 1.3 below shows G, ontheleft and T, onthe

right. Ineach case, OLA is solved following an agorithm of Muradyan and Filipogan [29].

HONPSINONININ
oo eteieies
Coieleleieles
Coteleleieies

B e
e leleleleles

VALVIRVIAVERVIRV)

Figure 1.3 G;, and Tgg

For each of the previousinteresting cases (i.e., K, trees, outerplanar graphs, G, ,
and T, ) we have chosen to omit detalls of how to actualy order the respective graphs.

Rather, the interested reader isinvited to consult the Sated references. Although the optimal

ordering dtrategy isin a sense sraightforward for these cases, they are dl nontriviad.



Furthermore, these Strategies can differ between ingtances sgnificantly, giving each solution
technique a somewhat ad-hoc flavor.

In the next chapter, we will solve OLA on a class of graphs not heretofore consdered.
It will be evident that this solution aso relies heavily on the specid dructure of the given dass of

graphs. Now we turn our attention to some complexity issues concerning OLA.

1.3 Complexity | ssues

As gtated at the outset of this chapter, the decison version of OLA iswell known to be
NP-Complete. Presently, we provide additiond insght that suggests that the problemisin
some sense even more difficult than NP-Completeness dlone would indicate. First, we present
some background.

A great variety of graph problems that are NP-Complete/Hard for arbitrary graphs are
efficiently solvable on restricted graph classes. Some of these classes are interesting, some are
lesss0. Redtive to the former, much work has been done establishing fast (often linear)
agorithms, when instances are retricted to members of arecursively constructed graph class.
Among these are trees, series-pardld graphs, Hain grephs, and partid k-trees. Moreover,
work inthisareaiisfarly refined, even to the point that various forma models have been
developed that show how these efficient dgorithms can be obtained.

One such formdization appearsin Borie, Parker, and Tovey [8]. Establishedisa

predicate caculusin which many NP-Complete graph problems can be expressed. Thisis

10



important, for it is then shown that any problem so expressible has alinear time agorithm that
can be generated from the expresson automatically. For example, it is straightforward to
express the well-known VERTEX COVER problem in the predicate caculus. Recall that the

|atter seeks, for agraph G = (V, E) , asmalest subset V, | V such that for each edge
{uv}T E, atlesstoneof uandv bedongsto V,. Importantly, this problem can be stated

succinctly in the predicate caculus as

minlV,| (" e)($v, T V,)(Inc(v,.€)).

As suggested, the referenced paper describes how the formulation of thislegd expresson leads
to alinear time dgorithm for VERTEX COVER on any recursvely constructed graph. Now,
the key observation isthat a great variety of hard problems can be expressed in this caculus
and are therefore solvable in linear time on these graphs. A ligt of such problemsincludes
DOMINATING SET, HAMILTONIAN CYCLE, EULERIAN SUBGRAPH, K-
COLORABILITY and MAXIMAL MATCHING.

Infact it isan exercise to find interesting problems that are not known to be expressible
inthis predicate calculus. However, there are certain ones that are notorioudy resstant in this
regard: OLA, BANDWIDTH and other so-called vertex labdling problems. So far aswe
know, these problems are not known to be expressible in the calculus. Of course, at least for

BANDWIDTH thisis conastent since the latter is known to be hard on trees. In any event, if

11



OLA were shown to be expressible, its status on dl recursive graph classes would be resolved.
Thefact thet it is not known to be expressble preserves its satus (at least circumgantidly) asa

problem residing at the “periphery” of the complexity hierarchy.

1.4 Redtricted Arrangement

Regarding the notion of problem complexity, the present work has adso exposed a
particularly interesting albeit dightly modified verson of the primary problem. For ease, we
might cdl thisverson the partial OLA problem where now we assume that as part of the
instance, some (possibly empty) subset of vertices have been labeled and the am isto map the

remaining labds (from {1,2,...,n} ) to the other vertices and to do so in an optima way overdl,

given the congraints imposed by theinitidly fixed labels. Indeed, it is not clear that even for
graph classes where OLA is solved, that this modified version would submit aswell. In fact, for
other problems, we know that analogous “completion” problems are, in fact, hard. Classicin
thisregard is the so-called 4-COLOR COMPLETION problem on planar graphs. Wl
known, of course, isthat 4-COLORABILITY isdecidable (trivialy) on planar graphs,
however, if vertices (of aplanar graph) are preassgned any of at most four colors, deciding if
the remaining vertices of the graph can be properly colored using no more than four colors
overdl isNP-Complete. The proof of thisis only an exercise; the reduction is from planar
graph 3-COLORABILITY. Asaconsequence, it seems worthwhile to consder the

aforementioned modification to OLA.



Presently, the status of the partid OLA problem defined above on even primitive grgph
classes such as pathsis not clear to us. One specid caseis easy, however. Let uscal avertex
“fixed” if itslabd is given as part of the instance and “freg’ otherwise. Now consder the path
onnvertices, P,. If the set of fixed verticesis such that no free vertex is adjacent to another
free vertex, then our partiad OLA problem can be easily solved by weighted bipartite matching.
We smply form a(complete) bipartite grgph G = (A, B,E) where A denotes the st of free
verticesof P, and B, the st of available labels (those not used to labdl fixed vertices). Now
foril Aand jI B,let w; betheweight onedge (i, ). Wesimply let that weight be the
arrangement cogt of placing labd j in“ha€’ i.

If we are less redtrictive and dlow G to be a collection of disconnected components yet

gtill requiring each component to be a path, then we can obtain (abeit negative) aresult for

partid OLA. Condder the problem Psp Stated below.

Pra: Givenagrgph G = (V, E) whichisadigoint union of paths, an integer k, and a

subset V |V that hasfixed labds, is OLA(G) £ k ?

In this section when we say OLA(G) we mean the optima arrangement cost subject to the
conditionsimposed by any fixed labels. Obvioudy, OLA istrividly solvedif V = /E;

otherwise, its status changes. We have

13



Theorem 1.1: P-a is NP-Complete.

Proof: Peaisdearly in NP, given G and alabding it is easy to vertify that OLA(G) £k .
Now we show that Psp 1 Pea Where Psp is the (strong sense) NP-Complete 3-PARTITION

problem, the statement of which appears below.

Psp: Given asat A of 3m eements, an integer bound B, and an integer Size S(a) for each

al A suchtha B/4 < g(a) < B/2 andsuchtha § s(a) = mB, can A be partitioned

al A

intom digoint sts A, A,,..., A suchthatfor 1£i £m, § s(a) = B?
al A

From an ingtance of Psp we create an instance of Pra asfollows. Let k =2m(B- 1). The

graph G conggsof adigoint union of 3m+1 paths. The first 3m paths correspond to the

dementsof A and havelength s(a) foreach al A. Thelast pah haslength m+ 1, and each
vertex inthis path has afixed labd. Theith vertex inthispath haslabe 1+i(B+1). An
example of this congruction with A={5,5,5,5,6,7,7,8,9} , m=3, and B=19 appearsin Figure 1.4

below. The vertices with fixed |abels are shown as squares with their respective labds insde.

14



Figure 1.4 Partid OLA Ingtance G

(P ) Supposethere exigts a suitable partition in our ingtance of Psp. Among the integers from
1to 1+ m(B +1) inclusive, there are m groups of B consecutive integers that are not used as
fixed labels. Now we use agroup of B consecutive integersto label the B verticesof G

corresponding to some A . We labd these three pathsin the obvious optimal way, incurring a

costof g (5(@)- 1). Wedo thisfor each of them A s Thisnow completelabeling hasa
al A

total cost of

é(s(a)- 1)+m(B+]):mB- 3m+m(B+1) =2m(B- 1)

al A

15



so0 OLA(G) £ k asrequired. Figure 1.5 shows a complete labeling using the data from our

previous example.

3 8@ 230 430 230 430 550 340 13
4 9@ 24 40 29 490 56 %@ 14
5@ 100 5@ 45@ IO 500 57® %O 15
6@ 110 26@ 4@ 31@ 51@ 3@ 337@® 16

2O 520 500 33O 17
5@ ¢® 9@ 18

Figure1.5 Optima Labeling of G

(U ) Now suppose G can belabeled so that OLA(G) £ k . Wewill show thisis possible only

when there is a suitable partition in Pse. First note that

OLA(G)2 m(B+1)+§ (s(a)- ) =m(B+1) +mB- 3m=k

al A

so we can assume OLA (G) = k. Fird note that the path with partid abelsis completely

labeled, and the cogt for thislabeling is m(B +1) . Also note that every other pathin G

16



correspondingto al A must belabeed using s(a) consecutiveintegersif OLA(G) = Kk isto
be achieved. But sincethe partid labeling leaves “blocks’ of B consecutive integers, it is clear
that OLA (G) = k can only happen if there is a suitable partition in the instance of Psp.

Corollary 1.1: Poa remains hard even when the subset V' of fixed labels is confined to only one

component of G.

Findly, we consder what might be viewed as a supergraph version of the partid OLA

theme.

Peas: Givenagraph G = (V, E) tha isadigoint union of paths, an integer k, and a
subset VV |V that hasfixed labds, is G aspanning subgraph of a connected graph

G(=(V,E( suchtha OLA(G() £k ?

Theorem 1.2: Peas is NP-Complete.

Proof: Ppas isdearly in NP; given G ¢ and alabdling it is essy to vertify that G| G¢ and
OLA(G( £ k. Now we show that Psp 1 Pras. From an instance of Psp we create an

indance of Pras asfollows. Let k = m(2B + 1) . Thegraph G conggs of adigoint union of

17



3m+1 paths. Thefirst 3m paths correspond to the elements of A and havelength s(a) - 1 for
each al A. Thelast pah haslength 1+ m(B +1). Thislast path has m+1 fixed labels. The
ith vertex inthispath haslabel 1+i(B+1) . Anexample of this congruction with
A={5,5,5,5,6,7,7,8,9} , m=3, and B=19 appearsin Figure 1.6 below. The vertices with fixed

labels are shown as squares with their respective labelsingde.

Figure 1.6 Partid OLA Ingtance G for Ppas

(P ) Supposethere exists a suitable partition in our ingtance of Pse. Thenfor each A we
connect one end vertex of each path correspondingto al A to one of the three unlabeled
verticesin asegment of the partialy labeled path of G that is between labeled vertices. Figure
1.7 displays this condtruction of G ¢. Inthiscase A, ={5,7,7} , A, ={55,9}, and

A, ={56,8} . Notethat the paths are grouped based on the partitions for clarity.

18



Figure1l.7 G¢

Now it iseasy to seethat for esch A we can use the m integer labels available between each

fixed labd tolabd G ¢ optimaly. Each vertical section gets labeled monotonicaly with
consecutive integers. Figure 1.8 shows how the first ssgment is done; the others are donein

exactly the same way.

19



3 8 15
4 9 16
5 10 17
6 11 ik
12 19
13 20

Figure 1.8 Optimd Labeling of G (¢

Now it is clear that this labeling has cost

1+mB+1)-1+§ s@ =m(B+1) +mB=m(2B+1) =k.

al A
(U ) Now suppose G isaspanning subgraph of a connected graph G« = (V, E() with

OLA(G( £ k. Wewill show thisis passble only when thereis a suitable partition in Pap.

Firs note that

OLA(G)3 m(B+1)+§ (s(a)- 1) =m(B+1) +mB - 3m

al A
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and that since we must add at least 3m edgesto G each “costing” at least 1 to obtain G,

OLA(G() 3 OLA(G)+3m3 m(B+1)+mB- 3m+3m=k

S0 we can assume OLA (G() = k. Notethat if monotonicity isviolated in any segment of the

partidly labeed path of G, or if any “verticd” edge of G ¢ costs more than 1, we cannot
achieve OLA(G() = k. Therefore, OLA(G() = k can only happen if paths whose tota
number of verticesis exactly B-3 are added to each segment of the partidly labeed path.
Otherwise, some segment must have more vertices “assgned”, and with the three vertices from
the partialy labeed path, brings the total number of vertices requiring labels between two
suare verticesto more than B. But then some vertex in this segment must get alabd that is not
between the |abel s of the bordering square vertices (Snce only B such labels are avallable), and
the aforementioned conditionsfor OLA (G () = k to hold cannot be satisfied. Thus, each
segment gets assigned paths whose total number of verticesis exactly B-3, and this corresponds

to asuitable partition in Psp.

Corollary 1.2: Pea, remains hard even when the subset V' of fixed labesis confined to only

one component of G.
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CHAPTER I

OLA ON A CLASSOF HALIN GRAPHS

Halin graphs are planar graphs of order n > 3 with the property that the edge set can
be partitioned into atree no vertex of which has degree 2 and acycle C on only and dl pendant
vertices of thetree. These structureswere firgt studied by R. Halin in [21] as representative of a
dass of minimdly 3-connected graphs. So far as we know, the status of OLA on arbitrary
Halin graphs remains open. On the other hand, we will show here that it can be solved by afast
agorithm on the subclass of Halin graphs where the underlying treeisacaterpillar i.e., atree
such that the remova of degree-1 vertices leaves apath. Representative of this set of restricted

Hdin graphsis the sructure shown in Figure 2.1 below. The caterpillar is given in bold.

Figure 2.1: Hain Gragph with Tree Component a Caterpillar

2.1 OLA on Arbitrary Caterpillars




Following, we give an dgorithm for solving OLA on the specid tree class of
caerpillars. Asit turns out, thisisactudly dl that we need in order to solve the problem on the
corresponding Halin greph. First, we state some well-known properties (for example, see
Chung [11]) of optimal linear arrangements on arbitrary trees. Observe that we denote the

vertex and edge sets of agraph G by V(G) and E(G) respectively.

Property 1. Anoptimal linear arangement, f* of atree T, maps V(T) onto a set of

consecutive integers.

(We will hereafter assume thet vertex labels are drawn from the integers {1,2,...,n} )

Property 2. Theverticesuandv with f "(u) and f " (v) labeled as 1 and n respectively are
both pendants, i.e., deg(u) = deg(v) = 1.

Property 3. Let P bethepathin T which connects the pendants labeled 1 and n. Denote P

by {ig,i;,....i,} . Thenthelabelingsof P are“monotone’ in that

f°G.)< (., for i=0L..t-1,
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or

f°G,)>f (i,.,) for i=0L...t-1

The next property is pecific to caterpillars.

Property 4. Suppose P isa path connecting apair of pendantsin T and moreover, let thisbea
longest pathin T. Thenthegraphformed by E(T) \ E(P) isavertex digoint collection of

dars each of whichislabeed by consecutive integers.

Notethat, necessarily, the path P just described will include every vertex on the spine of the
caerpillar, i.e., dl verticeswith degree at least two in T.
Following, we gtate an easy lemma which establishes alower bound on the

vadues (T, f) of any labding f of acaterpillar T and hence for the value of an optimd labdling
S(T) =min,{s (T, f)} . Wethen sate an equaly smple agorithm for labeling the vertices of

acaterpillar which achievesthis vadue and isthus optima. We have
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Lemma21. Let T beanarbitrary caterpillar on nverticesand denoteby h,, i =1.2,...,t , the

vertices on the spine of the underlying path P of the caterpillar. Then

t A 27
s(T.f)sn-1+5 8- o
i=1 @ 4 u

Proof: Congder any labding f of T. Itiseasy to seethat the pathfrom f (i) =1to f(j) =n

inT hasvaueat leest n- 1. Now, if the edges of this path are removed from T then the
subgraph of T that results can be expressed as a (not necessarily vertex digoint) union of a

most t stars each with order at least deg(h) - 1. But the value of an optima labding of astar
of order p iswell known to be gp? /40 and we are done.

We now date an agorithm for OLA on caterpillars. First, denoting the caterpillar by T,
wefind apath P in T as defined in Property 4. Next, labd the end vertices of P with labels 1
and n, respectively. Now, partition theintegers {2,3,...,n- 1} as{2,...,k},{k, +1...,k,},
1Ky +1...,n- T andlabel each of the g+1 starsformed by E(T) \ E(P) inanoptimd
way with the integers in the respective components of the stated partition.

Clearly, the labding of the verticesin P satisfies the monotonicity attribute of Property 3

and, moreover, hasavdue of exactly n- 1. Each of the sarsformed by theremova of E(P)

25



are labeled by consecutive integers and the labeling is optimd in each case. (Note that the
optimal labeling of sarsiswell known and we take no space here for a description of the
drategy.) We have then that the vaue of the totdl labeling is exactly the bound vaue of the
lemmaand isthus optimd.

We can demondtrate the procedure by operating on the tree portion (in bold) of the
instance from Figure 2.1. Accordingly, let us select an gppropriate pair of pendants and |abel
these 1 and n as indicated in the upper left of Figure 2.2. Removad of the edges on the path
connecting these vertices leaves the forest of stars shown in the upper right portion of the figure.

These stars are then labeled as suggested above.

9111217

PR VI

14 15 16

2 3 6 9 11 12 17

5 8 14 15 16 20

Figure2.2: OLA on aCaterpillar

2.2 A Solvable Case of OLA on Halin Graphs
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We are now in apogtion to establish that OLA is solved for the class of Halin graphs
where the tree component of the decomposition isacaterpillar. In fact, the dgorithm is aready
a hand: we smply solve OLA on the caterpillar with the cycle [abeling induced directly by the
labeling of the pendants of the caterpillar. The bottom graph in Figure 2.2 illudtrates the notion.
Note that in this regard, some care isrequired in labeling the pendants of each star. Specificdly,
we want the induced labeling on the cycle to be such that the labe monotonicity property is
satisfied for each of the two paths (defining the cycle) connecting verticeslabeled 1 and n. For
agiven embedding of gars, thisisatrivid task.

We now establish that this overall Strategy is correct. Let usbegin with apair of

results, the first of which is easy (and appliesto any graph).

Lemma2.2: Let G beafinitegraphandlet G*,G?,...,G* beany st of edge-digoint

subgraphsof G. Then

s(G)3 s (G') fordl Si {12,...,k}.

ims
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That is, the value of an optimd labeling for G is a least aslarge as the sum of the optimd vaues
for independent labelings on subgraphs of G. This sum is defined over any set of subgraphs;

clearly it is srengthened by judicious choices of the latter.

The next lemmais particularly important and is specific to the stated class of Hdin

graphs.

Lemma 2.3: Let G beaHdin graph with cycde C and tree component T which is a caterpillar.

Then for any labeling f (including an optimd one),

D: >
09
O C

s(G,f)3 3(n-1)+é)t[

i=1 €

where n, denotes the order of theith star defined as per Lemma 2.1.

Proof: Suppose the instance is defined on graph G and that the labding agorithm has been

applied reaulting in f(G). We consider two cases. (1) where verticesu and v with f(u) = 1 and

f(v) =naein V(C) but a least oneisnot avertex on alongest pahin T;

(2) where given u and/or v labeled as 1 and n islare nonpendant verticesin T, i.e., notin V(C).
Consder case (1) first. Since Halin graphs are 3-connected, there must exist in G three

internally vertex-digoint paths connecting every pair of distinct vertices. But any path with
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termini labeled assay x and y hasvaueaat leest |x - y| and if thelabels on the path satisfy

Property 3, thisvaue will be exact. Hence, G will have at least one subgraph congsting of the
stated three paths connecting the vertices labeled 1 and n and this subgraph has tota |abel vaue

a least 3(n- 1). Now, remove this subgraph from G and denote theresult by Gd. Thenthe

degree of each vertex on the spine of T is reduced by either 2 or 0. But then each of the Sars
described in the proof of Lemma 1 is elther isomorphic to acomponent in G ¢ or isisomorphic
to asubgraph of acomponent in G ¢. In ether case, we have from Lemma2 that s (G() isa
least aslarge as the optima vaues of labelings of the ars. Adding thisvalueto 3(n- 1)
produces the bound of the lemma.

Now, consider case (2). Here, we assume that one or both of the vertices u and v with
f(u) = 1 and f(v) = n are not pendant verticesin T. For ease, we will consider only the case of
the vertex labeled 1; the case for only n aswell asfor both can be treated in identical fashion
and are not presented here. Now, the same argument regarding the formation of G ¢ can be
employed where the aforementioned 3- path subgraph, when removed, contributes at least
3(n- 1) asbefore. But now the vertex onthe spine of T which islabeled 1 hasits degree
reduced by 3. However, in comparing thetotd label vdue of G ¢, we need only examine the
effect of the stated degree reduction at the vertex with labdl 1. Inthisregard, it is easy to see
that G ¢ contains edge-digoint subgraphs that are either isomorphic to, or that require a least
the label vaue of the stars defined earlier, or else G ¢ will contain astar of order one less but

which, by hypothess, hasits hub vertex |abd fixed a 1, in turn yielding a grester overdl label
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t
vaue than that of an optima star of order one greater. Indl cases, G ¢ codts at least é

i=1 €
and again, we have produced the stated bound. These are the only cases we need to consider

and the proof is complete.

For ease, both cases described in the proof of Lemma 2.3 are demonstrated in Figure
2.3. At thetop right in the figure, we show the stars that result vis-a-vis the gpplication of the
proposed dgorithm and specificdly relative to the labeling of the caterpillar. For reference, let
us code these by the letters a, b, ¢, d, and e asindicated. Now, case 1 is demondirated at the
middle/bottom left where both vertices [abeled by 1 and n are on the cycle but not astermini of
alongest path in the caterpillar. The subgraph in bold represents a choice of three vertex-
digoint paths connecting the vertices labeled 1 and n; itsremovd, yidding G ¢ is shown directly
below. Further, subgraphsof G ¢ which areisomorphic to the respective stars above are
denoted as indicated.

For case 2, we will demongrate apair of possbilities for the sake of clarification. The
first, which we denote by subcase 2.1, assumes alabd of 1 at a nonpendant vertex of the

caterpillar (with the vertex labeed n on the cycle as shown). Again, the subgraph of 1



d (inside curve)

b ¢
e (right
> of curve)
casel

b C (single edge)

a ’ q
Ii.
-
subcase 2.1
20
d
a b ¢ e
subcase 2.2

20

Figure 2.3: Cases Described in Proof of Lemma 2.3
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to n pathsis denoted in bold and G ¢ isgiven below. Ingructive hereisthat rdative to the
given vertex labeed 1, the concomitant remova of itsincident edges diminates all of the star
specified as component ¢ a thetop. However, it must be that somewhereedsein G (thereisa
subgraph isomorphic to ¢ (in this case, an edge) and so that the result of Lemma 2.2 is
goplicable. Such an dternative is shown in the figure. On the other hand, the subcase 2.2
shows the outcome when the labdl 1 is assigned to a high degree, nonpendantvertex of the
caterpillar. Here, when G ¢ isformed, a gar isleft having hub-vertex of degree 4 and
moreover, thereis no subgraph (anywherein G ¢) whichisisomorphic to d at the top.
However, since the hub of the star formed relativeto G ¢ haslabd 1, no labding of its adjacent
vertices can result in avaue overdl that is Strictly better than the optima |abeling of the star of
order 6 shown by component d above. Indeed, this outcome generalizes to any pair of sars,
one of order t and the other of t +1 for dl t greater than 3. (Observe that orderslessthan this
leave edges or paths of length two and the argument for case 2.1 gpplies))

We now come to the desired result.

Theorem 2.1: Let G beaHalin graph with cycle C and tree component T whichisa

caterpillar. Then,

f°(T) = f*(G) wheres (G) =s (T) +2(n- 1)
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(i.e., the pendant |abds rdlative to T reman optimd when E(C) are appended).

Proof: Theresult of Lemma 2.3 specifies alower bound on the cost of any labeling
which most surely holds for an optimal one. Moreover, the gpplication of the stated

agorithm will dways produce alabding with exactly thisvaue and is thus optima.

Theorem 2.1 sttles the question of OLA on Hdin graphs with tree component a
caterpillar. Asindicated in the beginning of this chapter, OLA for arbitrary Halin graphs remains
open. However, we note that Halin graphs are contained in the class of partial 3-trees, a
recursively congtructed graph class[9]. The rdlevance of thiswill become clear in Chapter 1V.

Next, we turn our attention to finding bounds on the cost of linear arrangements.



CHAPTER I11

BOUNDS ON ARRANGEMENT COSTS

In this chapter, we examine some gpproaches for obtaining bounds on the cost of
arangements. Aswe shdl obsarve, there is substantid variability in the strength of the various

bounds.

3.1 A Survey of Known Boundsfor OLA

We begin with some smpleidess. Certainly, we can dways assumethat G is
connected since otherwise we can consder the problem on the connected components of G

separately. The most obvious bounds for a connected graph on n vertices are asfollows:

(n- Hn(n+12)
6

n-1£s(G,f) £
The lower bound follows since the contribution of each edgeto s (G, f) must beat least 1,
while the upper bound results from the cost for a clique (see Chapter 1).
A dightly more interesting bound can be obtained from the degree sequence of the

graph. Letting d,,d,,...,d, denote the degree sequence of G, then we have



n A +12l:l
3 eeéjz % %EOLA(G).

To seethis, observe that the edges incident to a vertex of degree k must contribute at least

A

2
?éé%l% Gtos (G, f) (recal the discussion of OLA (S,) givenin Chapter I). But summing
)

over al vertices counts each edge exactly twice, and we have the ratio shown.

Juvan and Mohar [26] exhibit a number of interesting bounds for OLA aswell asfor the
minimum-2-sum and bandwidth problems. Let D(G) be the n by n matrix with the degree of
vertex i intheith row, ith column and zeros dsawhere. Let A(G) be the adjacency matrix of G
witha, =1if (i,j) | E and zero otherwise. Then L(G) = D(G)- A(G) isdefined asthe
Laplacian matrix of G. Theegenvauesof L(G) are called the Laplacian eigenvalues of G.

They are normally ordered and denoted by
| (G)EI ,(G)E...£]1 ,(G).

It is easy to show that L(G) is a pogtive semidefinite matrix, and so it has only readl nonnegative

egenvaues. Itiswel known that the multiplicity of 0 asan eigenvadue of L(G) isequd to the



number of componentsof G, so it isadwaysthe casethat | ,(G) = 0. Accordingly, most of the

boundsin[26] use | , (G), the second smalest eigenvalue. One of theseis

n®-1 n®-1
£s(G,HEI (G .
5 (G, )£l (G) 5

1,(G)

Notice that this expression bounds the vaue of any labeling from both above and below;
OLA(G) dsofals between these bounds. Since OLA(G) minimizes s (G, f) the lower bound
vaueisin some sense more useful. Asapractical matter however thisvaueistypicaly quite
distant from OLA(G). Table 3.1 displays some instance graphs adong with the bounds

indicated. H,, isthe Hdin grgph shown in Figure 2.1.

Table 3.1 Some Example Graphs

1,2t | OLA(G) | | (g nZE; !
Po 1.62 9 64.38
Pss 1.64 24 414.36
C, 6.30 18 66
Cys 6.53 48 414.36
W 2422 43 165
W, 111.09 204 2600
Ko | 1040 | 1230 | 2600
H,. | 1649 75 | 55220




3.2 Bounds Based on Cut Sets

In this section, we consder more interesting (and generdly stronger) bounds on
OLA(G) that are based on the Sizes of certain cut setsin G. The concepts that lead to our
formdizaionsin this section are not new, but have gppeared in the literature in various forms for
severa decades. Harper [23] appearsto be the first to present these ideas, but other
researchers (for example, see Adolphson and Hu [1], Bezrukov [3], and Liu and Vanndlli [27])
have made contributionsin this areaas well. Following, we present our version of the cut set

bound concept and proofs of the relevant theorems.

First, we provide some notation and definitions. Let ¢( A, A) denote the number of

edgesin G from verticesin A toverticesin A (i.e, V \ A). Thenwe define

s, =ming {c(AA)" |A=i}.

Thatis s ; isthegzeof asndlest cut in G induced by exactly i vertices. Obvioudy, there may

be many choicesof Al V thatyidd s, for agiveni.

Definition 3.1

We shdl cdl agraph s-good if there exist subsets S1,S;, Gy, [ VvV with

S| =i
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Sisi.ig, =V, ad

«(S,S) =s,,wherei=12,....V|- 1. (3.1

For example, acycleon n verticesisdearly s-good. Itiseasy toseethat s, = 2 everywhere
and the formation of the nested sets S yielding these vauesisimmediate. The labeling (one of
many) shown below and left in Figure 3.1 demonstratesfor C,. On the other hand, the graph
totherightin Figure3.1isnot s-good, snces , =s ,=1pP S, ={a,b} and S, ={d,e, f}

bt s,V S,

Figure 3.1 Examplesof s-good and not s -good Graphs

We now establish apair of results relating these cut sets and linear arrangement vaues.

Theorem 3.1: For any connected, smplegraph G, OLA(G) 3 é S, .

EiEV|-1



Proof: Any labeing of G including an optimdl one definesnested sts T, i T, 1 .1 T,
where vi T, wheneveri 3 f (v). Consider a“linear” embedding of the optimally labeled

graph where the vertices of G are located at the integer pointsof A * corresponding to the

vaueof f(v). Thelayout in Figure 3.2 illudrates.

Figure 3.2 Linear Ordering

But dearly

OLA(G)= & oT.T)* as,

EiEV]-1 EigV|-1

which isthe desired result.
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Theorem 3.1 provides alower bound on the cost of any arrangement. Obvioudy, it becomes

most useful whenever we can calculate § s .. Shortly, we shdl address the issue of making

EigV|-1

this caculation, but first we state another theorem.

Theorem 3.2: For any connected, smplegraph G, OLA(G) = é_ s, U G iss-good.

1EigV]-1

Proof: (P ) Asstated in the proof of Theorem 3.1, an optimal labeling of G defines nested
setsT, | T,i..0 T, wheevi T wheneveri? f(v). Summing the sizesof the cut sets

] !

implied by these T, termsyields the arrangement cost. Therefore, suppose

OLA(G)= adT.T)= as..

V|- 1 1£igV|-1

Then it must be the case that

Thus letting each T, serve asthe corresponding S specified (3.1), it followsthet G is

s-good.



(U) Alternatively, suppose G iss-good. Then there are subsets S.S, Sy |V as

described in (3.1). Moreover these subsets define an ordering of G givenas f (v) =1 where

vi §\S_, for 1£i £ V| with §, = £. But thevaue of thislebdingis

4 cs.,S)= as,

1 EV|-1 EEV|-1

which isan optima vaue following the inequality of Theorem 3.1. Thisis enough to establish

the result and we are done.

We have then that the bound of Theorem 3.1 isredizable if and only if the graph is s -good.
What graphs are s-good? Although a complete answer to this question gppearsto be
difficult, there are certainly some smple cases. Recal thegraph C.. We know from Chapter |

that OLA(C,) =2(n- 1). Asdtated earlier, itiseasytoseethat s, =2 for LEi £n- 1,50

it isclear that ési =2(n- 1) dsoand so by Theorem 3.2, C, iss-good for dl n.

V|- 1
Similar andysis quickly establishes that paths, cliques, ars, and whedsaredso s -

good. For P,, s, =1for1£i£n-1and s, =n- 1=0LA(R,).For K, itiseasy

£ £]V]-1

toseethat s, =i(n-i) for LEi £n-1,s0
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_(n-DYn(n+1)

as, = Qin-i)=—"—==0LA(K,).
£ £]V]-1 £iEn-1 6
For S, with n even,
Vifor 1Ei £
_1 2
Si =l

in-ifor J+1£i£n- 1
1 2
and

2
as, =ai+ én-i=%:OLA(Sn).

i - n n
1sigv|-1 g Z+lfiEn-1

For n odd,

1. i -1
:';|f0r1£|£n—

_1 2
In- ifornTEiEn- 1

f

V)



and

n?-1

as, = ai+ §n-i= = OLA(S,).

i - n-1 n+1
EEV]-1 gy g~ Eifn-1

The cdculation for W, issmilar.
Given any graph, if we can verify s -goodness accordingly, by using Definition 3.1 we

will have aso solved linear arrangement on the instance, since the nested subsets S, S0 Gy

define an optimd labeling. Also, there are graph classes for which OLA can be efficiently
solved on al instances but where the latter may not be s -good in general. For example, dl
trees are not s -good (as the example to the right in Figure 3.1 demonstrates), yet we know that
OLA can be solved in polynomid time ontrees. A smilar Stuation exists for the class of
generd outerplanar graphs.

We now turn our atention to the issue of evauating the value of the bound given by
Theorem 3.1. Unfortunately, there is bad newsin generad. Consider the NP-Complete

problem MINIMUM CUT INTO BOUNDED SETS, the statement of which appears below

[17]:

Instance: Graph G = (V,E), weight w(e) T Z* foreach e E, specified vertices st 1 V,

positive integer B £ V|, and positive integer K.



Question: Isthereapatition of V into digoint sets V, and V, suchthatsi V,,
t1V,, M|£ B, V,|£ B, and such that the sum of the weights of the edges from E that have

oneendpoint in V, and one endpointin V, isno more than K?

Note this remains NP-Completefor B =|V|/2 and w(e) =1 fordl el E.
The relationship to our problem isonly an exercise. First consder the case where [\/| is

even. Thenthecaculaion of s vy is exactly the min-cut problem indicated above where
2

B =|V|/2 and w(e) =1. When |V| is odd, we deduce the same conclusion by considering the

graph formed by adding an isolated vertex to G. Then finding both s V-1 and s 0% are
2 2

hard. Hence, though é S, might be very ussful in bounding OLA(G), it isnot likdly thet we

£ EV|-1
can efficiently obtain the corresponding value for arbitrary graphs.

On the other hand, there are many instances where é s, canbefound by ad-hoc
HEigV]-1

means. One non-trivid exampleisthe n by n discrete torus. Even more encouraging is that we

will exhibit an dgorithm to find é s, inpolynomid time on any recursively constructed

£ £]V]-1
graph. Among these are series-pardld graphs, Hain graphs, and partid k-trees. We take up

these issuesin the next chapter.



CHAPTER IV

COMPUTING as.

I£igV|- 1

We begin with the computation of é s, for the discrete torus followed by asmilar

1Ei£V]-1
computetion for the class of recursve graphs. The latter are particularly interesting in that while
the respective s , terms are efficiently computable, recognizing “s -goodness’ for members of

the classremains dusive.

4.1 Linear Arrangement on the Discrete Torus

Recdl from Chapter | that an m by n discrete torusisagraph G=(V,E) where
V={"j'1£i£m1£ jEn and ((i, ), (k,))T E whenever (i =k and
j+1° 1 modn)or (j =1 andi+1° k modm). Following, we will consder the specid

caewhere m=n.

4.1.1 TheLower Bound
Isthe n by n discrete torus s -good? |f we could exhibit the gppropriate nested subsets

of V that establish s -goodness, then the linear arrangement problem will be solved for this class



of graphs. Unfortunately, this outcomeis not possible. Congder the 6 by 6 discrete torus

shown below in Figure 4.1.

L RGAAGS
deteeie oo
Gete oo oo
Geteeie oo
Geteeres e
deleeed s
VARVIEVEVIEVIRY,

Figure4.1 6 by 6 Discrete Torus

Itiseasy to verify that s = 12 which can only be redlized by a 3 by 3 arrangement of vertices

patterned after the one shown below in Figure 4.2 with the relevant vertices non-darkened.

VAVIEV VARV

RO SINININ
Ce oo e s
Cab e
S0 Ss SoRru
b SESP ST er ur o
P SPSP SRR ar S

Figure4.2 s , = 12 Example
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Smilaly, s ,, =12 and this vaue can only be redized by a6 by 2 arrangement like the one

shown in Figure 4.3 below.

LARAGAS
delelotetes
Getatio et
delelsoleles
Gl o e e
delelsoletes

VALVIRVIAVERVIRV)

Figure4.3 s ,, =12 Example

Since the 9 vertex subset shown in Figure 4.2 cannot be contained in any subset like that
depicted in Figure 4.3, it follows that the discrete torusis not in genera s -good.
Despite this outcome, however, we still might find useful amethod for caculaing

é s, for these graphs. For example, consider agraph formed by adding edges to a discrete

1#igv]-1

torus. By Lemma 2.2, the value of the cut set bound for the discrete torus would aso be a

lower bound for OLA on itsindicated supergraph. If the number of edges added is not too

great, this might provide a reasonably tight bound that would otherwise be difficult to obtain.
Is there something in the structure of the discrete torus that alows usto caculate

é s . ? Fortunately, the answer isyes. Firgt, observethat S hasacertain symmetry in thet
1Eigv]-1



S =5, foreach kT {123..,V|- 1. Thus weonly need to calculate thefirst haif of

thetermsin s , since

N o
':_2 avsi Sy for |V| even
° | lEiEjzl--l ( )
s, =t 41
g1 2 é s, for [\/| odd
% 1gielVl?
2

Next, we introduce someterms. A dat isan n by k induced subgraph of an n by n

discretetoruswhere 1 £ k £ n/2. A partial dat isan n by k induced subgraph of an nby n
discrete torus together with aj by 1 induced subgraph where j < n and each vertex inthe | by

1 induced subgraph is adjacent to some vertex of the n by k induced subgraph. A partid dat of

a6 by 6 discrete toruswith k = 2 and j = 3 is shown below in Figure 4.4.
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A sguareisak by k induced subgragph of an n by n discretetoruswhere 1£ k <n. A

partial square isether type 1 or type 2, each of which is defined below.

Type1: A partid square, type 1 isak by k induced subgraph of an n by n discrete torus with
1£ k <n together with a1 by j induced subgraph where j < k and each vertex inthe 1 by
induced subgraph is adjacent to some vertex of the k by k induced subgraph. A partid square,

type 1 of a6 by 6 discrete toruswith k =3 and j = 2 isshown in Figure 4.5.

Type2: A partia square, type 2 isak by k-1 induced subgraph of an n by n discrete torus
with 1 £ k <n together with aj by 1 induced subgraph where j < k and each vertex inthej
by 1 induced subgraph is adjacent to the first j vertices of the k by k-1 induced subgraph on a
k-length Sde. A partid square, type 2 of a6 by 6 discrete torus with k = 4 and j = 2 isshown

in Figure 4.6.
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Figure4.5 Partid Square, Type 1
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Figure4.6 Partia Square, Type 2

Squares are “built” in the order shown in Figure 4.7 below. For every m, the cells of

the figure whose labels are less than or equa to m form ether a square or a partial square.

13 14 15 16 ...
7 8 9 12 ..
3 4 6 11 ..
1 2 5 10 ..

Figure 4.7 Ordering for Squares

For amplicity in dl the above cases, we shdl require that the total number of verticesin adat or

square be less than or equd to |V|/2, since by (4.1) we will use only those casesto calculate

as,.

EiEV]-1
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Now welet s ™= = min,, {c(A, A)|A =i} with the additiond restriction that the
subsets A correspond to squares or partid squares. Similarly, let
s ¥ =min ,, {c(A, A):|A =i} with the additiona restriction that the subsets A correspond

to datsor partid dats. From the structure of the discrete torus, we observe that

s, = min{s ™= s ¥*}  Now, by using smple counting methods, it is easy to see that

i2i+2 fori<n
s¥==ton  fori® O(modn) (4.2)
12n+2 otherwise

s ™= =241 (4.3)

We now prove alemmathat will help cdculate é s, for then by n discrete torus.
i £V]-1

Lemma4.1l: For n even,

2
N
s S £ g ¥4 whenever | ET’ and
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2
N
S S 3 g ¥4 \whenever | >

2
Proof: First we consder thecasewhere i ® n. For i E%,

s é I’]thJ dat
s = = 2024/i||£ 2&2 Z =2 =2nEs .
e'"a

2 2
A ) o ..Nn
For i >—4 ,g9ncenisevenitiscearthat i 3 —4 +1,%0

n? U <
T+103 2(n+1) =2n+23 s 3%,

¢

e
o = 2y 22
e

Now we consder thecaseof i <n. Firstsuppose n® 4 and i3 4. Then
s ™= =2\ I|E2(2\i +1) = 4fi +2£ 24 +2=57%,

Ifi=3,thens ™= =8ands ™ =8, if i =2,then s ™ =6and s ¥ =6, adif

i =1,then s *** =4 and s ¥ = 4. Each case satifies the parity condition of the Lemma.



Moreover, it is easy to see that each casefor n £ 3 dso satisfies the stated condition and the

proof is complete.

Therefore, for the n by n discrete torus

dats
i

ési: ésfq”a’es+ a s **  forevenn, (4.9

i _ 2 2
EAV-L e D igv|-1
2 2

Before we can cdculate 601 s, for the general case, we need to know how to sum
i £V]-1

g e = 2é2«/i— |- Accordingly, we shdll establish the following result.

Lemma4.2:

. &0 mi2xn(] +3x@n{+ 10"
a @vk(=n- gnfj+@njn+1) - 292 U2 uz4 cadlll )3 (4.5)
O£kEn A 7

e ¢

Proof: Thisresult isnot difficult to prove, but involves rather tedious agebra.

Firg, it isclear that



O£kEn

Now, subgtituting a® = n, we have

a @k

OE£KEN

=4 [1£ie2vk|[ockEa]
j.k

- é[jazﬂﬁza]

£ jE2a k

o o &2 0
= a a é:I'Elk £ a?.g
k € u

3 @/Ry= & @IRgen- g)
CEKEN

(4.6)

4.7)

Observe that we have used the bracket notation [ ] to denote the indicator function that takes

on thevaue 1 if the expresson contained within istrue and O otherwise. Continuing, it isthen

easy to caculate that



o €j20_ k(2k? + 3k +10)
a e4 g=2 ai’+ ai= >
£jgk€* U 1£J£5 05155
for k even, and
o €j°U_ g 2, L 8 . k(2k?+3k+10) 9
a e, 0= J ai’+ ai-= 4 "o
Ejgke™ u EJE% l£j£k 1 OEJE%

for k odd. Therefore, (4.8) and (4.9) can be combined into

o €j7u_ék(2k*+3k+10)U
a e, u=¢ o g
Ejck€e T U e u

Findly we can substitute (4.7) and (4.10) into (4.6) which yields (4.5) as desired.

(4.8)

(4.9)

(4.10)

We can now cdculate é s, forthenby ndiscretetorus. Asan illugtration, we

£ EV|-1

show how thisisdonefor thecase of n° 0(mod4). We have



as; =2 asi sy

i E]V|-1 wiell
2
=2 ossquar&s+2 osdats+ss|ats
- as; as; [V|/2
1£iEn?/4 n?[4+1£i £n?f2- 1

%0 7 RN o] o] . 0
=2§Ea 24fi)+ & (2n+2)- A dni]+n:

iEn?/4 n2/4+1£i£n?/2- 1 n2/4+1£i£n?[2- 1 (7]

_ n(10n? +9n- 16)

= 5 . (4.11)
For n° 2(mod4) , asmilar caculation produces
2 -
ési:n(lm +9n 16)_2. (4.12)
EiEV]-1 6

The results given in (4.11) and (4.12) above give us alower bound for any arrangement cost for
the n by n discrete toruswhen n iseven. Following, we provide some insght regarding how

tight these bounds can be.

4.1.2 Solutionson the Torus

Perhaps the most obviousfirst attempt at a reasonable labding for our graph isto Smply

number each row consecutively in order as shown in Figure 4.8 below.
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1 2 3 n
n+1 n+2 n+3 2n
2n+1 2n+2 2n+3 3n
n’>-n+1 | n>n+2 | n>n+3 n?

Figure 4.8 Smple Ordering for an n by n Discrete Torus

It iseasy to cdculate the cost of this arrangement for the generd case. We have

a |f(u)- f(v)|=2(n(n*- n)+n(n- 1)) =2n(n*-1). (4.13)

(uWTE

So, we can combine the results of (4.13) with those of (4.11) and legitimately clam that for the

n by ndiscretetorus T, with n® 0(mod4), OLA is bounded as

n(10n? +9n - 16
6

<OLA(T,,) £ 2n(n* - 1). (4.14)

Recall from Chapter | that OLA has been solved for T, | following aresult of Mitchison

and Durbin [28]. The more generd caseof T, has been solved by Muradyan and Rilipogan



in[29], and by Fishburn, Tetai, and Winkler [15]. We will consder alabding givenin
Mitchison and Durbinfor T, . The reader is referred to the aforementioned paper for details,
but in generd the notion isto move from building “squares’ to something like “dats’ after
completion of asquare of size (1- J/ﬁ)n ».2929n. Sincethisisnot integra for any integer n,
the authors smply pick the integer closest to (1- ]/ﬁ)n and build asquare of that size. Itis

agebracdly tedious but fairly routine to caculate the cost of a Mitchison-Durbin labding for

T,, forany integrd fraction of n. For example, for n® 0(mod10) , we can use .3n asthe

trangtion point and caculate the cost whichis

n(431n? + 3501 - 900)
250

, (4.15)

Figure 4.9 shows a Mitchison-Durbin labding for the n = 20 caseusing .3n = 6 asthe square

size. Thislabeling hasacost of 14280 whilethe & s, bound is 13880,

HEigV]-1
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1 [ 37 [13] 2131 [121]141]161]181[201] 221241 261] 281 287 [ 292 [ 296 [ 299 [ 301
2 | 48 |14 22|32 282 | 288 | 293 [ 297 | 300 | 302
5 6|9 |15 23]33 283 | 289 | 294 | 298 | 303 | 304
10 | 11 | 12 | 16 | 24 | 34 284 | 290 | 295 [ 305 | 306 | 307
17 | 18| 19| 20 [ 25 | 35 285 | 291 | 308 [ 309 | 310 | 311
26 | 27 | 28 | 29 | 30 | 36 286 | 312 | 313 [ 314 | 315 | 316
37 42 317 322
43 48 323 328
49 54 329 334
55 60 335 340
61 66 341 346
67 72 347 352
73 78 353 358
79 84 359 364
85 | 86 | 87 | 88 | 89 | 90 365 | 371 | 372 [ 373 | 374 | 375
91 | 92 | 93 | 94 | 95 | 116 366 | 376 | 381 | 382 | 383 | 384
9 | 97 | 98 | 99 | 112|117 367 | 377 | 385 [ 389 | 390 | 391
100 | 101 | 102 | 109 | 113 | 118 368 | 378 | 386 | 392 | 395 | 396
103 | 104 [ 107 | 110 | 114 | 119 369 | 379 | 387 | 393 | 397 | 399
105 | 106 [ 108 [ 111 | 125 [ 120 [ 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 370 | 380 | 388 | 394 | 398 | 400

Figure4.9 Mitchison-Durbin Labding for n = 20




Of course for large n, we can get closer to (1- ]/ﬁ)n than .3n. However, for

n° 0(mod20) we can at least refine the upper bound in (4.14) as

r10n? +9n- 16)
6

431n? + 350N - 900)
250 '

<OLAT, ) £ i (4.16)

)
Since % =10344 , the gap is quite small.
6

%

The bound given by é s, isthusreasonably tight in for the discrete torus. Although

i £V]-1
we have no explicit proof of exactly how tight this bound is for other graph classes, its
performance for many of the instances we tested appears reasonably good. Some instances

where it can perform poorly are shown in section 5.2.

4.2 Bound Computation for Recursive Graph Classes

In this section we investigate the ca culation of ési for recursgve graph classes.

i gV]-1
Classc among these are series-pardld graphs, Halin graphs, and in generd, partid k-trees. So
far aswe know the status of OLA on partial k-trees remains open (series-pardld graphsare

partid 2-trees, Hain graphs are contained in the class of partial 3-trees, etc.). First we provide

some background.
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4.2.1 Recursive Graph Classes

Informdly, arecursve graph dassis one in which any sufficiently large member can be
composed by joining smdler membersin the class a specific vertices cdled terminals. Letting
the number of terminds be k, we often refer to these ask-terminal graphs. Moreformdly, a
k-termind graph G = (V,T,E) hasavertex set V, an edge set E, and a (possibly ordered) set of

distinguished vertices or terminals T1 V suchthat T ={t,,t,,....t, 5} , where

t(G) =[T| £ k. For somek, let U bethe set of k-terminal graphs. Then, arecursively
constructed graph family F = (B,R) in U hasbaseelements Bi U and afinite set of
recursve composition operations R ={R,,R,,...,R } whereeach R:U" ® U . Here, p
refersto thearity of R . Generdly, we consder only base dementsin which al verticesare

terminds. However, it is easy to seethat al such structures decompose trividly into edges, so
we often take B to be asingleton consisting of K, .

The notion of compaosition can be described by the same genera form. For L£i £ m,
let G, =(V,,T,E),whereV,,V,,...,.V_ aemutudly digoint. Let G =(V,T,E)T U as

well. A vaid vertex mgpping isafunction f: UVi ® V such that four conditions are satisfied.

1EiEm
Firgt, vertices from the same G, must remain distinct after composition. Second, only terminas
can map to terminas. Third, only termind vertices can merge, and last, edges are preserved
upon compaogtion. If fisavalid vertex mapping, then we shdl write the corresponding m-ary

composition operation as f (G,,G,,...,G,) =G.
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A decomposition tree of ak-termina graph G isarooted tree with vertex labels g and

f such that

g, =G ifvistheroot,

f, 1 R if visaninterior node,

g, = f,(9,.9,,9,) if interior nodev haschildren v, ,v,,...,v,, and

g, = B ifvisaledf.
Decomposition trees are very important in the underlying strategy of problem solving on k-
termind recursive graphs. If we know the solution to a given problem (i.e. vertex cover,
dominating set, chromatic number, etc.) on the leaf graphs of a decomposition tree (base
graphs), then the postorder traversal of the tree with gppropriate recurrence formulae (relevant
to the given problem) would produce an efficient dgorithm (often, linear) for the problem on the
given k-termina graph.

To develop appropriate recurrence relations for a dynamic solution, one starts by
building amultiplication teble f ¢ for each compostion operation f. If G = f (G,,G,) thenthe
multiplication table f ¢ exhibits the outcome for G that corresponds to each pair of compatible
subgraph property tuplesfor G, and G,. Itisnow straightforward to construct the recurrence
relaions directly from the multiplication tables. These formulae smply compute the optimal
property vaues from among the compostions of the compatible pairs. More formd versgons of
this strategy appear in Borie[7], Borie, Parker and Tovey [8], and Borie, Parker, and Tovey

[9]. For some smpleillugtrations of the methodology, the reader is directed to Horton [24].



It isrelevant to point out here that while a great many NP-Hard graph problems submit
to the above mentioned efficient solution methods when instances are restricted to recursively
congtructed graphs, it isnot known if OLA is one of them. Many researchers (including those
mentioned in the previous paragraph) have attempted to resolve this question by either exhibiting
an dgorithm that solves OLA for recursive graph classes or by showing that OLA remains NP-
Complete for such aclass. Asindicated at the outset of this section, OLA remains open on
even series-pardld graphs. This condition adds to the sgnificance of the agorithm presented in

the next section.

4.2.2 An Algorithm for Calculating é s, on any Recursive Graph Class

£V 1
In this section we present a procedure that computes s , for each i for the members of

any recursive graph class. Suppose G = (V, T, E) isak-termind greph, Si T, and

0£i £n=)N|. Thenwedefine m(G,S,i) to be the minimum number of cut edges that

partition V such that i vertices are in one component of the bipartition (cal thisthe “blue’ sde)
and n- i areintheother (“red”), such that Sisentirdy blueand T - S isentirdly red. Wecan

easily compute m(G, S,i) at the leaves of a decompostion tree. We assume that
G = (G,,G,) where G; = (V,,T,,E;). Now we can compute m(G, S,i) for each non-

leaf node by the fallowing:



Algorithm 4.1:
For each of the 2% subsets ST T do
For eachi suchthat O£i £ n do
Let m(G,S,i) =min{m(G,, S, i,) +M(G,,S,,i,)} suchthat conditionsa, b, and c hold.

Conditiona: S CT,=S,CT,
Condiionb: S=(SES)CT
Conditionc: i =i, +i,- |S CS,|

Thenwhen m(G,- ,-) isfound at theroot graph G of the decomposition tree, we can calculate

each s, asfollows

s, =min{m(G,S,i):Si T}.

Note that condition a above insures the composition is compatible, whereas conditions

b and ¢ describe how Sand i, respectively, are determined. We can think of each m(G; - ,- )
asatablewith 2% rows (one for each subset of T) and n+1 columns, where n = M | Thusif

G =1(G,,G,), mG,-, ) iscompletely determined from m(G, ,- /) and m(G,, ,-).



First we veify that the running time of Algorithm 4.1 isa polynomid in the Sze of the
input graph. Clearly the number of columns of these tables grows (linearly) with the order of the
graph, but the number of rows remains the same. Since every composition adds at least one
edge, there are O(m) nodesin the decomposition tree. For each node there are O(2n)
vaduesof m(G, S,i) to caculate. For each m(G, S,i) , the recurson involves taking the
minmumof O(22*n) = O(2°n) expressions, to seethis, chooseany S, (there are 2*
choices), chooseany S, (again there are 2 choices), then choose any i, (there are O(n)
choices). Now thevalueof i, isdetermined. Since each such expression can be computed in
O(1) time, thetota running timeis O(n’m) for fixed k.

Next, we verify correctness. If G = f (G,,G,), we know that aslong as merged
termindsof G, and G, have the same colors (i.e., they are either both blue or both red), then
thestatusof any el E(G) isthesameasitwasin G, or G,, depending on which child in the
decomposition tree it came from. Note that by “status’, we refer to whether or not the edgein
guestion connects a red vertex with a blue one and is hence a cut edge. Condition a above
insures that this color compatibility holds. Since E(G) = E(G,) E E(G,) and
E(G,) C E(G,) = A&, we can obtain the number of cut edgesin G withagiven ST T
colored blue by smply adding the cut edges presentin G, and G, under compatible conditions

for S, and S,. Conditionsb and ¢ insure these conditions are maintained.



Now we demongrate the agorithm on the well-known class of partid-2 trees, also
known as series-parald graphs. We sart by establishing the valuesof m(K, - ,-), since K, is
the only base graph for series-paralel graphs. Since [T| = k = 2, there are 2 = 4 subsets of
T to be accounted for. We denote these subsetsas N, L, R, Bindicating neither, left, right, or
both termina vertices colored blue, respectively. Thenitisessy to seethat m(K, ,-,-) isas

shownin Table4.1.

Table4.l m(K,, )

w|o|r|z2

K K Koo
K|~ K-
oK HK K |IN

For example, m(K,, L,1) =1 since the minimum number of cut edges thet partition V such that
1 vertex isonthebluesdeand 2- 1=1 ison thered sde, such that L isentirdy blue and
T- L isentirdy red, is1. Smilaly, m(K,,L,0) =¥ snce (obvioudy) thereisnocutin K,
with zero vertices colored blue such that the eft termind is colored blue.

We now describe the calculationof m(G,- ,-) asafunctionof m(G,,-,-) and
m(G, , ;). Asindicated above, the Size of thetable m(G,-,-) grows (dbeit polynomialy)

with the sze of the graph under consideration. Following the composition rules presented in the
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previous section, for series-parale graphs there are only three different ways to combine G,
and G, toobtain G. Firg, onetermina of G, can mergewith onetermind of G, with the

merged termind loging itstermina atus. Thisis cdled a series operation. Second, both

termindsof G, can merge with both termindsof G, , that isonetermind of G, mergeswith
onetermind of G, and the other terminal of G, mergeswith the other termind of G,. No

vertex losesitsterminad satus and thisis cadled aparalléel operation. Findly, onetermina of

G, canmergewith onetermind of G, asin aseries operation, but the merged vertex retainsits
termind gtatus and one of the unmerged terminds losesits termind Satus (again maintaining the
origind number of terminds). Thisiscdled ajacknife operation. Following, we describe how
to cdculate M(G,- ,-) from m(G, ,- ,-) and m(G, ,- ,-) for each of these operation types.
When G, and G, are combined to form G, there are Sixteen possible permutations,
namdy {N,L,R,B} " {N, L, R,B} . Some of these permutations are compatible and others
arenot. A specific permutation isincompetibile when merged terminds have different perity.
First we address the series operation, where the right termina of G, merges with the
left terminal of G, and that vertex losesitstermind status. The left termind of G, remains as
theleft termindl of G, and theright termindl of G, remainsastheright termind of G. The eight
compatible operationsare NN, LN, RL, BL, NR LR RB, and BB. Itiseasy to seethat NN in
G, and G,, respectively, yiddsN in G, as does RL, since only the merged termind is permitted

to be blue and the others must be red (in the case of NN, the merged termind isred, and for RL



itisblue). Smilarly, it isclear that LN and BL in G, and G,, respectively, yidd L in G, NR
and RBin G, and G, respectively, yidd Rin G, and LRand BBin G, and G, respectively,
yidd Bin G. Using these facts we can write recursive expressions that implement Algorithm 4.1

for series operations as follows:

m(G,N,k) = min {m(G,,N,k- 1) +m(G,,N,1),m(G,,R,k - ) +m(G,, L,| +1}

m(G, L,k) = min{m(G,,L,k- 1) +m(G,,N,I),m(G,,B,k- 1) +m(G,, L,| +1}

m(G, R k) =min {m(G,,N,k - I) +m(G,,R,1),mG,,R k- 1) +m(G,, B,| +1)}

m(G, B,k) = min {m(G,, L,k - 1) +m(G,, R |),m(G,,B,k - 1)+ m(G,,B,| +1)} .

Note that we account for the merged terminal being blue (and hence counted both in G, and
G, ) by adding 1 in those instances.

For the paralldl operation, the left terminal of G, mergeswith theleft termind of G,
and theright termind of G, mergeswith theright terminal of G,. None terminalslose ther

termind gatus. The four compatibile operationsare NN, LL, RR, and BB. Obvioudy, NN in

G, and G,, repectively, yiddsN in G, LL in G, and G, repectively, yiddsL in G, RRin
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G, and G,, repectively, yiddsRin G, and BBin G, and G,, respectively, yiddsBin G. Itis

again sraightforward to determine the gppropriate recurrence relaions.

m(G,N,k) =min {m(G,,N,k - I) +m(G,,N,I)}

m(G, L,k) = min, {m(G,, L,k - 1) +m(G,, L,| +1)}

m(G, R k) = min {m(G,,R k- 1) +m(G,,R | +1)}

m(G, B,k) = min {m(G,,B,k - 1) +m(G,, B, +2)} .

Thistimewe add 0, 1, or 2 to account for the number of blue terminals in the composition.

For thejacknife operation, the right termind of G, mergeswith the left termind of G,
and theright termind of G, losesitstermind status. Theleft terminal of G, remains asthe left

termind of G, and the merged termind remains asthe right termind of G. The eight compatible
operations are the same as those for the series operation, namely NN, LN, RL, BL, NR LR,

RB, and BB. Now we see that NN and NRin G, and G, , respectively, yidd N in G, LN and

LRyiddL, R. and RByidd R and BL and BB yidd B. Findly, the recursive expressions that

implement Algorithm 4.1 for jacknife operations are:
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m(G, N,k) = min, {m(G,,N,k - 1) + m(G,,N,I),m(G,, N,k - 1) +m(G,, R )}

m(G, L,k) = min{m(G,,L,k- 1) +m(G,,N,I),mG,, L,k - 1) +m(G,,R/I)}

m(G, R k) =min {m(G,,R,k- 1) +m(G,,L,| +1),m(G,, Rk - ) +m(G,, B, +1}

m(G, B,k) = min {m(G,,B,k- 1) +m(G,,L,l +1),m(G,, B,k - 1) +m(G,, B, +1)} .

Again the merged termind is accounted for by adding 1 as required.
Figures 4.10 - 4.12 demondtrate the notion of series, paralel, and jacknife operations,

respecively. In Figure4.10, theright termind of G, and theleft teemind of G,, aremerged ina

seriesoperation to form G, .

® ® ®_—®

Figure4.10 Series Example
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In Fgure 4.11, the left and right termini of G, and G, , respectively, are merged in apardlel

operationto form G, .

Figure4.11 Padle Example

In Fgure 4.12, theright termind of G, and the left termind of G,, are merged in ajacknife

operationtoform G,;.
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® ® ®©_—®

Figure4.12 Jacknife Example

The recurrence relations given above can dso be expressed in atabular format. The

tables for series operations are presented below as Tables 4.2 - 4.5, the tables for pardlé

operations are Tables 4.6 - 4.9, and the tables for jacknife operations are Tables 4.10 - 4.13.
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Table4.2 Series Tablefor NN and LN Cases

NO | NI | N2 | NN3 | N4 | N5 | N6

NO | NO | NI |[N2| N3|[ N4 | N5 ]| N,6
NI | NLI|[N2|[N3| N4 | N5]| N6 | N7
N2 | N2 | N3 | N4 | NS5[ N6 | N7 | N,8
N3 | N3 | N4 | N5| N6 | N7 | N8| N9
N4 | NMA | N5 | N6 | N7 | N8 | N9 | N10
NS5 | N5 | N6 | N7 | N8 | N9 | NJIO | N,11
N6 | N6 | N7 | N8 | N9 | NJ10 | N,11 | N,12
LA | L1 |L2|L3|L4A|L5]|LG6|L7Y
L,2 L,2 L,3 L,4 L5 | L6 L,7 L,8
L3 | L3 |L4|L5|L6]|L7|LSB8]|LYO
L4 L,4 L,5 L,6 L,7 | L8 L,9 | L,10
L,5 L,5 L,6 L,7 L8 | L9 (L10|L11
L6 | L6 | L7 | L8| L9 |L10|L,A21 (L2
Table 4.3 Series Tablefor RL and BL Cases
L,1 L,2 L,3 L4 L,5 L,6
R1 N,1 N,2 N,3 N,4 N,5 N,6
R2 N,2 N,3 N,4 N,5 N,6 N,7
R3 N,3 N,4 N,5 N,6 N,7 N,8
R4 N,4 N,5 N,6 N,7 N,8 N,9
R5 N,5 N,6 N,7 N,8 N,9 | N,10
R6 N,6 N,7 N,8 N,9 | N, 10 | N,11
B,2 L,2 L,3 L,4 L,5 L,6 L,7
B,3 L,3 L4 L,5 L,6 L,7 L,8
B4 L4 L,5 L,6 L,7 L,8 L,9
B,5 L,5 L,6 L,7 L,8 L,9 L,10

B,6

L,6 L,7 L,8 L,9 L,10 | L,11
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Table4.4 Series Tablefor NRand LR Cases

R1 R?2 R3 R4 R5 R6
NO | R1 R2 | R3 | R4 | RS | R6
N,1 R?2 R3 R4 R5 R6 R7
N,2 R3 R4 R5 R6 R7 R8
N,3 R4 R5 R6 R7 R8 R9
N,4 R5 R6 R7 R8 R9 | R10
N,5 R6 R7 R8 R9 R10 | R11
N,6 R7 R8 R9 | R10 | R11 | R12
L,1 B,2 B,3 B4 B,5 B,6 B,7
L,2 B,3 B4 B,5 B,6 B,7 B,8
L,3 B4 B,5 B,6 B,7 B,8 B,9
L,4 B,5 B,6 B,7 B,8 B9 | B10
L,5 B,6 B,7 B,8 B,9 B,10 | B11
L,6 B,7 B,8 B9 | B10 | B11 | B12

Tabhle4.5 Series Table for RB and BB Cases

B2 | B3| B4 | B5 | B6
R1 | RZ| R3| R4 | R5 | R6
R2 | R3| R4 | R5 | R6 | RY
R3] R4 | RS | R6 | R7 | RS8
R4 | RS | R6 | R7 | R8 | R9
R5 | R6 | RY R8 | R9 | R10
R6 | R7 | R8 | R9 | R1I0| R11
B2 | B3| B4 | B5 | B6 | B7
B3| B4 | BS| B6 | B7 | B8
B4 | B5| B6 | B7 | B8 | B9
B5 | B6 | B7 B8 | B9 | B10
B6 | B7 | B8 | B9 | B10 | B11
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Table4.6 Pardlld Tablefor NN Case

N,0 N,1 N,2 N,3 N,4 N,5 N,6
N,0 N,0 N,1 N,2 N,3 N,4 N,5 N,6
NI | NI [ N2 | N3| N4 | N5 | N6 | N7
N,2 N,2 N,3 N,4 N,5 N,6 N,7 N,8
N3 | N3 | N4 | N5 | N6 | N7 | N8| N9
N4 | NMA [ N5 | N6 | N7 | N8| N9 | N0
N,5 N,5 N,6 N,7 N,8 N,9 | N,1J0 | N,11
N6 | N6 [ N7 | N\8 | N9 | NJIO | N,11 | N,22
Table4.7 Pardld Tablefor LL Case
L,1 L,2 L,3 L4 L,5 L,6
L,1 L1 L,2 L,3 L4 L,5 L,6
L,2 L,2 L,3 L4 L,5 L,6 L,7
L,3 L,3 L4 L,5 L,6 L,7 L,8
L,4 L4 L,5 L,6 L,7 L,8 L,9
L,5 L,5 L,6 L,7 L,8 L9 | L0
L,6 L,6 L,7 L,8 L,9 L,10 | L,11
Table 4.8 Pardld Tablefor RR Case
R1 R2 R3 R4 R5 R6
R1 R1 R2 R3 R4 R5 R6
R2 R2 R3 R4 R5 R6 R7
R3 R3 R4 R5 R6 R7 R8
R4 R4 R5 R6 R7 R8 R9
R5 R5 R6 R7 R8 R9 | R10
R6 R6 R7 R8 R9 R10 | R11
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Table4.9 Padld Tablefor BB Case

B2 | B3| B4 | B5 | Bb6
B2 | B2 | B3| B4 | B5 | Bb6
B3| B3| B4 | B5| B6 | B7
B4 | B4 | BS | B6 | B7 | B8
B5| B5S | B6 | B7 | B8 | B9
B6 | B6 | B7 | B8 | B9 | B10

Table 4.10 Jacknife Table for NN and LN Cases

N,O | N1 | N2 | N3 | N4 | N5 | N6
NO | NNO | NI | N2 | N3 | N4 | N5 | N6
NI I NI | N2 |[N3| N4 | N5]| N6 | N7
N2 | N2 | NN3 | N4 | NNS | N6 | N7 | N8
N3 | N3 | N4 | NS | N6 | N7 | N8 | N9
N4 | N4 | N5 | N6 | N7 | N8 | N9 | N0
NS | NS | N6 | N7 | N8 | N9 | N0 | N, 11
N6 | N6 | N,7 | N8 | N9 | NJ1O | NJ11 | N,12
L1 | L1 | L2 | L3]|]L4A|LS5]|L6|LY
L2 | L2 | L3 | L4 | LS5 L6 | L7 |LS8
L3 | L3 |[L4A|L5]L6]|L7]|LS8|L9Y
L4 | L4 | L5]L6| L7 |L8]|L9|LIO
L5 | L5|L6 | L7 L8] L9 |L10|LI11
L6 | L6 | L7 | L8] L9 |[L10|L11|L,12




Table4.11 Jacknife Tablefor RL and BL Cases

L1 L,2 L,3 L4 L,5 L,6

RL | R1 | RZ] R3 | R4 | R5 | R6

R2 | RZ | R3] R4 | RS | R6 | RY

R3 R3 R4 R5 R6 R7 R8

R4 R4 RS R6 R7 R8 R9

RS RS R6 R7 R8 R9 | R10

R6 R6 R7 R8 R9 R10 | R11

B2 B,2 B,3 B4 B,5 B,6 B,7

B,3 B,3 B4 B,5 B,6 B,7 B,8

B4 B4 B,5 B,6 B,7 B,8 B,9

B,5 B,5 B,6 B,7 B,8 B9 | B10

B,6 B,6 B,7 B,8 B,9 B10 | B11

Table4.12 Jacknife Table for NRand LR Cases

R1 R?2 R3 R4 R5 R6

N,0 N,1 N,2 N,3 N,4 N,5 N,6

N,1 N,2 N,3 N,4 N,5 N,6 N,7

N,2 N,3 N,4 N,5 N,6 N,7 N,8

N,3 N,4 N,5 N,6 N,7 N,8 N,9

N,4 N,5 N,6 N,7 N,8 N9 | N,10

N,5 N,6 N,7 N,8 N9 | N,10 | N,11

N,6 N,7 N,8 N9 | NJIO | N,11 | N,12

L,1 L,2 L,3 L4 L,5 L,6 L7

L,2 L,3 L4 L,5 L,6 L,7 L,8

L,3 L4 L,5 L,6 L7 L,8 L,9

L,4 L,5 L,6 L,7 L,8 L9 | L10

L,5 L,6 L,7 L,8 L,9 L,10 | L,11

L,6 L7 L,8 L9 | L10 | L21 | L12
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Table 4.13 Jacknife Tablefor RB and BB Cases

B2 | B3| B4 | B5 | Bb6
R1] R2| R3] R4 | R5| R6
R2 ] R3| R4 | R5 | R6 | R7
R3] R4 | R5| R6 | R7 | R8
R4 ]| R5| R6 | R7| R8 | R9
R5 | R6 | RY R8 | R9 | R10
R6 | R7 | R8 | R9 | R10| R11
B2 | B3| B4 | B5 | B6 | B7
B3| B4 | B5S| B6 | B7 | B8
B4 | B5| B6 | B7 | B8 | B9
B5 | B6 | B7 B8 | B9 | B10
B6 | B7 | B8 | B9 | B10| B11

Each entry in the tables above includesan dement of {N, L, R, B} andavdueof i. As
an example, suppose we merge the right termind of G, with the left termind of G,, (aseries
operation) to form G,, asshown in Figure4.10. Supposewe areinterested in s ,, the
minimum number of cut edgesthat partition V(G,;) suchthat i = 2 verticesare on one side
and n-i =6- 2=4 areontheother sde. Since {N, L,R, B} exhaugsadl the posshilities,

we can State this using the notation we developed above:

Min oy Lre MG 1:2) =8, = min{m(Gyy, N,2), MGy, L,2), M(Gy,;, R,2),m(Gy,;, B,2)} .
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But Algorithm 4.1 makes finding each of these m(G,,, j,2) termseasy. For thisillustration we

use the tables above, but the recurrence relations presented earlier in this section work just as
well. For j = N, for instance, we note each placein the tableswhere N,2 appears. There
are three places it gppearsin Table 4.2 and two placesin Table 4.3. Each of these
corresponds to away to obtain m(G,;, N,2) from m(G,,- ;) and m(G,,,,-) . Thedgorithm

samply compares al of these dternatives and selects abest one. To complete the picture,

consder Table 4.14 below.
Table4.14 m(G,, )
0 1 2 3 4 5
N 0 2 2 4 ¥ ¥
L ¥ 2 2 2 2 ¥
R | ¥ 2 2 2 2 ¥
B | ¥ ¥ 4 2 2 0

The entriesin this table are in practice computed from the children of G, in the decomposition

tree, but here they are amply given to show how the table entries for the next graph (namely

G,,) aecomputed. By referring to Table4.14 for G, and Table4.1 for G, itiseasy to

compute each vdue of m(G,,,-,-). For example, using the gppropriate recurrence relation,

m(G,;,N,2) =



min {m(Gy, N,k - 1) + m(G,, N,1),m(Gy,R k- 1)+ m(G,, L,| +1)} =

min{m(G,, N,2) + M(G,y, N,0),m(Gg, N,1) + m(G,y, N, 1),m(Gg, N,0) +
MGy, N,2), MGy, R2) + MGy, LD, MGy, RY +M(Gy, L,2)} =

Mn{2+02+¥,0+¥ 2+12+¥} =2,

Furthermore, the fina vaue 2 arises from (only) m(G,, N ,2) + m(G,,, N ,0) which telsus how
to find the st of blue verticesin G,; with the minimum number (in this case 2) of cut edges that
patition V(G,;) such that two vertices are on the blue side and four are on the red side, and
such that A isentirdy blueand T isentirdy red. The m(G,,, N,0) indicatesan N,0 blue
subset of G,, gaveriseto the N,2 blue subset of G,;. ThisN,0 bluesubset of G, isjust K,
with no vertices blue; hence neither of the two verticesof G, that correspond to these two
veticesisblueinthiscase. Smilarly, the m(G,, N,2) indicatesthat an N,2 blue subset of G,
aso gaveriseto the N,2 blue subset of G,;. Normally we would continue to backtrack; we
would determine how our N,2 blue subset of G, was formed (from the children of G, inthe

decomposgtion tree) and in this fashion we eventualy work our way to leaves of the

decomposition tree, thus determining which verticesof G,, giveusour N,2 blue subset. Inthis
caeit is easy to seethat the only alowable subset of G, of the desired type consists of the two
adjacent non-terminad vertices (the lowest two in G, in Figure 4.10), Snce they dlow

m(G,, N,2) = 2 to hold as required.
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We note that there may be severa choices of subsetsthat dlow agiven vaue of
m(G,- ,-). For example, consder m(G,, L,2). Table4.14 showsthat m(G,, L,2) = 2, but if
we attempt an andysis like that of the previous paragraph we will eventudly discover thet this
vaue can arise from coloring blue the left termind of G, and either one of the two adjacent
vertices. This potential ambiguity will become an important issue in section 6.1, but it poses no
problems for our present purposes.

The genera approach should now be clear. Moreover, we can then caculate

m(G,-,-) for any recursve grgph using this srategy thus making it easy to obtain é_si . A

£ EV]|-1
complete example appears as Appendix I.

Given an efficient means of caculating é s, forany recursvegraph G, there are

1Ei£V]-1
severd naturd questionsthat are raised. Can we recognize s -good graphs (that belong to a
recursive dass) in polynomid time? Can we quickly find optima labelings for recursive graphs

based partly on our knowledge of é_si ? If not, can ési help usfind sub-optimd

1Ei£v]-1 i £V]-1
labdlings that serve as reasonable gpproximations for the optima labelings? These questions,

and some related ones, are discussed in depth in Chapter V1.
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CHAPTER V

APPROXIMATION

Like other NP-Complete problemsin generd, there is aneed to find good solutionsin
practice for the linear arrangement problem. Accordingly, we now examine some issues related

to finding gpproximate solutionsto OLA.

5.1 Decompositions

Suppose we congder the following generd (and loosely stated) gpproach to finding
gpproximate solutionsto OLA. For agraph G, decompose it in some way, resolve OLA on
someor al of the “pieces’ in the decomposition, and then use that 1abding somehow for G.
Obvioudy, we have been intentionally vague about severa thingsrelated to thisidea. Following,
we are more precise.

Clearly, the nature of the “decomposition” iscritical. Since we haveto labd every
vertex in G, it isrationd to first consder finding some spanning subgraph H of G. Then,
assuming OLA can be efficiently solved on H at least one strategy would be clear. Thelabdling

we find for H would be taken as our labdling for G and we would be assured of at least having



acandidate solution for OLA on G. Since OLA is solved on trees, areasonable choice for H
might be “some’ spanning tree. Unfortunately, however (and not surprisingly), this approach is

flawed. Caling thisstrategy when H isatree A, , we have

Theorem 5.1: Let G beafinite, ample graph and H an arbitrary spanning tree of G. Thenthe

ratio of the total arrangement cost for G under A, to OLA(G) isnot bounded by any

K< +¥.

Proof: Consider agraph G on 2k verticeswith k © O(mod2) of the form shown in Figure

5.1. Suppose we select a spanning tree H asindicated in Figure 5.2. An optima |abeling for H

is shown on the figure which we denote as f; .

Figure5.1 Example Graph G



1 2 4 k-4 k-2 K

3 @5 k-3 Ok-1
k-192k-3 k+5@k+3
2k 2k2 2ded  kia Ki2 kil

Figure 5.2 Graph H with Optimal Labeling f
It is easy to verify that the labeling shown is optimd for H, so we have
s(H, f;.) =OLA(H) =2k- 1+k- 2=3k- 3.
Alsp, it is easy to seethat

s(G,fu)=3k- 3+k§%- 1g+2k- 1=4k - 4+k%.

Alternatively, suppose we sdect adifferent spanning tree, say  H ¢ as shown in Figure 5.3 with

itsoptimal labeling f ., indicated.



2 3 7 2k-9 2k-5 2k-1

Figure 5.3 Graph H ¢ with Optima Labeling f ),

We have

‘) = _ gk 0Tk
s(HGfy) =OLA(HQ =2k - 1+3 - =" 4
Butwhen f ., ispatched back into G, we have
7k 11k

S(G,f,_*m)—7- 4+2-1==2-5,

and it iseasy to verify that f,,, isoptima for G. But then

4K - 4+k%_¥

1%_5

lim ey

and we have the desired resullt.



Further, we note that members of the graph class depicted by G in the proof above are

free of subgraphs homeomorphicto K, , sothe particular strategy A, is doomed to

potentialy poor performance for particularly sparse graphs. The following cordllary is

immediate.

Coroallary 5.1: Theresult of Theorem 5.1 holds even for G contained in the class of partid 2-

trees.

Theillugtration above shows that poor or “unlucky” choices of H can lead to arbitrarily
poor labdingsin G. Of course, we need H to be amember of a solvable class and trees suffice
inthat regard. Indeed, one of the two trees above was a correct choice in that its optimal
labding was optimd for G. Unfortunately, there are graphs for which no spanning tree (asa
candidate for H) exists having this property. Such agraph isgiven in section 6.2, dong with
further discussion of thistopic.

There are certainly other notions of decomposition. The recursively congtructed graphs
addressed in section 4.2 are decomposed naturally as the parse tree istraversed. For general

graphs, another approach isthe following. Given agraph G, partition the vertex set into two
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sets A and B. Then solve OLA on the subgraph of G induced by A and on the subgraph of G
induced by B, or continue by partitioning A and B further. Theintegers {1,2, . |A|} are used to
label A and {|Al +1,|A + 2,...,|\/(G)|} are used to label B. Obvioudy edges “crossing” the

partition(s) are unaccounted for but if the number of such edgesis smal compared to the size of
the graph then this gpproach may work well. Indeed, a strategy related to thisis outlined in

Hansen [22] where for a generdized verson of linear arrangement (where points are embedded

in A? ingead of A '), theidearesultsin ascheme having a performance bound of O(Iog2|\/|).

Asindicated, Hansen's work depends on finding partitions that are reasonably good in the

sense that ardatively smdl number of edges cross the partition.

5.2 Approximations Based on Cut Sets

In Chapter I11 we described a bound on OLA(G) based on certain nested cut setsin G.
A logica question to ask at this point concerns how tight the bound of Theorem 3.1isin
generd. In the case of the discrete torus, we saw that the bound was quite strong.
Unfortunatdly, we can find other graphs that show the bound does not dways exhibit this
characterigtic.

Congder the graph formed by n complete graphs, K,,K,,...,K, and one additiond

vertex where one vertex of each K; is connected to the additional vertex. We denote the graph

formed thisway by S(K,, ). Anexamplefor n = 4 appears as Figure 5.4 below.



Figure54 S(K,)

Now, consider OLA(S(Kn)). Actualy, an optimal |abeling is not important. For our

purposes, it is enough to smply show abound. Since we know from Chapter | that

_(n-Dn(n+1) and

OLA(K
( n) 6
_én’d
OLA(Sn)—qu,
exa
we can quickly see that
L R ).
OLA(S(K,)) 3 3 4 1)'('+1)+§(”+1) E
1£iEn 6 e 4 0
nn+D(n*+n-2) &n+1D20 .
+ 1= Wn 5.1
24 & 4 HW( ) 1)
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Thefirg term is the minimum cogt for the cliques and the second term is the minimum cogt for
the remaining edges.
Now, consider the cut set bound of Theorem 3.1. For ease, we will consider the case

where n© O(mod 4) . Observe that

Vj=1+ §i =1+ 0040

1£i£n

Since V| iseven, we have by (4.1) that

o =9 o
asi=< ds;.
1 EV|-1 1£ign(n+1)
4
n(n +1)

Itiseasy toseethat for 1£i £

, S =1 forthefirg nterms, s ;. = 2 for the next

n- 1terms s, =3 forthenext n- 2 terms, and so on. Now we add these terms (the

cdculaion istedious), and the following lemma gives the result.

Lemma5.1: Forthegraph S(K, ),



o (p+1(3n+3n(1- 2p) +2p(p- 1))
as

Eig]V|-1 6

where

‘f—‘(-«/2n2+2n+1+2n+1)3

p=é
& 2 b

(n+1)

and p isthe number of s ; values (not terms) that are all contained in the first nT terms

of the sequence {s 1S 21008 M_l} :

Proof: Wethink of thes . termsasbeing in atriangular array asthat depicted for n= 8 in

Figure 5.5 below.

w
A WNPE
a b wWwN Bk
OOk WNBE
NOoO ok~ WDNPRE
coO~NO O~ WNNEPE

Figure55 s, vduesfor n=8
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Tofind é S, , we must add some complete rows of the triangular array, and some number of
1Ei£V]-1

terms from the next row. Let p be the number of complete rows. Then we see that

+1) o o OO
St g a1

£iEp jEifn 4 EjEpjLiEn DD

as; =2 aS = gla aJ+(p+1)<;

£ V|- 1 . n(n+l)

Thefirst double sum Ssmply addsup the s, vauesin thisfirst p rows. The other term multiplies
thes, vaueinrow p+1 (whichis p +1) by the number of termsyet to be included in the
sum. When the vaue of p given in the stlatement of the lemmais subgtituted into the above
expression (and some agebrais performed), the result of the lemmais produced. Thusdl that
remainsisto establish the value of p.

To determine p, we want to know when n+(n- 1) +(n- 2) +(n- 3)+... getsto

nin+1) . To answer this, we smply solve for x in the fallowing:

Typicaly thiswill not happen at the end of arow, so we don't expect the result to be an integer

ingenerd. Thesolutionis
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« = -v2n* +2n+1+2n+1

- 2

which when rounded down to the nearest integer gives us the desired value of p and the result

follows.

Observethat for S(K,), & s, = O(n°). Now combining this resuit with (5.1), the

£ EV]-1

following theorem isimmediate.

Theorem 5.2; Let G beafinite, ample graph. Then theratio of é S, toOLA(G) isnot

1£Eigv]-1
bounded by any k < +¥ .

Due to the presence of large cliquesin S(Kn),we know these graphs do not have a
constant bound on their tree-width (it iswell known that K hastreewidth n- 1). Inthis

regard, it would be interesting to find a class of graphs that does have bounded tree-width
where the cut set bound aso performs poorly (i.e., no constant performance). If such agraph

exiged, then even though it would have sufficient structure to dlow usto find é_ S, ,we

1 EV|-1
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would not be in a better position to state the value of OLA(G), to say nothing of actudly finding
alabding that redizesthisvaue. Unfortunately, we have been unable to find such a graph.
Consider the (series-pardlel) graph S(C,,) which we shdll define smilarly to (K, ).
Thegraph S(C,) condstsof ncydles, C,,C,,...,C, and one additiondl vertex where one
vertex of each C, is connected to the additiona vertex. To avoid dedling with graphs that are
not Smple, we define C, as the edgeless graph on one vertex and C, as the graph with two

vertices and one edge (K, ). Figure 5.6 shows an example of thisgraph for n=4.

Figure56 S(C,)

It should beapparent that g s, for S(C, ) isthe sameasthat for S(K, ), and we

1Ei£v]-1
note that this valueis O(n°) . Unfortunately, the best labelings for S(C,) aredso O(n°), so

this class of graphs does not provide the phenomenon we seek.



5.3 Heuristic for OL A Based on Eigenvalues

Recdl that in section 3.1 we introduced and defined the terms Laplacian matrix and
Laplacian eigenvalues. Severd researchers have discussed aheuristicbasedon | , (G) . For
example, see Blanks[4], Juvan and Mohar [26], and Liu and Vandlli [27]. Although the
heurigtic has no known performance bounds, empirical studies have been conducted which
appear in the above references.

The heurigic is quite smple. Given agraph G, we compute Laplacian matrix L(G) and
itsegenvaues. The eigenvector U, associated with | , (G) isthen computed. The vertex
associated with the smallest dement of 0, getsthelabe “1”. Then the vertex associated with
the second smallest ement of 0, getsthelabd “2”, and so on. Inthisfashion, alabelingis
quickly found for G.

Juvan and Mohar [26] provide motivation as to why this gpproach provides reasonably
good results for many labeling problems. Their study suggests that this heurigtic works for any
of the minimum- p-sum problems (recall thisis defined in Chapter I). In addition to a theoretica
motivation, they also provide empirical evidence to support that dlaim for pT {1,2,¥} .

Our purpose here is not to discussthis heurigtic, but merely to use it as another means
of finding reasonable labdings for the graphs under study. Appendix 2 has code for this
heuristic written using the Combinatorica package of Mathematicaf. Table 5.1 shows some
performance data on some of the graphs from thisthesis. Thefirst column contains severd

graphsthat have been under invedtigation in thisthess. G,; and G, are series-pardle graphs



from the example of Appendix I, and H,, isthe Halin graph of Figure 2.1. The graphs S(K,)
and S(C,) were defined in section 5.2. The second column lists the eigenval ue based bound of

section 3.1 for each graph. The third column gives the cut set bound of section 3.2, while the
next column isthe cost of an optimd labeling. The last column ligs the result of Algorithm 5.1
using the code in Appendix I1.

The heuristic seems to perform reasonably well for the graphs tested. The reader will

note, however, that the heurigtic achieved relatively poor resultsfor T,y,, and T, , Sncethe

“obvious’ labeling given in Figure 4.8 has costs 1980 and 15960, respectively. Although the
performance of the heuridtic is not guaranteed in aforma sense, Algorithm 5.1 provides a
reasonable first idea of how a graph should be labeled. The output includes avisud
representation of the graph with the labeling found, so the user can see the results without having

to interpret an adjacency matrix. Findly, Algorithm 5.1



Table5.1 Algorithm 5.1 Test Data

-1 s, | OLAG) | s(G,f)

1.(6) "

£ EV|-1

Puo 1.62 9 9 9
Ps 1.64 24 24 24
Cio 6.30 18 18 18
Cos 6.53 48 48 48
Woo 24.22 43 43 43
Ws 111.09 204 204 204
Kio1s 1040 1230 1230 1375
Tio0 636.55 1788 1828 2272
Th020 2610.3 | 13880 14280 | 17992
Gis 4.15 10 10 10
Gys 11.97 33 34 42
Ha, 16.49 67 75 76
S(Ke) 26.90 31 £252 274
S(Cs) 17.72 31 £97 119

produces its results quickly. All the graphsin Table 5.1 except T, ,, takelessthan aminute to
complete. With 400 vertices, T,,,, is much larger than the other graphs considered and takes

severd minutes. In addition, it islikely that the codein Appendix Il can be improved to speed

up the performance of the heurigtic.

The heurigtic is especidly useful when graphs that lack obvious structure are consdered.
Asanilludration, congder the following example. Mathematica has a built-in function

RandomGr aph[ n, p] that generates arandom graph on n vertices where
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every possible edge exisgs with probability p. Figure 5.7 shows one such redization for n = 35

and p =011. After Algorithm 5.1 isrun on thisinstance, part of the output is shown in Figure

5.8. Thegraphsin Figures 5.7 and 5.8 are isomorphic; only the embedding is changed. One
look a Figure 5.7 should convince the reader of the utility of Algorithm 5.1 for this type of
graph. Theorigind (random) labeling had a cost of 783 and the labeling shown in Figure 5.8
has acost of 288. It should be noted aswell that this example is quite small. This graph was
chosen to have only 35 vertices to make the performance of the heurigtic visudly apparent for
thisinsance. Thistype of performanceis easy to demonstrate on graphs of severa hundred

vertices, but the visud portion of the output is more difficult to interpret.



CHAPTER VI
CONCLUSIONSAND DIRECTIONSFOR FURTHER

RESEARCH

Thisthes's has addressed some of the issues associated with the celebrated Linear
Arrangement Problem. In Chapter |, we surveyed the graph classes for which OLA is solved.
In Chapter 11, we exhibit a class of graphs where OLA can be solved, mostly using first
principles. In Chapter 111, several bounding sirategies were introduced, including cut set
bounds. Next, we showed how these cut set bounds can work in practice, and we show a
broad class of graphs where we can efficiently calculate them. In Chapter V, we addressed the
issue of gpproximation.

Thereis much room for continued research into the Linear Arrangement Problem and its

relatives. We conclude with a discussion of some directions for further investigetions.

6.1 Determining if a Recursive Graph iss -good

The results of section 4.2 provide an efficient means of cdculating é s, forany

1Ei£V]-1

recursive graph G. But does this outcome help us find alabeling that minimizes OLA(G) for
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such graphs? Of course if we can somehow find alabding with cost equd to é S, ,thenby

£ £]V]-1
Theorem 3.1 we are done since no arrangement can cost less. Smilarly, if we find sufficient

evidence to conclude that G isnot s -good, then we know from Theorem 3.2 that the é S,
Ei£V]-1

bound is not attainable and so any labding with cost é_ s, +1 would be optimdl.

i g1
So far, we have primarily presented only ad-hoc approaches for finding labelings.
Solutions for the caterpillar Halin graphs presented in Chapter 11 and for the discrete torus given
in Chapter |V rely on the specid structure of the respective graphs. Of course, unless P = NP
, No methods exigt that will aways find optima labelings for arbitrary graphs. Still, the Stuation
may be more hopeful for recursive graph classes. Thiswould be congstent with outcomes
relaive to the mgority of hard graph problems. However, Algorithm 4.1 does not appear to
help usin thisregard, Snceit does not produce labdings at dl. In this section we will discuss
some of the issues related to attempts to modify Algorithm 4.1 in order to obtain labdings for
recursive graphs. Our gpproach will be loosely based on an ideaiintroduced &t the end of

section 4.2 - the ideaof determining which verticesare “blue’ for agiven vdueof m(G, S;i) .
Condgder alayered graph G = (V (, A) defined recursvely asfollows. Let

V(G)| = n and suppose G to be arecursive graph with terminal set T and where

G = f(G,,G,) . Recdl from section 4.2.2 that there may be severa waysto obtain acertain

vdueof m(G,S;i) from m(G,, ,-) and m(G,, ,-). Here, we createavertexin V ¢ for every
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such option. We shall use the notation [S,i], to denote the vertex of G ¢ corresponding to the
jthway to obtain the vdlue m(G, S,i) . Whenever m(G, S,i) =s, , wewill diginguish
corresponding verticesof G ¢ by darkening them. We shall use the notation PredGl([S,i]j) to

denote avertex of G corresponding to the vaue from m(G, ,- ,-) that was used to calculate

m(G,S,i) . Wecongtruct anarc of G from [Q, k]jl to [Qd;k+]]j2 whenever the following

three conditions are satisfied:

gither Q=Qc or QE{t} = Q¢ forsome t1 T,

thereisanarcin G from PredGl([Q, k]jl) to PredGl([Qa;k ”],—2) , and

thereisanarcin G4 from Predez([Q, k]h) to PredGz([Qd;k +1]j2).

Note also that whenever Predq([Q,k]h) = Predq([Q¢k+1]jz),wesaythatanarcedsts

for that i. Finaly, wewill remove ech vertex vi V(G() where either thereis no path from
[/£0] tov or thereisno path from v to [T, n] . Wewill dso removedl arcsincident with such
vertices. Now let usinitialize the recursive definition by showing the layered graph for K,

below in Figure 6.1.
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Figure6.1 K4

Note that Appendix I11 exhibits complete examples of this congtruction for the graphs of

Appendix I.

The motivating idea behind the rules given for the congtruction of G ¢ isto dlow an arc
from [Q,k]jl to [Qﬂ;k+]]j2 where Q1 T and Qi T exactly when thereisavalid
transitionfrom S, to S,,; in G of thetypeindicated. By this we mean that is must be
possibleto find some S, | V(G) where |S,| =k and ¢(S,,S,) =m(G,S, C T,k), and
some S, | V(G) where|S,,,|=k+1and ¢(S,,,,S...) =M(G,S., C T.k +1), with the
regrictionthat S, I S,,,. Inthiscae Q=S CT and Q(=S,,, CT. Withthis

congtruction, we then seek to determine if thereisachain of vdid trangtionsfordl O £ k £ n.

This chain correspondsto apath from [A£0] to [T,n] in G.
Asanillugration, congder the graph G,, from section 4.2. The graph appearsin

Figure Al.l, thevauesof m(G,,, ,) arein Table A1.6, and G, appears as Figure A3.6.
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First notethat thereisan arc from [L,1] to[B,2] in Gg. Thismeensthereis a subset

S V@G)withSCT=L andasubset S, | V(G) with S,CT=B suchthat S i S,,
S| =i, c¢(S,S)=mG,,LY),and c(S,,S,) =m(G;,B,2). If (in G,;) welet S, bethe
left termindl and S, bethe left termind and the right terminal, we see that these conditions are

al stidfied.

Now we observe that Gy, hasno arcfrom [N,2] to [L,3]. This means there should
not exist subsetsof V(G), S, and S;,with S, CT=N, S,CT=1L,|S|=i,
c(S,,S) =mG;,N,2), ad ¢(S,,S,) =m(G,;,L,3),where S, | S,. Againthisis correct
sncethe only candidate for S, with property N consists of the two adjacent vertices of degree
2. Adding the left terminal to this set gives a cut set size of 3whichis not optimal for [L 3] .

We can go further. Observethat G haspathsfrom [N,0] to [B,n] that go
exclusively through darkened vertices. One such pathis [N,0],[L,1].[L.2].....[L.§].[B.7].
We can extract alabeling for G,, from this path asfollows. For ease, Figure 6.2 depicts G,

with labded vertices.
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Figure6.2 G,

Obviougy, S, = 4. Thenext tepinthepathis[L,1],so S ={f}. Now since

M(Gy,,L,2) = 2, vertex bmust benextand S, ={ f ,b} (the other possibilities éither give a
higher cut set valueor violate S, C T = L ). For S,, therearetwo vaid choices. We can
sdecteither S, ={f,ba or S, ={f,b,d} . Weobserve herethat in general, the presence
of too many of these choices may indicate that extracting labdings for G from peathsin

G ¢cannot be done efficiently (i.e., polynomidly). Fortunadly, in this caseit makesno
difference which one we pick; either choice eventudly leads to an optima labeling. Suppose we
choose S, ={f,b,a . Thenfollowing smilar reasoning, we sdlect S, ={ f ,b,a,d},

S ={f,badég, 5={fbaded,ad s, =V(G,). Thesesasinducethelabding
shown in Figure 6.3 which isoptima for G;. Furthermore, since these sets satisfy Definition

3.1, we know that G,, iss-good.

Figure 6.3 G, with Optimal Labeling
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Thecaseof G, iseven moreintriguing. G, shown in Figure A3.9, has no path
exclusively through darkened verticesfrom [N,0] to [ B,14] . Thelack of suchapath
“suggedts’ that G, isnot s-good, and thisisindeed the case. We see from Table A1.8 that
s . = 2, and only thefive vertices of therightmost C, canserveas S;.. Smilaly, s , =2, and
S, canonly bethe other nineverticesof G,.. Clearly, S ¥V S,, so G, isnot s-good.

Therefore, by Theorems 3.1 and 3.2,

OLA(G,)> s, =33.

EEV]|-1

Consider, however, the path [N,0],[N 1]....,[N 5].[R]....[R9],[B10].....[B14]. This
path only goes through one non-darkened vertex. Furthermore, m(G;,R,9) =3 ands 4 =2,

SO

A mG,,Si)= as, +1.

path i EV|- 1

Since there is no darkened vertex path, the sum of the m(G,;, S,i) vauesdong thispathis
obvioudy the smdlest possible for Gg,. When we extract alabeling from this path, we obtain

the one shown in Figure 6.4 below. The labeling has atota cost of 34 which by the previous

inequdity is optima for G,; .
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Figure6.4 G, with Optima Labding

The above observations give rise to two conjectures about the relationship between G

and Gq.

Conjecture6.1: Giss-good U thereexistsapathin G ¢ from [A0] to [T,n]| that passes

exclusvely through darkened vertices.

If Conjecture 6.1 istrue, there is an efficient way of checking if any recursive graph is s -good.
Presently, we have no proof that this conjecture is true; however, neither do we have a
counterexample indicating that it isfalse. A logical direction for further research would be to

attempt to resolve this conjecture one way or the other.
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Conjecture6.2: Every [A0] to [T,n| pathin G ¢ correspondsto somelabeling a of G,

where § m(G,S,i) =s (G,a).
path

If Conjecture 6.2 istrue, it may lead to an interesting heuristic for OLA on any recursive graph.

Thenationisto find G ¢, then find a cheapest path through it, whereacost of m(G, S,i) is
incurred at every vertex [S,i]; dong the path. The labeling conjectured to exist for G isthen
extracted from this path.

Unfortunately, even if Conjecture 6.2 istrue there are potential problems that may make

implementing the suggested heuridtic difficult. For one, we have suggested thet it may not be

essy to find alabeling in G that corresponds to the pathin G 4. Thelabding for G, shownin

Figure 6.4 aboveisilludrative. There are“dead end” subsets -- subsetsthat satisfy cut set
vaues for the current and al previous vertices on the path, but which cannot be extended

appropriately. For example, to get from [N 0] to [N 4], we could select the vertices with
labels (in Figure 6.4) 13, 14, 12, and 11, inthat order. Ineachcase 1£i £4,theset § s0
defined satisfies the relevant cut set value from Table A1.8. Only when wetry to build S, from
S, would we get “stuck”. If, instead of 13, 14, 12, and 11, we had selected 1, 2, 3, and 4, (or

2,1, 5, and 4 or severd other possibilities), we would have no problem making the trangtion to

S, . Furthermore, we have no indication prior to getting stuck that we are on a dead end peth.
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This suggests that extracting alabding for G that correspondsto apathin G ¢ may not be
efficiently computable, at least not with current methods.
Another potentia problem isthat agraph G may have alayered graph G ¢ with no path

from [£0] to [T,n| a all. Thisisin fact the case. Consider the grph G of Figure 6.5, which

happensto be a partial 1-tree (i.e., atree) and therefore arecursive graph.

Figure 6.5 Example Graph G with no Pathin G

Sincedl patid j-treesare also partia i-treesfor i 3 |, we can treat this graph asatwo
termind (series-pardld) recursive graph. Now consder m(G,- ,-) in Table 6.1 and the
corresponding layered graph in Figure 6.6, which hasno [N 0] to [B.8] pathat all. Thecut

separating [N 0] from [ B8] is shown asadashed linein thefigure.

Table6.1 MG, )

w(o|r|Z

N[(fw[N|RN
N[NNI w
RlWww|Fk|>
N[NNI o
RNvjw|iNd|o
Rl lwK |~
oK K K |o

K K K |o|o
K Wk (k|-
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Figure 6.6 Layered Graph for Graph of Figure 6.5

While this graph does not disorove Conjecture 6.2, it certainly is ominous for the heuristic
described above, since that procedure would fail to produce any labeling for the greph of
Figure 6.5.

Despite these problems, there is il hope that this type of gpproach to OLA on
recursive graphs will improve understanding. A proof of Conjecture 6.1 would be an interesting
outcome. Indeed, perhaps there are some modifications that could be made to the procedure
that defines how layered graphs are constructed and that makes either of the conjectures easier

to prove or disprove.
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6.2 Critical Subgraphs

Another interesting question to arise from this research isthe idea of critical

subgraphs. Formdly, we have the following statement:

Pcs: GivenagraphG = (V, E) , find asmalest, spanning connected subgraph of G say
H having the property thet at least one optimal linear arrangement of H isaso optimd

for G.

Phelps[31] hasreferred to thisas a*“ critical subgraph” verson of OLA. Indeed, we have seen
this concept before. In Chapter |, we saw that there are optima labdlings for the star graph that
are dso optimal for the corresponding whedl.  The solution methodology for Halin graphs when
the tree component is a caterpillar presented in Chapter 11 is completely based on the criticd
subgraph concept. Clearly, Theorem 2.1 states that the caterpillar is a critical subgraph for the
corresponding Hain graph. Of course, in Chapter V we dluded to the use of spanning trees as
critica subgraphs and saw some of the difficulties that can arise.

Clearly, Pcs iswdl-defined in that every graph exhibits a candidate subgraph - namely,
the graph itsdf. More importantly, it is easy to see that the problem possesses interest.

Consgder Figure 6.7. Assuming G to be the graph on the left, it is easy to seethat acritica
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subgraph resultsin theform of H, with itslabeling as shown to theright.  Alternately, the

subgraph H, must be labeled asindicated which, of course, isnot optimal for G.

Figure 6.7 Critica Subgraph Concept

There are some interesting questions in thisarea. Are there classes of graphs for which
critical subgraphs can be found where OLA is hard on the instance graph, but (efficiently)
solvable on the critical subgraph? For example, if it could be shown that every graph of a
certain class has a spanning tree as a critical subgraph, then since OLA is known for trees the
only issue would be one of actudly finding the correct spanning tree. It was shown in Chapter V
that selecting the correct tree can be a gnificant problem. It has been shown by Easton [14]
that any attempt to produce a theorem that proves that all graphs have a critica subgraph that is

agpanning treeisdoomed to fail. A graph that establishesthis fact is shown in Figure 6.8.
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Figure 6.8 Graph with no Spanning Tree a Critica Subgraph

Despite Sgnificant efforts, OLA continues to be an interesting and difficult problem.

Although this thesis has made some contribution to the field, the status of OLA on even primitive

gructures like partial 2-trees remains open.
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APPENDIX |

EXAMPLE CALCULATION OF S FOR A SERIES

PARALLEL GRAPH

In this Appendix we show a complete example of how to calculate S for aseries-
parald graph in accordance with the procedure shown in section 4.2. Following, we present

the decomposition tree as FiguresAl.1 and A1.2.
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Figure A1l First Part of Decomposition Tree
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® ®

OakCn

Figure A1.2 Second Part of Decompostion Tree

We now show tables representing m(G,- ,-) for each graph inthe tree. We omit
repesting tables in cases where the graphs are the same (as is the case, for example, with G,

and Gy).
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TableALl m(G,, )

TableAl2 m(G,, ,)

TableA1.3 m(G,-,-)

TableAl4 m(G,, )
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TableAL5 m(G,, )

TableA16 M(G,, )

TableAL7 MG, )

11

10

TableA1.8 m(G, )

14

13

12

10 | 11

9

8
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APPENDIX 11

MATHEMATICA? CODE FOR ALGORITHM 5.1

(* This conputes the cost "cost" of a graph *)
Comput eCost[f_Graph] : =

Modul e[ {p}, sqcost = 0; cost

cost = cost + Edges[f][[i,]

sqcost = sqcost + Edges[f]]

| f[Abs[i-j]*Edges[f][[i,]]]

bw = Abs[i -j]*Edges[f]]

A, 1, vifly, {i, 0, VIf]}

O aHeur[ g _Graph] :=
Modul e[ {w},
(* p gives the eigensystem of the matrix whose main
di agonal elenments are vertex degrees and off di agonal
element (i,j) = -1if vertex i is adjacent to vertex |
and O ot herw se.
g sorts the eigenval ues
The do | oop finds the index of the 2nd smallest EV
*)
g = CircularVertices[gd];
ShowlLabel edG aph[ gd];
Comput eCost [ 9] ;
Print[cost];
Print[sqcost];
Print[bw];
Print["Above are before, below are after, heuristic"];
p = Eigensysten{ N Di agonal Mat ri x[ Map[ (Appl y
[Plus, #])& 9][[1]]] - Edges[g] | I;
q = Sort[p[[1]]];
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Do[If [p[[1,i]] ==a[[2]], ix =1i], {i, V[g]}];
s =p[[2,ixXx]];

Flag = Tabl e[ Fal se, {V[g]}];

A = Table[0, {V[g]l} {Val}];

Bi ggest Left = -10000;
Do[
Do[If[s[[j]] > BiggestLeft && Flag[[]j]] == False,

jx =1]j; BiggestLeft = s[[j]] |, {j,1,V[a]l}];
Flag[[]jx]] = True;
Alli,jx]] = 1;
Bi ggestLeft =
{i,1,V[g]l}];

ga = Circul arVertices|

Graph[ A. Edges[ g] . Transpose[ A],qg[[2]]]1;
Comput eCost [ ga] ;
ShowLabel edGr aph[ ga] ;
Print[cost];
Print[sqcost];
Print[bw];
Print["second smal | est eigenvalue is ",q[[2]]];
Print["largest eigenvalue is ",q[[VI[ga]]ll;
Print["Juvan/ Mohar bounds on |inear arrangenment cost:"];
Print[q[[2]]*((V[ga])"2-1)/6," < LA <
“,af[Viga]]]*((Viga])"2-1)/6];
Print["Juvan/ Mohar bounds on squared arrangenent cost:"];
Print[q[[2]]*(V[ga] *(V[ga])"2-1)/12," < LA"2 <
“,q[[VIga]]]*(Vlga]*(V[ga])"2-1)/
12]
]

- 10000,



APPENDI X 11

LAYERED GRAPHSFOR EXAMPLE OF

APPENDIX |

This Appendix includes the layered graphs for the example of Appendix | as described
insection 6.1. In cases where there is more than one “way” to achieve a certain vaue
m(G, S,i), weusethenotation Sk, / S,k, on the layered graph to show the origin of that

vaue, whereif G = f (G,,G,), then

[S,.k,] = Predg ([S.], ) and

[S, k] = Pred ([S.i], ).
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O 1 2

Figure A3.1 G

o 1 2 3

Figure A3.2 G4

B2/B2

Figure A3.3 Gg
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Figure A34 G

0 1 2 3 4 5 6
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Figure A35 Gg




0 1 2 3 4 5 6 7

R1L3 R1/L4

L1/R2 L1/R3

Figure A36 Gg

0 1 2 3 4 5 6 7 8 9 10 11

NO/N3 NO/N4

NO/N1 NO/N2

\ O
B6/B4 B6/B5

O
B4/B6 B5/B6
B2/B6 B3/B6

Figure A3.7 G,
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B9/B5

B10/B5

Figure A3.8 Gy, Before Removd of “Dead Ends’
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12

13

B9/B5

B10/B5

14

Figure A3.9 Gg After Removd of “Dead Ends’
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