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SUMMARY 

 

 

 Given a finite graph G V E= ( , ) of order n, the optimal linear arrangement problem 

(OLA) seeks a vertex labeling f V n: { , ,..., }→ 1 2  such that f u f v
u v E

( ) ( )
( , )

−
∈

∑  is minimum 

over all such labelings.  The problem is hard in general but is known to be solved in certain 

special cases among which are paths, cycles, trees, and outerplanar graphs.  After a survey of 

what is known about OLA as well as about variations such as minimum bandwidth and other 

“p-sum” problems, this thesis describes new algorithms for OLA on other graph classes.  

Several bounds on the cost of arrangements as well as a new algorithm for calculating one of 

these bounds for recursively constructed graphs are examined.  Various heuristic procedures for 

OLA are also discussed, both from the literature as well as new ones resulting from this 

research.  The thesis concludes with some directions for further research. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Definitions and Status of OLA and Related Problems  

 Given a graph G = (V,E), an optimal linear arrangement is a one-to-one function  

f V V: { , ,..., }→ 12  such that f u f v
u v E

( ) ( )
( , )

−
∈

∑  is minimized.  For ease, we shall denote the 

problem of finding such a labeling by “OLA”.   The related decision problem is NP-Complete 

for arbitrary graphs but efficiently solvable for certain restricted graph classes [17], [18].  In this 

chapter, we describe what is known about OLA and introduce a new problem that is related to 

linear arrangement.  In Chapter II, we present a new class of graphs where OLA can be solved.  

Chapter III presents theoretical methods for providing bounds on the cost of linear 

arrangements while in Chapter IV we demonstrate how certain of these bounds can be 

employed to find good arrangements for a class of graphs.  We then show how these bounds 

can be efficiently calculated for any graph belonging to a recursively constructed family.  

Chapter V addresses the notion of approximation by investigating heuristics for OLA.  We 

conclude with Chapter VI which describes some directions for further research.   

 OLA is easy to formulate.  Letting  
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x
i k

ik =




1
0

if vertex  takes label 
otherwise

, 

 

the formulation 

 

minimize x x k lik jl
i j E

−
∈

∑
( , )

 

{ }
{ }subject to  and 

i V

x x x i kik ik
k V

ik
∈ ∈
∑ ∑= = ∈ ∀1 1 01

1 2

, , , ,
, ,...,

  (1.1) 

 

provides a suitable description.  Of course the model in (1.1) is a quadratic assignment problem 

which is also hard. 

 The primary applications of the linear arrangement problem are in the area of circuit 

design and circuit layout.  Here, we are concerned with the optimal placement of pins on a 

circuit board.  The pins are represented by vertices, the locations on the circuit board are the 

labels, and the total wire length required to connect the pins appropriately is represented by the 

objective function.   

 There are interesting variations on the linear arrangement theme.  For example, rather 

than minimizing f u f v
u v E

( ) ( )
( , )

−
∈

∑ , the objective function could be ( )f u f v
p

u v E

( ) ( )
( , )

−
∈

∑   

where p ∈ ∞( , )0 .  Of course, for p = 1 this is simply the standard problem.  However, for 
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p = ∞  the problem is known as bandwidth and accordingly, we seek a labeling that minimizes 

the largest edge cost.  The bandwidth problem is also NP-Hard, and remains so even when the 

input graph is a tree having maximum degree 3 [17].  Although there are references in the 

literature that informally treat the generalization shown for other values of p (specifically for 

p = 2  [4], [26], [27] and for 0 1< <p  [28]), the complexity status of these so-called 

minimum-p-sum problems remains open for p ∉ ∞{ , }1  [26].   

 In the standard version of OLA, vertices are embedded in the line, { }12, ,...,V .  

Another variation is to embed the vertices of a graph G in a d-dimensional grid.  The objective 

function is then some measure of the distance between the relevant points.  In this case, any 

norm could be used as well.  For example, under the l2  norm, if d = 2  and two vertices that 

are adjacent in G are embedded at (0,0) and (3,4), then the “value” that edge contributes to the 

total arrangement cost would be ( ) ( )3 0 4 0 52 2− + − = . 

 There are other extensions and modifications to the basic problem.  For example, 

weights can be added to the edges, changing the objective function to w f u f ve
u v E( , )

( ) ( )
∈

∑ − .  

The problem can also be examined on hypergraphs, allowing an edge to “connect” more than 

two vertices.  This variant has substantial application to VLSI and circuit layout problems.  

Finally, an interesting modification allows an instance of the problem to be defined by a “partial 

arrangement.”  That is, some vertices may have their labels under f fixed and the aim is to 
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minimize the standard objective function subject to these fixed labels.  This topic is addressed in 

section 1.3. 

 

1.2  Cases Where OLA(G) is Known  

 The linear arrangement problem is solved for a number of graph classes.  Let us use the 

notation σ ( , )G f  to represent the cost of a labeling f.  That is 

 

σ ( , ) ( ) ( )
( , )

G f f u f v
u v E

= −
∈

∑ . 

 

We then express the objective function value as 

 

OLA( ) min ( , ) ( ) min ( ) ( )
( , )

G G f G f u f vf f
u v E

= = = −
∈

∑σ σ . 

 

 First we consider the trivial case where the graph is a path on n vertices, Pn .  The 

labeling f that minimizes σ ( , )P fn  is obvious; simply take any monotonic ordering along the 

path.  For each n there are exactly two such orderings and OLA( )G n= − 1. When G is a 

cycle on n vertices, Cn , optimal labelings are more numerous but just as trivial to determine.  

The labels 1 and n can be assigned anywhere, and then any assignment of the remaining labels 

that is monotonically increasing along both paths from 1 to n will be optimal.  There are n n2 2−  
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such labelings and ( )OLA C nn = −2 1( ) .  In the case of the complete graph Kn , the problem is 

without interest.  All n!  labelings are optimal and ( )OLA K
n n n

n =
− +( ) ( )1 1

6
.  Trivially, this 

value yields an upper bound on OLA( )G  for any simple graph G of order n. 

   A star on n vertices, Sn , is a graph with a hub vertex of degree n − 1 and n − 1 

pendants each adjacent to the hub.  Equivalently, S Kn n= −1 1,  where the latter is the complete 

bipartite graph of order 1 1× −n .  A star on 5 vertices appears in Figure 1.1 below.  When G 

is a star on n vertices for n odd, the optimal labeling fixes the label 
n + 1

2
 on the hub and assigns 

the pendants the remaining labels.  If n is even, either 
n
2

 or 
n
2

1+  can be assigned to the hub 

vertex and again the pendants are assigned the remaining labels.  In either case, it is shown in 

[10] that ( )OLA S
n

n =










2

4
. 

 

 

Figure 1.1  The Graph S5  
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 A wheel on n vertices, Wn , is a star with a cycle on its pendants.  If G is a wheel and H 

is its underlying star subgraph, then a labeling f that minimizes σ ( , )H f  also minimizes 

σ ( , )G f , subject to the placement of the pendant labels in a way that minimizes the cycle cost.  

This fact is established formally in Chapter II where a more general result is proved for a class 

of Halin graphs that contains all wheels.  By combining results above for stars and cycles, we 

have that if G is a wheel on n vertices, then  

 

( )OLA W
n

nn =








 + −

2

4
2 1( ) . 

 

This concept of finding optimal arrangements of graphs by decomposing them into smaller 

pieces is a recurring theme of this dissertation and will appear again in subsequent chapters. 

 Another class of graphs for which OLA is solved is complete bipartite graphs.  We use 

the standard notation of Km n,  to denote the complete bipartite graph with m vertices in one 

component of the bipartition and n in the other.  Juvan and Mohar show in [26] that for m n≥ , 

 

OLA
 if  is even,  and

 if  is odd.
( )

( ),

( ),
,K

n
m mn n m n

n
m mn n m n

m n =
+ − + +

+ − + +










12
3 6 4

12
3 6 1

2 2

2 2

 

 

Note that OLA remains hard for arbitrary bipartite graphs [17]. 
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 OLA has also been solved when G is a tree following algorithms of Adolphson and Hu 

[1], Goldberg and Klipker [20], Shiloach [34], and Chung [11].  Among these, Chung’s 

algorithm has the best time complexity to date; it solves the problem on trees in O n( )λ  time 

where λ  is any real number satisfying  

 

λ > ≅
log
log

.
3
2

1585 . 

 

 Frederickson and Hambrusch [16] have given an algorithm that solves OLA when G is 

outerplanar.  Recall that outerplanar graphs are characterized by the absence of subgraphs 

homeomorphic to K 4  and K2 3, .  Topologically, these are structures embeddable in the plane in 

such a way that all vertices lie on the outer face.  Some examples are shown in Figure 1.2.  In 

particular, the Frederickson and Hambrusch algorithm solves OLA on outerplanar graphs in 

time O n n( )δ 2 2+ , where δ  is the number of biconnected components containing a central 

articulation point a * .  A central articulation point is a vertex the removal of which results in 

connected components with at most 
V G( )

2
 vertices each.  The graph in the lower right portion 

of Figure 1.2 has a central articulation point a *  and δ = 3 . 
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a*

 

Figure 1.2  Some Outerplanar Graphs 
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 Finally, consider the cases of the grid graph (also known as the lattice graph) and the 

discrete torus.  First, the m by n grid graph is a graph G=(V,E) where 

V i j i m j n= × ∋ ≤ ≤ ≤ ≤{ , }1 1  and (( , ), ( , ))i j k l E∈  whenever ( i k=  and j l+ =1 ) or 

( j l=  and i k+ =1 ).  The m by n discrete torus is a graph G=(V,E) where 

V i j i m j n= × ∋ ≤ ≤ ≤ ≤{ , }1 1  and (( , ), ( , ))i j k l E∈   whenever ( i k=  and 

j l n+ ≡1 mod ) or  ( j l=  and i k m+ ≡1 mod ).  We shall use notation Gm n,  and Tm n, , 

respectively, to denote these graphs.  Figure 1.3 below shows G6 6,  on the left and T6 6,  on the 

right.  In each case, OLA is solved following an algorithm of Muradyan and Piliposjan [29]. 

 

 

Figure 1.3  G6 6,  and T6 6,  

 

 For each of the previous interesting cases (i.e., Km n, , trees, outerplanar graphs, Gm n, , 

and Tm n, ) we have chosen to omit details of how to actually order the respective graphs.  

Rather, the interested reader is invited to consult the stated references.  Although the optimal 

ordering strategy is in a sense straightforward for these cases, they are all nontrivial.  
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Furthermore, these strategies can differ between instances significantly, giving each solution 

technique a somewhat ad-hoc flavor.   

 In the next chapter, we will solve OLA on a class of graphs not heretofore considered.  

It will be evident that this solution also relies heavily on the special structure of the given class of 

graphs. Now we turn our attention to some complexity issues concerning OLA. 

 

1.3  Complexity Issues  

 As stated at the outset of this chapter, the decision version of OLA is well known to be 

NP-Complete.  Presently, we provide additional insight that suggests that the problem is in 

some sense even more difficult than NP-Completeness alone would indicate.  First, we present 

some background. 

 A great variety of graph problems that are NP-Complete/Hard for arbitrary graphs are 

efficiently solvable on restricted graph classes.  Some of these classes are interesting, some are 

less so.  Relative to the former, much work has been done establishing fast (often linear) 

algorithms, when instances are restricted to members of a recursively constructed graph class.  

Among these are trees, series-parallel graphs, Halin graphs, and partial k-trees.  Moreover, 

work in this area is fairly refined, even to the point that various formal models have been 

developed that show how these efficient algorithms can be obtained. 

 One such formalization appears in Borie, Parker, and Tovey [8].  Established is a 

predicate calculus in which many NP-Complete graph problems can be expressed.  This is 
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important, for it is then shown that any problem so expressible has a linear time algorithm that 

can be generated from the expression automatically.  For example, it is straightforward to 

express the well-known VERTEX COVER problem in the predicate calculus.  Recall that the 

latter seeks, for a graph G V E= ( , ) , a smallest subset V V1 ⊆  such that for each edge 

{ }u v E, ∈ , at least one of u and v belongs to V1 .  Importantly, this problem can be stated 

succinctly in the predicate calculus as 

 

( )( ) ( )( )min : ,V e v V v e1 1 1 1 1 1∀ ∃ ∈ Inc . 

 

As suggested, the referenced paper describes how the formulation of this legal expression leads 

to a linear time algorithm for VERTEX COVER on any recursively constructed graph.  Now, 

the key observation is that a great variety of hard problems can be expressed in this calculus 

and are therefore solvable in linear time on these graphs.  A list of such problems includes 

DOMINATING SET, HAMILTONIAN CYCLE, EULERIAN SUBGRAPH, K-

COLORABILITY and MAXIMAL MATCHING. 

 In fact it is an exercise to find interesting problems that are not known to be expressible 

in this predicate calculus.  However, there are certain ones that are notoriously resistant in this 

regard:  OLA, BANDWIDTH and other so-called vertex labeling problems.  So far as we 

know, these problems are not known to be expressible in the calculus.  Of course, at least for 

BANDWIDTH this is consistent since the latter is known to be hard on trees.  In any event, if 
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OLA were shown to be expressible, its status on all recursive graph classes would be resolved.  

The fact that it is not known to be expressible preserves its status (at least circumstantially) as a 

problem residing at the “periphery” of the complexity hierarchy. 

 

1.4  Restricted Arrangement  

 Regarding the notion of problem complexity, the present work has also exposed a 

particularly interesting albeit slightly modified version of the primary problem.  For ease, we 

might call this version the partial OLA problem where now we assume that as part of the 

instance, some (possibly empty) subset of vertices have been labeled and the aim is to map the 

remaining labels (from { , ,..., }1 2 n ) to the other vertices and to do so in an optimal way overall, 

given the constraints imposed by the initially fixed labels.  Indeed, it is not clear that even for 

graph classes where OLA is solved, that this modified version would submit as well.  In fact, for 

other problems, we know that analogous “completion” problems are, in fact, hard.  Classic in 

this regard is the so-called 4-COLOR COMPLETION problem on planar graphs.  Well 

known, of course, is that 4-COLORABILITY is decidable (trivially) on planar graphs; 

however, if vertices (of a planar graph) are preassigned any of at most four colors, deciding if 

the remaining vertices of the graph can be properly colored using no more than four colors 

overall is NP-Complete.  The proof of this is only an exercise; the reduction is from planar 

graph 3-COLORABILITY.  As a consequence, it seems worthwhile to consider the 

aforementioned modification to OLA.   
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 Presently, the status of the partial OLA problem defined above on even primitive graph 

classes such as paths is not clear to us.  One special case is easy, however.  Let us call a vertex 

“fixed” if its label is given as part of the instance and “free” otherwise.  Now consider the path 

on n vertices, Pn .  If the set of fixed vertices is such that no free vertex is adjacent to another 

free vertex, then our partial OLA problem can be easily solved by weighted bipartite matching.  

We simply form a (complete) bipartite graph G A B E= ( , , )  where A denotes the set of free 

vertices of Pn  and B, the set of available labels (those not used to label fixed vertices).  Now 

for i A∈  and j B∈ , let wij  be the weight on edge ( , )i j .  We simply let that weight be the 

arrangement cost of placing label j in “hole” i. 

 If we are less restrictive and allow G to be a collection of disconnected components yet 

still requiring each component to be a path, then we can obtain (albeit negative) a result for 

partial OLA.  Consider the problem PPA stated below. 

 

PPA:  Given a graph G V E= ( , )  which is a disjoint union of paths, an integer k, and a 

subset V V⊆  that has fixed labels, is OLA( )G k≤ ? 

 

In this section when we say OLA(G)  we mean the optimal arrangement cost subject to the 

conditions imposed by any fixed labels.  Obviously, OLA is trivially solved if V = ∅ ; 

otherwise, its status changes.  We have 
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Theorem 1.1: PPA is NP-Complete. 

 

Proof:  PPA is clearly in NP; given G  and a labeling it is easy to vertify that OLA( )G k≤ .  

Now we show that P3P ∝ PPA where P3P is the (strong sense) NP-Complete 3-PARTITION 

problem, the statement of which appears below. 

 

P3P:  Given a set A of 3m elements, an integer bound B, and an integer size s(a) for each 

a A∈  such that B s a B4 2< <( )  and such that s a mB
a A

( )
∈
∑ = , can A be partitioned 

into m disjoint sets A A Am1 2, ,...,  such that for 1 ≤ ≤i m , s a B
a Ai

( )
∈
∑ = ? 

 

From an instance of P3P we create an instance of PPA as follows.  Let k m B= −2 1( ) .  The 

graph G consists of a disjoint union of 3 1m +  paths.  The first 3m paths correspond to the 

elements of A and have length s a( )  for each a A∈ .  The last path has length m + 1 , and each 

vertex in this path has a fixed label.  The ith vertex in this path has label 1 1+ +i B( ) .  An 

example of this construction with A={5,5,5,5,6,7,7,8,9}, m=3, and B=19 appears in Figure 1.4 

below.  The vertices with fixed labels are shown as squares with their respective labels inside. 
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1 21 41 61

 

Figure 1.4  Partial OLA Instance G 

 

(⇒ )  Suppose there exists a suitable partition in our instance of P3P.  Among the integers from 

1 to 1 1+ +m B( )  inclusive, there are m groups of B consecutive integers that are not used as 

fixed labels. Now we use a group of B consecutive integers to label the B vertices of G 

corresponding to some Ai .  We label these three paths in the obvious optimal way, incurring a 

cost of ( )s a
a Ai

( ) −
∈
∑ 1 .  We do this for each of the m Ai s.  This now complete labeling has a 

total cost of 

 

( )s a m B mB m m B m B
a A

( ) ( ) ( ) ( )− + + = − + + = −
∈
∑ 1 1 3 1 2 1  
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so OLA( )G k≤  as required.  Figure 1.5 shows a complete labeling using the data from our 

previous example.   

 

1 21 41 61
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Figure 1.5  Optimal Labeling of G 

 

(⇐ )  Now suppose G can be labeled so that OLA( )G k≤ . We will show this is possible only 

when there is a suitable partition in P3P.  First note that  

 

OLA( ) ( ) ( ( ) ) ( )G m B s a m B mB m k
a A

≥ + + − = + + − =
∈
∑1 1 1 3  

 

so we can assume OLA( )G k= .  First note that the path with partial labels is completely 

labeled, and the cost for this labeling is m B( )+ 1 .  Also note that every other path in G 
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corresponding to a A∈  must be labeled using s a( )  consecutive integers if OLA( )G k=  is to 

be achieved.  But since the partial labeling leaves “blocks” of B consecutive integers, it is clear 

that OLA( )G k=  can only happen if there is a suitable partition in the instance of P3P. 

n 

 

Corollary 1.1: PPA remains hard even when the subset V  of fixed labels is confined to only one 

component of G. 

 

 Finally, we consider what might be viewed as a supergraph version of the partial OLA 

theme. 

 

PPAS:  Given a graph G V E= ( , )  that is a disjoint union of paths, an integer k, and a 

subset V V⊆  that has fixed labels, is G a spanning subgraph of a connected graph 

′ = ′G V E( , )  such that OLA( )′ ≤G k ? 

 

Theorem 1.2: PPAS is NP-Complete. 

 

Proof: PPAS is clearly in NP; given ′G  and a labeling it is easy to vertify that G G⊆ ′  and 

OLA( )′ ≤G k .  Now we show that P3P ∝ PPAS.  From an instance of P3P we create an 

instance of PPAS as follows.  Let k m B= +( )2 1 .  The graph G consists of a disjoint union of 
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3 1m +  paths.  The first 3m paths correspond to the elements of A and have length s a( ) − 1 for 

each a A∈ .  The last path has length 1 1+ +m B( ) .  This last path has m+1 fixed labels.  The 

ith vertex in this path has label 1 1+ +i B( ) .  An example of this construction with 

A={5,5,5,5,6,7,7,8,9}, m=3, and B=19 appears in Figure 1.6 below. The vertices with fixed 

labels are shown as squares with their respective labels inside. 

 

1 21 41 61

 

Figure 1.6  Partial OLA Instance G for PPAS 

 

(⇒ )  Suppose there exists a suitable partition in our instance of P3P.  Then for each Ai  we 

connect one end vertex of each path corresponding to a Ai∈  to one of the three unlabeled 

vertices in a segment of the partially labeled path of G that is between labeled vertices.  Figure 

1.7 displays this construction of ′G .  In this case A1 5 7 7= { , , } , A2 5 5 9= { , , } , and 

A3 5 6 8= { , , } .  Note that the paths are grouped based on the partitions for clarity. 
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1 21 41 61

 

Figure 1.7  ′G  

 

Now it is easy to see that for each Ai  we can use the m integer labels available between each 

fixed label to label ′G  optimally.  Each vertical section gets labeled monotonically with 

consecutive integers.  Figure 1.8 shows how the first segment is done; the others are done in 

exactly the same way. 
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Figure 1.8  Optimal Labeling of ′G  

 

Now it is clear that this labeling has cost 

 

1 1 1 1 2 1+ + − + = + + = + =
∈
∑m B s a m B mB m B k
a A

( ) ( ) ( ) ( ) . 

 

(⇐ )  Now suppose G is a spanning subgraph of a connected graph ′ = ′G V E( , )  with 

OLA( )′ ≤G k .  We will show this is possible only when there is a suitable partition in P3P.  

First note that  

 

OLA( ) ( ) ( ( ) ) ( )G m B s a m B mB m
a A

≥ + + − = + + −
∈
∑1 1 1 3  
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and that since we must add at least 3m edges to G each “costing” at least 1 to obtain ′G ,  

 

 OLA OLA( ) ( ) ( )′ ≥ + ≥ + + − + =G G m m B mB m m k3 1 3 3  

 

so we can assume OLA( )′ =G k .  Note that if monotonicity is violated in any segment of the 

partially labeled path of G, or if any “vertical” edge of ′G  costs more than 1, we cannot 

achieve OLA( )′ =G k .  Therefore, OLA( )′ =G k  can only happen if paths whose total 

number of vertices is exactly B-3 are added to each segment of the partially labeled path.  

Otherwise, some segment must have more vertices “assigned”, and with the three vertices from 

the partially labeled path, brings the total number of vertices requiring labels between two 

square vertices to more than B.  But then some vertex in this segment must get a label that is not 

between the labels of the bordering square vertices (since only B such labels are available), and 

the aforementioned conditions for OLA( )′ =G k  to hold cannot be satisfied.  Thus, each 

segment gets assigned paths whose total number of vertices is exactly B-3, and this corresponds 

to a suitable partition in P3P. 

n 

 

Corollary 1.2: PPA2 remains hard even when the subset V  of fixed labels is confined to only 

one component of G. 
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CHAPTER II 

OLA ON A CLASS OF HALIN GRAPHS 

 
 

 Halin graphs are planar graphs of order n > 3  with the property that the edge set can 

be partitioned into a tree no vertex of which has degree 2 and a cycle C on only and all pendant 

vertices of the tree.  These structures were first studied by R. Halin in [21] as representative of a 

class of minimally 3-connected graphs.  So far as we know, the status of OLA on arbitrary 

Halin graphs remains open.  On the other hand, we will show here that it can be solved by a fast 

algorithm on the subclass of Halin graphs where the underlying tree is a caterpillar i.e., a tree 

such that the removal of degree-1 vertices leaves a path.  Representative of this set of restricted 

Halin graphs is the structure shown in Figure 2.1 below.  The caterpillar is given in bold. 

 

 

Figure 2.1:  Halin Graph with Tree Component a Caterpillar 

 

2.1  OLA on Arbitrary Caterpillars  
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 Following, we give an algorithm for solving OLA on the special tree class of 

caterpillars.  As it turns out, this is actually all that we need in order to solve the problem on the 

corresponding Halin graph.  First, we state some well-known properties (for example, see 

Chung [11]) of optimal linear arrangements on arbitrary trees.  Observe that we denote the 

vertex and edge sets of a graph G by V(G) and E(G) respectively. 

 

Property 1.  An optimal linear arrangement, f *  of a tree T, maps V T( )  onto a set of 

consecutive integers. 

n 

 

(We will hereafter assume that vertex labels are drawn from the integers { , ,..., }1 2 n .) 

 

Property 2.  The vertices u and v with f u*( )  and f v*( )  labeled as 1 and n respectively are 

both pendants, i.e., deg(u) = deg(v) = 1. 

n 

 

 Property 3.  Let P be the path in T which connects the pendants labeled 1 and n.  Denote P 

by { , ,..., }i i it0 1 .  Then the labelings of P are “monotone” in that 

 

f i f i i tx x
* *( ) ( ) , ,..., ,< = −+1 01 1for  
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or 

 

f i f i i tx x
* *( ) ( ) , ,..., .> = −+1 01 1for  

n 

 

The next property is specific to caterpillars. 

 

Property 4.  Suppose P is a path connecting a pair of pendants in T and moreover, let this be a 

longest path in T.  Then the graph formed by E T E P( ) \ ( )  is a vertex disjoint collection of 

stars each of which is labeled by consecutive integers. 

n 

 

Note that,  necessarily, the path P just described will include every vertex on the spine of the 

caterpillar, i.e., all vertices with degree at least two in T. 

 Following, we state an easy lemma which establishes a lower bound on the 

value σ ( , )T f  of any labeling f of a caterpillar T and hence for the value of an optimal labeling 

σ σ( ) min { ( , )}T T ff= .  We then state an equally simple algorithm for labeling the vertices of 

a caterpillar which achieves this value and is thus optimal.  We have  
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Lemma 2.1.  Let T be an arbitrary caterpillar on n vertices and denote by hi , i t= 1 2, ,..., , the 

vertices on the spine of the underlying path P of the caterpillar.  Then 

 

σ ( , )
(deg( ) )

T f n
hi

i

t

≥ − +
−









=
∑1

1
4

2

1

 

 

Proof:  Consider any labeling f of T.  It is easy to see that the path from f i( ) = 1  to f j n( ) =  

in T has value at least n − 1.  Now, if the edges of this path are removed from T then the 

subgraph of T that results can be expressed as a (not necessarily vertex disjoint) union of at 

most t stars each with order at least deg( )hi − 1 .  But the value of an optimal labeling of a star 

of order p is well known to be  p2 4  and we are done. 

n  

 

 We now state an algorithm for OLA on caterpillars.  First, denoting the caterpillar by T, 

we find a path P in T as defined in Property 4.  Next, label the end vertices of P with labels 1 

and n, respectively.  Now, partition the integers { , ,..., }2 3 1n −  as { ,..., },{ ,... , },2 11 1 2k k k+  

...,{ ,..., }k nq + −1 1  and label each of the q+1 stars formed by E T E P( ) \ ( )  in an optimal 

way with the integers in the respective components of the stated partition. 

 Clearly, the labeling of the vertices in P satisfies the monotonicity attribute of Property 3 

and, moreover, has a value of exactly n − 1.  Each of the stars formed by the removal of E P( )  
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are labeled by consecutive integers and the labeling is optimal in each case.  (Note that the 

optimal labeling of stars is well known and we take no space here for a description of the 

strategy.)  We have then that the value of the total labeling is exactly the bound value of the 

lemma and is thus optimal. 

 We can demonstrate the procedure by operating on the tree portion (in bold) of the 

instance from Figure 2.1.  Accordingly, let us select an appropriate pair of pendants and label 

these 1 and n as indicated in the upper left of Figure 2.2.  Removal of the edges on the path 

connecting these vertices leaves the forest of stars shown in the upper right portion of the figure.  

These stars are then labeled as suggested above. 

 

1
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Figure 2.2:  OLA on a Caterpillar 

 

2.2  A Solvable Case of OLA on Halin Graphs  
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 We are now in a position to establish that OLA is solved for the class of Halin graphs 

where the tree component of the decomposition is a caterpillar.  In fact, the algorithm is already 

at hand:  we simply solve OLA on the caterpillar with the cycle labeling induced directly by the 

labeling of the pendants of the caterpillar.  The bottom graph in Figure 2.2 illustrates the notion.  

Note that in this regard, some care is required in labeling the pendants of each star.  Specifically, 

we want the induced labeling on the cycle to be such that the label monotonicity property is 

satisfied for each of the two paths (defining the cycle) connecting vertices labeled 1 and n.  For 

a given embedding of stars, this is a trivial task. 

 We now establish that this overall strategy is correct.  Let us begin with a pair of 

results, the first of which is easy (and applies to any graph). 

 

Lemma 2.2:  Let G be a finite graph and let G G G k1 2, ,...,  be any set of edge-disjoint 

subgraphs of G.  Then 

 

σ σ( ) ( )G G i

i S

≥
∈
∑  for all S k⊆ { , ,..., }1 2 . 

 

n 
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That is, the value of an optimal labeling for G is at least as large as the sum of the optimal values 

for independent labelings on subgraphs of G.  This sum is defined over any set of subgraphs; 

clearly it is strengthened by judicious choices of the latter. 

 

 The next lemma is particularly important and is specific to the stated class of Halin 

graphs. 

 

Lemma 2.3:  Let G be a Halin graph with cycle C and tree component T which is a caterpillar.  

Then for any labeling f (including an optimal one), 

 

σ ( , ) ( )G f n
ni

i

t

≥ − +










=
∑3 1

4

2

1

 

 

where ni  denotes the order of the ith star defined as per Lemma 2.1. 

 

Proof:  Suppose the instance is defined on graph G and that the labeling algorithm has been 

applied resulting in f(G).  We consider two cases:  (1) where vertices u and v with f(u) = 1 and 

f(v) = n are in V(C) but at least one is not a vertex on a longest path in T;  

(2) where given u and/or v labeled as 1 and n is/are nonpendant vertices in T, i.e., not in V(C). 

 Consider case (1) first.  Since Halin graphs are 3-connected, there must exist in G three 

internally vertex-disjoint paths connecting every pair of distinct vertices.  But any path with 
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termini labeled as say x and y has value at least x y−  and if the labels on the path satisfy 

Property 3, this value will be exact.  Hence, G will have at least one subgraph consisting of the 

stated three paths connecting the vertices labeled 1 and n and this subgraph has total label value 

at least 3 1( )n − .  Now, remove this subgraph from G and denote the result by ′G .  Then the 

degree of each vertex on the spine of T is reduced by either 2 or 0.  But then each of the stars 

described in the proof of Lemma 1 is either isomorphic to a component in ′G  or is isomorphic 

to a subgraph of a component in ′G .  In either case, we have from Lemma 2 that σ ( )′G  is at 

least as large as the optimal values of labelings of the stars.  Adding this value to 3 1( )n −  

produces the bound of the lemma. 

 Now, consider case (2).  Here, we assume that one or both of the vertices u and v with 

f(u) = 1 and f(v) = n are not pendant vertices in T.  For ease, we will consider only the case of 

the vertex labeled 1; the case for only n as well as for both can be treated in identical fashion 

and are not presented here.  Now, the same argument regarding the formation of ′G  can be 

employed where the aforementioned 3-path subgraph, when removed, contributes at least 

3 1( )n −  as before.  But now the vertex on the spine of T which is labeled 1 has its degree 

reduced by 3.  However, in comparing the total label value of ′G , we need only examine the 

effect of the stated degree reduction at the vertex with label 1.  In this regard, it is easy to see 

that ′G  contains edge-disjoint subgraphs that are either isomorphic to, or that require at least 

the label value of the stars defined earlier, or else ′G  will contain a star of order one less but 

which, by hypothesis, has its hub vertex label fixed at 1, in turn yielding a greater overall label 
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value than that of an optimal star of order one greater.  In all cases, ′G  costs at least 
ni

i

t 2

1 4










=
∑  

and again, we have produced the stated bound.  These are the only cases we need to consider 

and the proof is complete. 

n 

 

 For ease, both cases described in the proof of Lemma 2.3 are demonstrated in Figure 

2.3.  At the top right in the figure, we show the stars that result vis-à-vis the application of the 

proposed algorithm and specifically relative to the labeling of the caterpillar.  For reference, let 

us code these by the letters a, b, c, d, and e as indicated.  Now, case 1 is demonstrated at the 

middle/bottom left where both vertices labeled by 1 and n are on the cycle but not as termini of 

a longest path in the caterpillar.  The subgraph in bold represents a choice of three vertex-

disjoint paths connecting the vertices labeled 1 and n; its removal, yielding ′G  is shown directly 

below.  Further, subgraphs of ′G  which are isomorphic to the respective stars above are 

denoted as indicated. 

 For case 2, we will demonstrate a pair of possibilities for the sake of clarification.  The 

first, which we denote by subcase 2.1, assumes a label of 1 at a nonpendant vertex of the 

caterpillar (with the vertex labeled n on the cycle as shown).  Again, the subgraph of 1 
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Figure 2.3:  Cases Described in Proof of Lemma 2.3 



 32

 to n paths is denoted in bold and ′G  is given below.  Instructive here is that relative to the 

given vertex labeled 1, the concomitant removal of its incident edges eliminates all of the star 

specified as component c at the top.  However, it must be that somewhere else in ′G there is a 

subgraph isomorphic to c (in this case, an edge) and so that the result of Lemma 2.2 is 

applicable.  Such an alternative is shown in the figure.  On the other hand, the subcase 2.2 

shows the outcome when the label 1 is assigned to a high degree, nonpendantvertex of the 

caterpillar.  Here, when ′G  is formed, a star is left having hub-vertex of degree 4 and 

moreover, there is no subgraph (anywhere in ′G ) which is isomorphic to d at the top.  

However, since the hub of the star formed relative to ′G  has label 1, no labeling of its adjacent 

vertices can result in a value overall that is strictly better than the optimal labeling of the star of 

order 6 shown by component d above.  Indeed, this outcome generalizes to any pair of stars, 

one of order t and the other of t + 1  for all t greater than 3.  (Observe that orders less than this 

leave edges or paths of length two and the argument for case 2.1 applies.) 

 We now come to the desired result.  

 

Theorem 2.1:  Let G be a Halin graph with cycle C and tree component T which is a 

caterpillar.  Then, 

 

f T f G* *( ) ( )=  where σ σ( ) ( ) ( )G T n= + −2 1  
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(i.e., the pendant labels relative to T remain optimal when E(C) are appended). 

 

Proof:  The result of Lemma 2.3 specifies a lower bound on the cost of any labeling 

which most surely holds for an optimal one.  Moreover, the application of the stated 

algorithm will always produce a labeling with exactly this value and is thus optimal. 

n 

 

 Theorem 2.1 settles the question of OLA on Halin graphs with tree component a 

caterpillar.  As indicated in the beginning of this chapter, OLA for arbitrary Halin graphs remains 

open.  However, we note that Halin graphs are contained in the class of partial 3-trees, a 

recursively constructed graph class [9].  The relevance of this will become clear in Chapter IV.  

Next, we turn our attention to finding bounds on the cost of linear arrangements.  
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CHAPTER III 

BOUNDS ON ARRANGEMENT COSTS 

 
 In this chapter, we examine some approaches for obtaining bounds on the cost of 

arrangements.  As we shall observe, there is substantial variability in the strength of the various 

bounds. 

 

3.1  A Survey of Known Bounds for OLA  

 We begin with some simple ideas.  Certainly, we can always assume that G is 

connected since otherwise we can consider the problem on the connected components of G 

separately.  The most obvious bounds for a connected graph on n vertices are as follows: 

 

n G f
n n n

− ≤ ≤
− +

1
1 1

6
σ ( , )

( ) ( )
 

 

The lower bound follows since the contribution of each edge to σ ( , )G f  must be at least 1, 

while the upper bound results from the cost for a clique (see Chapter I). 

 A slightly more interesting bound can be obtained from the degree sequence of the 

graph.  Letting d d dn1 2, ,...,  denote the degree sequence of G, then we have 
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d
Gi

i

n +

















≤
=
∑

1
2

2
2

1

OLA( ) . 

 

To see this, observe that the edges incident to a vertex of degree k must contribute at least 

k +

















1
2

2

 to σ ( , )G f  (recall the discussion of ( )OLA Sn  given in Chapter I).  But summing 

over all vertices counts each edge exactly twice, and we have the ratio shown. 

 Juvan and Mohar [26] exhibit a number of interesting bounds for OLA as well as for the 

minimum-2-sum and bandwidth problems.  Let D(G) be the n by n matrix with the degree of 

vertex i in the ith row, ith column and zeros elsewhere.  Let A(G) be the adjacency matrix of G 

with a ij = 1 if ( , )i j E∈  and zero otherwise.  Then L G D G A G( ) ( ) ( )= −  is defined as the 

Laplacian matrix of G.  The eigenvalues of L(G) are called the Laplacian eigenvalues of G.  

They are normally ordered and denoted by 

 

λ λ λ1 2( ) ( ) ... ( )G G Gn≤ ≤ ≤ . 

 

It is easy to show that L(G) is a positive semidefinite matrix, and so it has only real nonnegative 

eigenvalues.  It is well known that the multiplicity of 0 as an eigenvalue of L(G) is equal to the 
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number of components of G, so it is always the case that λ 1 0( )G = .  Accordingly, most of the 

bounds in [26] use λ 2 ( )G , the second smallest eigenvalue.  One of these is 

 

λ σ λ2

2 21
6

1
6

( ) ( , ) ( )G
n

G f G
n

n
−

≤ ≤
−

. 

 

Notice that this expression bounds the value of any labeling from both above and below; 

OLA(G) also falls between these bounds.  Since OLA(G) minimizes σ ( , )G f  the lower bound 

value is in some sense more useful.  As a practical matter however this value is typically quite 

distant from OLA(G).  Table 3.1 displays some instance graphs along with the bounds 

indicated. H2 1.  is the Halin graph shown in Figure 2.1. 

 

Table 3.1  Some Example Graphs 
 

 λ2

2 1
6

( )G
n −  OLA(G) λn G

n
( )

2 1
6
−  

P10  1.62 9 64.38 
P25  1.64 24 414.36 
C10  6.30 18 66 
C25  6.53 48 414.36 
W10  24.22 43 165 
W25  111.09 204 2600 
K10 15,  1040 1230 2600 
H2 1.  16.49 75 552.20 
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3.2  Bounds Based on Cut Sets  

 In this section, we consider more interesting (and generally stronger) bounds on 

OLA(G) that are based on the sizes of certain cut sets in G.  The concepts that lead to our 

formalizations in this section are not new, but have appeared in the literature in various forms for 

several decades.  Harper [23] appears to be the first to present these ideas, but other 

researchers (for example, see Adolphson and Hu [1], Bezrukov [3], and Liu and Vannelli [27]) 

have made contributions in this area as well.  Following, we present our version of the cut set 

bound concept and proofs of the relevant theorems.   

 First, we provide some notation and definitions.  Let c A A( , )  denote the number of 

edges in G from vertices in A  to vertices in A  (i.e., V A\ ).  Then we define 

 

σ i A V c A A A i= ∋ =⊆min { ( , ) } . 

 

That is, σ i  is the size of a smallest cut in G induced by exactly i vertices.  Obviously, there may 

be many choices of A V⊆  that yield σ i  for a given i. 

 

Definition 3.1 

We shall call a graph σ-good if there exist subsets S S S VV1 2, ,..., ⊆  with 

• S ii = , 
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• S S S VV1 2⊆ ⊆ ⊆ =... , and 

• c S Si i i( , ) = σ , where i V= −1 2 1, ,..., .       (3.1) 

n 

 

For example, a cycle on n vertices is clearly σ-good.  It is easy to see that σ i = 2  everywhere 

and the formation of the nested sets Si  yielding these values is immediate.  The labeling (one of 

many) shown below and left in Figure 3.1 demonstrates for C6 .  On the other hand, the graph 

to the right in Figure 3.1 is not σ-good, since σ σ2 3 21= = ⇒ =S a b{ , } and S d e f3 = { , , }  

but S2
⊆ S3 . 
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Figure 3.1  Examples of σ-good and not σ-good Graphs 

 

 We now establish a pair of results relating these cut sets and linear arrangement values. 

 

Theorem 3.1:  For any connected, simple graph G, OLA( )G i
i V

≥
≤ ≤ −
∑σ

1 1

. 
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Proof:  Any labeling of G including an optimal one defines nested sets T T TV1 2⊆ ⊆ ⊆...  

where v T i f vi∈ ≥ whenever ( ) .  Consider a “linear” embedding of the optimally labeled 

graph where the vertices of G are located at the integer points of ℜ 1  corresponding to the 

value of f(v).  The layout in Figure 3.2 illustrates. 

 

 

3

21

4 n... ...

T1T2T3  

Figure 3.2  Linear Ordering 

 

But clearly 

 

OLA( ) ( , )G c T Ti i i
i Vi V

= ≥
≤ ≤ −≤ ≤ −
∑∑ σ

1 11 1

 

 

which is the desired result. 

n  
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Theorem 3.1 provides a lower bound on the cost of any arrangement.  Obviously, it becomes 

most useful whenever we can calculate σ i
i V1 1≤ ≤ −
∑ .  Shortly, we shall address the issue of making 

this calculation, but first we state another theorem. 

 

Theorem 3.2:  For any connected, simple graph G, OLA( )G Gi
i V

= ⇔
≤ ≤ −
∑σ

1 1

 is σ-good. 

 

Proof:  ( )⇒  As stated in the proof of Theorem 3.1, an optimal labeling of G defines nested 

sets T T TV1 2⊆ ⊆ ⊆...  where v T i f vi∈ ≥ whenever ( ) .  Summing the sizes of the cut sets 

implied by these Ti  terms yields the arrangement cost.  Therefore, suppose 

 

( )OLA( ) ,G c T Ti i
i V

i
i V

= =
≤ ≤ − ≤ ≤ −
∑ ∑

1 1 1 1

σ . 

 

Then it must be the case that  

 

( )c T T ii i i, = ∀σ . 

 

Thus, letting each Ti  serve as the corresponding Si  specified (3.1), it follows that G is  

σ-good. 
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( )⇐   Alternatively, suppose G is σ-good.  Then there are subsets S S S VV1 2, ,..., ⊆  as 

described in (3.1).  Moreover these subsets define an ordering of G given as f v i( ) =  where 

v S Si i∈ −\ 1  for 1 ≤ ≤i V  with S0 = ∅ .  But the value of this labeling is 

 

c S Si i i
i Vi V

( , ) =
≤ ≤ −≤ ≤ −
∑∑ σ

1 11 1

 

 

which is an optimal value following the inequality of Theorem 3.1.  This is enough to establish 

the result and we are done. 

n  

 

We have then that the bound of Theorem 3.1 is realizable if and only if the graph is σ-good. 

 What graphs are σ-good?  Although a complete answer to this question appears to be 

difficult, there are certainly some simple cases.  Recall the graph Cn .  We know from Chapter I 

that OLA( ) ( )C nn = −2 1 .  As stated earlier, it is easy to see that σ i = 2  for 1 1≤ ≤ −i n , so 

it is clear that σ i
i V

n
1 1

2 1
≤ ≤ −
∑ = −( )  also and so by Theorem 3.2, Cn  is σ-good for all n.   

 Similar analysis quickly establishes that paths, cliques, stars, and wheels are also σ-

good.  For Pn , σ i = 1  for 1 1≤ ≤ −i n  and ( )σ i
i V

nn P
1 1

1
≤ ≤ −
∑ = − = OLA . For K n , it is easy 

to see that σ i i n i= −( )  for 1 1≤ ≤ −i n , so  
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( )σ i
i V i n

ni n i
n n n

K
1 1 1 1

1 1
6≤ ≤ − ≤ ≤ −

∑ ∑= − =
− +

=( )
( ) ( )

OLA . 

 

For Sn  with n even,  

 

σ i

i i
n

n i
n

i n
=

≤ ≤

− + ≤ ≤ −










 for 

 for 

1
2

2
1 1

 

 

and  

 

( )σ i
i V i

n n
i n

ni n i
n

S
1 1 1

2 2
1 1

2

4≤ ≤ − ≤ ≤ + ≤ ≤ −

∑ ∑ ∑= + − = = OLA . 

 

For n odd,  

 

σ i

i i
n

n i
n

i n
=

≤ ≤
−

−
+

≤ ≤ −










 for 

 for 

1
1

2
1

2
1
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and  

 

( )σ i
i V i

n n
i n

ni n i
n

S
1 1 1

1
2

1
2

1

2 1
4≤ ≤ − ≤ ≤

− +
≤ ≤ −

∑ ∑ ∑= + − =
−

= OLA . 

 

The calculation for Wn  is similar. 

 Given any graph, if we can verify σ-goodness accordingly, by using Definition 3.1 we 

will have also solved linear arrangement on the instance, since the nested subsets S S S V1 2, ,...,  

define an optimal labeling.  Also, there are graph classes for which OLA can be efficiently 

solved on all instances but where the latter may not be σ-good in general.  For example, all 

trees are not σ-good (as the example to the right in Figure 3.1 demonstrates), yet we know that 

OLA can be solved in polynomial time on trees.  A similar situation exists for the class of 

general outerplanar graphs. 

 We now turn our attention to the issue of evaluating the value of the bound given by 

Theorem 3.1.  Unfortunately, there is bad news in general.  Consider the NP-Complete 

problem MINIMUM CUT INTO BOUNDED SETS, the statement of which appears below 

[17]:  

 

Instance:  Graph G V E= ( , ) , weight w e Z( ) ∈ +  for each e E∈ , specified vertices s t V, ∈ , 

positive integer B V≤ , and positive integer K. 
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Question:  Is there a partition of V into disjoint sets V1  and V2  such that s V∈ 1 ,  

t V V B V B∈ ≤ ≤2 1 2, , , and such that the sum of the weights of the edges from E that have 

one endpoint in V1  and one endpoint in V2  is no more than K? 

 

Note this remains NP-Complete for B V= 2  and w e( ) = 1 for all e E∈ . 

 The relationship to our problem is only an exercise.  First consider the case where V  is 

even.  Then the calculation of σ V
2

 is exactly the min-cut problem indicated above where 

B V= 2  and w e( ) = 1.  When V  is odd, we deduce the same conclusion by considering the 

graph formed by adding an isolated vertex to G.  Then finding both σ V −1
2

 and σ V +1
2

 are 

hard.  Hence, though σ i
i V1 1≤ ≤ −
∑  might be very useful in bounding OLA(G), it is not likely that we 

can efficiently obtain the corresponding value for arbitrary graphs. 

 On the other hand, there are many instances where σ i
i V1 1≤ ≤ −
∑  can be found by ad-hoc 

means.  One non-trivial example is the n by n discrete torus.  Even more encouraging is that we 

will exhibit an algorithm to find σ i
i V1 1≤ ≤ −
∑  in polynomial time on any recursively constructed 

graph.  Among these are series-parallel graphs, Halin graphs, and partial k-trees.  We take up 

these issues in the next chapter. 
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CHAPTER IV 

COMPUTING σ i
i V1 1≤ ≤ −
∑  

 

 We begin with the computation of σ i
i V1 1≤ ≤ −
∑  for the discrete torus followed by a similar 

computation for the class of recursive graphs.  The latter are particularly interesting in that while 

the respective σ i  terms are efficiently computable, recognizing “σ-goodness” for members of 

the class remains elusive. 

 

4.1  Linear Arrangement on the Discrete Torus  

 Recall from Chapter I that an m by n discrete torus is a graph G=(V,E) where 

V i j i m j n= × ∋ ≤ ≤ ≤ ≤{ , }1 1  and (( , ), ( , ))i j k l E∈   whenever ( i k=  and 

j l n+ ≡1 mod ) or  ( j l=  and i k m+ ≡1 mod ).  Following, we will consider the special 

case where m n= .   

 

4.1.1  The Lower Bound 

 Is the n by n discrete torus σ-good?  If we could exhibit the appropriate nested subsets 

of V that establish σ-goodness, then the linear arrangement problem will be solved for this class 
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of graphs.  Unfortunately, this outcome is not possible.  Consider the 6 by 6 discrete torus 

shown below in Figure 4.1. 

 

 

Figure 4.1  6 by 6 Discrete Torus 

 

It is easy to verify that σ 9 12=  which can only be realized by a 3 by 3 arrangement of vertices 

patterned after the one shown below in Figure 4.2 with the relevant vertices non-darkened. 

 

  

Figure 4.2  σ 9 12=  Example 
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Similarly, σ 12 12=  and this value can only be realized by a 6 by 2 arrangement like the one  

shown in Figure 4.3 below. 

 

 

Figure 4.3  σ 12 12=  Example 

 

Since the 9 vertex subset shown in Figure 4.2 cannot be contained in any subset like that 

depicted in Figure 4.3, it follows that the discrete torus is not in general σ-good. 

 Despite this outcome, however, we still might find useful a method for calculating 

σ i
i V1 1≤ ≤ −
∑  for these graphs.  For example, consider a graph formed by adding edges to a discrete 

torus.  By Lemma 2.2, the value of the cut set bound for the discrete torus would also be a 

lower bound for OLA on its indicated supergraph.  If the number of edges added is not too 

great, this might provide a reasonably tight bound that would otherwise be difficult to obtain.   

 Is there something in the structure of the discrete torus that allows us to calculate 

σ i
i V1 1≤ ≤ −
∑ ?  Fortunately, the answer is yes.  First, observe that 

r
σ  has a certain symmetry in that 
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σ σk V k= −  for each { }k V∈ −1 2 3 1, , ,..., .  Thus, we only need to calculate the first half of 

the terms in 
r
σ , since 

 

σ

σ σ

σ
i

i V

i

i
V

V

i

i
V

V

V1 1

1
2

1
2

1
1

2

2

2≤ ≤ −

≤ ≤ −

≤ ≤
−

∑

∑

∑
=

+











for even

for odd
   (4.1) 

 

 Next, we introduce some terms.  A slat is an n by k induced subgraph of an n by n 

discrete torus where 1 2≤ ≤k n .  A partial slat is an n by k induced subgraph of an n by n 

discrete torus together with a j by 1 induced subgraph where j n<  and each vertex in the j by 

1 induced subgraph is adjacent to some vertex of the n by k induced subgraph.  A partial slat of 

a 6 by 6 discrete torus with k = 2 and j = 3 is shown below in Figure 4.4. 

 

 

Figure 4.4  Partial Slat 
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 A square is a k by k induced subgraph of an n by n discrete torus where 1 ≤ <k n .  A 

partial square is either type 1 or type 2, each of which is defined below. 

 

Type 1:  A partial square, type 1 is a k by k induced subgraph of an n by n discrete torus with 

1 ≤ <k n  together with a 1 by j induced subgraph where j k<  and each vertex in the 1 by j 

induced subgraph is adjacent to some vertex of the k by k induced subgraph.  A partial square, 

type 1 of a 6 by 6 discrete torus with k = 3 and j = 2 is shown in Figure 4.5. 

 

Type 2:  A partial square, type 2 is a k by k-1 induced subgraph of an n by n discrete torus 

with 1 ≤ <k n  together with a j by 1 induced subgraph where j k<  and each vertex in the j 

by 1 induced subgraph is adjacent to the first j vertices of the k by k-1 induced subgraph on a 

k-length side.  A partial square, type 2 of a 6 by 6 discrete torus with k = 4 and j = 2 is shown 

in Figure 4.6. 

 

Figure 4.5  Partial Square, Type 1 
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Figure 4.6  Partial Square, Type 2 

 

 Squares are “built” in the order shown in Figure 4.7 below.  For every m, the cells of 

the figure whose labels are less than or equal to m form either a square or a partial square. 

 

M M M M N
K
K
K
K

13 14 15 16
7 8 9 12
3 4 6 11
1 2 5 10

 

Figure 4.7  Ordering for Squares 

 

For simplicity in all the above cases, we shall require that the total number of vertices in a slat or 

square be less than or equal to V 2 , since by (4.1) we will use only those cases to calculate 

σ i
i V1 1≤ ≤ −
∑ . 
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 Now we let σ i A V c A A A isquares = =⊆min { ( , ): }  with the additional restriction that the 

subsets A correspond to squares or partial squares.  Similarly, let 

σ i A V c A A A islats = =⊆min { ( , ): }  with the additional restriction that the subsets A correspond 

to slats or partial slats.  From the structure of the discrete torus, we observe that 

σ σ σi i i= min{ , }squares slats .  Now, by using simple counting methods, it is easy to see that  

 

σ i

i i n
n i n
n

slats

for 
for
otherwise

=
+ <

≡
+









2 2
2 0
2 2

(mod )           (4.2) 

 

and 

 

 σ i isquares = 2 2 .          (4.3) 

 

We now prove a lemma that will help calculate σ i
i V1 1≤ ≤ −
∑  for the n by n discrete torus. 

 

Lemma 4.1:  For n even, 

 

σ σi i
squares slats≤  whenever i

n
≤

2

4
, and 
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σ σi i
squares slats≥  whenever i

n
>

2

4
. 

 

Proof:  First we consider the case where i n≥ . For i
n

≤
2

4
, 

 

   σ σi ii
n

n nsquares slats= ≤












= = ≤2 2 2 2
4

2 2
2

. 

 

For i
n

>
2

4
, since n is even it is clear that i

n
≥ +

2

4
1 , so 

 

 σ σi ii
n

n nsquares slats= ≥ +












≥ + = + ≥2 2 2 2
4

1 2 1 2 2
2

( ) . 

 

Now we consider the case of i n< .  First suppose n ≥ 4  and i ≥ 4 .  Then 

 

 σ σi ii i i isquares slats= ≤ + = + ≤ + =2 2 2 2 1 4 2 2 2( ) . 

 

If i = 3, then σ i
squares = 8  and σ i

slats = 8 ,  if i = 2 , then σ i
squares = 6  and σ i

slats = 6 , and if 

i = 1, then σ i
squares = 4  and σ i

slats = 4 .  Each case satisfies the parity condition of the Lemma.  
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Moreover, it is easy to see that each case for n ≤ 3  also satisfies the stated condition and the 

proof is complete. 

n  

 

Therefore, for the n by n discrete torus 

 

σ σ σi
i V

i

i
n

i
n

i V
1 1

1
4 4

1
2 2≤ ≤ −

≤ ≤ < ≤ −

∑ ∑ ∑= +squares slats , for even n.        (4.4) 

 

 Before we can calculate σ i
i V1 1≤ ≤ −
∑  for the general case, we need to know how to sum 

 σ i isquares = 2 2 .  Accordingly, we shall establish the following result. 

 

Lemma 4.2:  

 

            2 2 1
2 2 2 3 2 10

240

2

k n n n n
n n n

k n≤ ≤
∑ = − + + −

⋅ + ⋅ +















( )
( )

   (4.5) 

 

Proof:  This result is not difficult to prove, but involves rather tedious algebra. 

 

First, it is clear that 
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     2 2
0 0

k k n n
k n k n≤ ≤ ≤ ≤
∑ ∑= + − .   (4.6) 

 

Now, substituting a n2 = , we have 

 

 2
0

k
k n≤ ≤
∑  

[ ][ ]= ≤ ≤ ≤ ≤∑ 1 2 0 2j k k a
j k,

 

[ ]= ≤ ≤∑∑
≤ ≤

j k a
kj a

2 2
1 2

 

= ≤ ≤








∑∑

≤ ≤

j
k a

kj a

2
2

1 2 4
 

 = −








 +











≤ ≤
∑ a

j

j a

2
2

1 2 4
1  

 = + −










≤ ≤
∑2 1

4

2

1 2

n n
j

j a

( ) .                (4.7) 

 

Observe that we have used the bracket notation [ ] to denote the indicator function that takes 

on the value 1 if the expression contained within is true and 0 otherwise.  Continuing, it is then 

easy to calculate that  
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j
j j

k k k

j k j
k

j
k

2

1

2

1
2

0
2

1

2

4
2

2 3 10
24









 = + =

+ +

≤ ≤ ≤ ≤ ≤ ≤ −

∑ ∑ ∑ ( )
         (4.8) 

 

for k even, and 

 

j
j j j

k k k

j k j
k

j
k

j
k

2

1

2

1
1

2

2

1
1

2
0

1
2

2

4
2 3 10

24
9
24









 = + + =

+ +
−

≤ ≤ ≤ ≤
−

≤ ≤
+

≤ ≤
−

∑ ∑ ∑ ∑ ( )
       (4.9) 

 

for k odd.  Therefore, (4.8) and (4.9) can be combined into  

 

j k k k

j k

2

1

2

4
2 3 10

24








 =

+ +









≤ ≤
∑ ( )

.       (4.10) 

 

Finally we can substitute (4.7) and (4.10) into (4.6) which yields (4.5) as desired. 

n  

 

 We can now calculate σ i
i V1 1≤ ≤ −
∑  for the n by n discrete torus.  As an illustration, we 

show how this is done for the case of n ≡ 0 4(mod ) .  We have 
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σ σ σi
i V

i

i
V

V
1 1

1
2

1

22
≤ ≤ −

≤ ≤ −

∑ ∑= +  

= + +
≤ ≤ + ≤ ≤ −
∑ ∑2 2

1 4 4 1 2 1
2

2 2

σ σ σi
i n

i
i n

V
squares slats

n

slats

2

 

  [ ]= + + − +










≤ ≤ + ≤ ≤ − + ≤ ≤ −
∑ ∑ ∑2 2 2 2 2 2

1 4 4 1 2 1 4 1 2 12 2 2

i n n i n
i n i n i n

( ) \
n n2 2

 

( )
=

+ −n n n10 9 16

6

2

.            (4.11) 

 

For n ≡ 2 4(mod ) , a similar calculation produces 

 

σ i
i V

n n n

1 1

210 9 16
6

2
≤ ≤ −
∑ =

+ −
−

( )
.          (4.12) 

 

The results given in (4.11) and (4.12) above give us a lower bound for any arrangement cost for 

the n by n discrete torus when n is even.  Following, we provide some insight regarding how 

tight these bounds can be. 

 

4.1.2  Solutions on the Torus  

 Perhaps the most obvious first attempt at a reasonable labeling for our graph is to simply 

number each row consecutively in order as shown in Figure 4.8 below. 
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1 2 3 ...     ... n 
n+1 n+2 n+3 ...     ... 2n 
2n+1 2n+2 2n+3 ...     ... 3n 

: : :       : 
          
          
          
          
: : :       : 

n2-n+1 n2-n+2 n2-n+3 ...     ... n2 

 
Figure 4.8  Simple Ordering for an n by n Discrete Torus 

 

It is easy to calculate the cost of this arrangement for the general case.  We have 

 

f u f v n n n n n n n
u v E

( ) ( ) ( ( ) ( )) ( )
( , )

− = − + − = −
∈

∑ 2 1 2 12 2 .             (4.13) 

 

So, we can combine the results of (4.13) with those of (4.11) and legitimately claim that for the 

n by n discrete torus Tn n,  with n ≡ 0 4(mod ) , OLA is bounded as 

 

( )n n n
OLA T n nn n

10 9 16

6
2 1

2
2

+ −
< ≤ −( ) ( ), .     (4.14) 

 

 Recall from Chapter I that OLA has been solved for Tn n,  following a result of Mitchison 

and Durbin [28].  The more general case of Tm n,  has been solved by Muradyan and Piliposjan 
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in [29], and by Fishburn, Tetali, and Winkler [15].  We will consider a labeling given in 

Mitchison and Durbin for Tn n, .  The reader is referred to the aforementioned paper for details, 

but in general the notion is to move from building “squares” to something like “slats” after 

completion of a square of size ( ) .1 1 2 2929− ≈n n .  Since this is not integral for any integer n, 

the authors simply pick the integer closest to ( )1 1 2− n  and build a square of that size.  It is 

algebraically tedious but fairly routine to calculate the cost of a Mitchison-Durbin labeling for 

Tn n,  for any integral fraction of n.  For example, for n ≡ 0 10(mod ) , we can use .3n  as the 

transition point and calculate the cost which is 

 

( )n n n431 350 900

250

2 + −
.      (4.15) 

 

Figure 4.9 shows a Mitchison-Durbin labeling for the n = 20  case using .3 6n =  as the square 

size.  This labeling has a cost of 14280 while the σ i
i V1 1≤ ≤ −
∑  bound is 13880. 
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1 3 7 13 21 31 121 141 161 181 201 221 241 261 281 287 292 296 299 301 

2 4 8 14 22 32 : : : : : : : : 282 288 293 297 300 302 

5 6 9 15 23 33         283 289 294 298 303 304 

10 11 12 16 24 34         284 290 295 305 306 307 

17 18 19 20 25 35         285 291 308 309 310 311 

26 27 28 29 30 36         286 312 313 314 315 316 

37 ...   ... 42         317 ...   ... 322 

43 ...   ... 48         323 ...   ... 328 

49 ...   ... 54         329 ...   ... 334 

55 ...   ... 60         335 ...   ... 340 

61 ...   ... 66         341 ...   ... 346 

67 ...   ... 72         347 ...   ... 352 

73 ...   ... 78         353 ...   ... 358 

79 ...   ... 84         359 ...   ... 364 

85 86 87 88 89 90         365 371 372 373 374 375 

91 92 93 94 95 116         366 376 381 382 383 384 

96 97 98 99 112 117         367 377 385 389 390 391 

100 101 102 109 113 118         368 378 386 392 395 396 

103 104 107 110 114 119 : : : : : : : : 369 379 387 393 397 399 

105 106 108 111 115 120 140 160 180 200 220 240 260 280 370 380 388 394 398 400 

 
Figure 4.9  Mitchison-Durbin Labeling for n = 20  
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Of course for large n, we can get closer to ( )1 1 2− n  than .3n .  However, for 

n ≡ 0 20(mod )  we can at least refine the upper bound in (4.14) as 

 

( ) ( )n n n
OLA T

n n n
n n

10 9 16

6

431 350 900

250

2 2+ −
< ≤

+ −
( ), .  (4.16) 

 

Since 
431

250
10

6
10344= . , the gap is quite small.   

 The bound given by σ i
i V1 1≤ ≤ −
∑  is thus reasonably tight in for the discrete torus.  Although 

we have no explicit proof of exactly how tight this bound is for other graph classes, its 

performance for many of the instances we tested appears reasonably good.  Some instances 

where it can perform poorly are shown in section 5.2. 

 

4.2  Bound Computation for Recursive Graph Classes 

 In this section we investigate the calculation of σ i
i V1 1≤ ≤ −
∑  for recursive graph classes.  

Classic among these are series-parallel graphs, Halin graphs, and in general, partial k-trees.  So 

far as we know the status of OLA on partial k-trees remains open (series-parallel graphs are 

partial 2-trees, Halin graphs are contained in the class of partial 3-trees, etc.).  First we provide 

some background. 
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4.2.1  Recursive Graph Classes 

 Informally, a recursive graph class is one in which any sufficiently large member can be 

composed by joining smaller members in the class at specific vertices called terminals.  Letting 

the number of terminals be k, we often refer to these as k-terminal graphs .  More formally, a 

k-terminal graph G = (V,T,E) has a vertex set V, an edge set E, and a (possibly ordered) set of 

distinguished vertices or terminals T V⊆  such that T t t t t G= { , ,..., }( )1 2 , where 

t G T k( ) = ≤ .  For some k, let U be the set of k-terminal graphs.  Then, a recursively 

constructed graph family F = (B,R) in U has base elements B U⊆  and a finite set of 

recursive composition operations R R R Rn= { , ,..., }1 2 where each R U Ui
p: → .  Here, p 

refers to the arity of Ri .  Generally, we consider only base elements in which all vertices are 

terminals.  However, it is easy to see that all such structures decompose trivially into edges, so 

we often take B to be a singleton consisting of K 2 . 

 The notion of composition can be described by the same general form.  For 1 ≤ ≤i m , 

let G V T Ei i i i= ( , , ) , where V V Vm1 2, ,...,  are mutually disjoint.  Let G V T E U= ∈( , , )  as 

well.  A valid vertex mapping is a function f V Vi
i m

:
1≤ ≤

→U  such that four conditions are satisfied.  

First, vertices from the same Gi  must remain distinct after composition.  Second, only terminals 

can map to terminals.  Third, only terminal vertices can merge, and last, edges are preserved 

upon composition.  If f is a valid vertex mapping, then we shall write the corresponding m-ary 

composition operation as f G G G Gm( , ,..., )1 2 = . 
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 A decomposition tree of a k-terminal graph G is a rooted tree with vertex labels g and 

f such that 

• g Gv =  if v is the root, 

• f Rv ∈  if v is an interior node, 

• g f g g gv v v v vm
= ( , ,..., )

1 2
 if interior node v has children v v vm1 2, ,..., , and 

• g Bv =  if v is a leaf. 

Decomposition trees are very important in the underlying strategy of problem solving on k-

terminal recursive graphs.  If we know the solution to a given problem (i.e. vertex cover, 

dominating set, chromatic number, etc.) on the leaf graphs of a decomposition tree (base 

graphs), then the postorder traversal of the tree with appropriate recurrence formulae (relevant 

to the given problem) would produce an efficient algorithm (often, linear) for the problem on the 

given k-terminal graph. 

 To develop appropriate recurrence relations for a dynamic solution, one starts by 

building a multiplication table ′f  for each composition operation f.  If G f G G= ( , )1 2  then the 

multiplication table ′f  exhibits the outcome for G that corresponds to each pair of compatible 

subgraph property tuples for G1  and G2 .  It is now straightforward to construct the recurrence 

relations directly from the multiplication tables.  These formulae simply compute the optimal 

property values from among the compositions of the compatible pairs.  More formal versions of 

this strategy appear in Borie [7], Borie, Parker and Tovey [8], and Borie, Parker, and Tovey 

[9].  For some simple illustrations of the methodology, the reader is directed to Horton [24]. 
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 It is relevant to point out here that while a great many NP-Hard graph problems submit 

to the above mentioned efficient solution methods when instances are restricted to recursively 

constructed graphs, it is not known if OLA is one of them.  Many researchers (including those 

mentioned in the previous paragraph) have attempted to resolve this question by either exhibiting 

an algorithm that solves OLA for recursive graph classes or by showing that OLA remains NP-

Complete for such a class.  As indicated at the outset of this section, OLA remains open on 

even series-parallel graphs.  This condition adds to the significance of the algorithm presented in 

the next section.  

 

4.2.2  An Algorithm for Calculating σ i
i V1 1≤ ≤ −
∑  on any Recursive Graph Class 

 In this section we present a procedure that computes σ i  for each i for the members of 

any recursive graph class.  Suppose G V T E= ( , , )  is a k-terminal graph, S T⊆ , and 

0 ≤ ≤ =i n V .  Then we define m G S i( , , )  to be the minimum number of cut edges that 

partition V such that i vertices are in one component of the bipartition (call this the “blue” side) 

and n i−  are in the other (“red”), such that S is entirely blue and T S−  is entirely red.  We can 

easily compute m G S i( , , )  at the leaves of a decomposition tree.  We assume that 

G f G G= ( , )1 2  where G V T Ej j j j= ( , , ) .  Now we can compute m G S i( , , )  for each non-

leaf node by the following: 
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Algorithm 4.1: 

For each of the 2 k  subsets S T⊆  do 

  For each i such that 0 ≤ ≤i n  do 

    Let { }m G S i m G S i m G S i( , , ) min ( , , ) ( , , )= +1 1 1 2 2 2  such that conditions a, b, and c hold. 

• Condition a:  S T S T1 2 2 1∩ = ∩  

• Condition b:  ( )S S S T= ∪ ∩1 2  

• Condition c:  i i i S S= + − ∩1 2 1 2  

Then when m G( , , )• •  is found at the root graph G of the decomposition tree, we can calculate 

each σ i  as follows: 

 

σ i m G S i S T= ⊆min{ ( , , ): } . 

 

n 

 

 Note that condition a above insures the composition is compatible, whereas conditions 

b and c describe how S and i, respectively, are determined.  We can think of each m G j( , , )• •  

as a table with 2 k  rows (one for each subset of T) and n + 1  columns, where n V j= .  Thus if 

G f G G= ( , )1 2 , m G( , , )• •  is completely determined from m G( , , )1 • •  and m G( , , )2 • • .   
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 First we verify that the running time of Algorithm 4.1 is a polynomial in the size of the 

input graph.  Clearly the number of columns of these tables grows (linearly) with the order of the 

graph, but the number of rows remains the same.  Since every composition adds at least one 

edge, there are O m( )  nodes in the decomposition tree.  For each node there are O nk( )2  

values of m G S i( , , )  to calculate.  For each m G S i( , , ) , the recursion involves taking the 

minimum of O n O nk k k( ) ( )2 2 22=  expressions; to see this, choose any S1  (there are 2 k  

choices), choose any S2  (again there are 2 k  choices), then choose any i1  (there are O n( )  

choices).  Now the value of i2  is determined.  Since each such expression can be computed in 

O( )1  time, the total running time is O n m( )2  for fixed k.  

 Next, we verify correctness.  If G f G G= ( , )1 2 , we know that as long as merged 

terminals of G1  and G2  have the same colors (i.e., they are either both blue or both red), then 

the status of any e E G∈ ( )  is the same as it was in G1  or G2 , depending on which child in the 

decomposition tree it came from.  Note that by “status”, we refer to whether or not the edge in 

question connects a red vertex with a blue one and is hence a cut edge.  Condition a above 

insures that this color compatibility holds.  Since E G E G E G( ) ( ) ( )= ∪1 2  and 

E G E G( ) ( )1 2∩ = ∅ , we can obtain the number of cut edges in G with a given S T⊆  

colored blue by simply adding the cut edges present in G1  and G2  under compatible conditions 

for S1  and S2 .  Conditions b and c insure these conditions are maintained. 
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 Now we demonstrate the algorithm on the well-known class of partial-2 trees, also 

known as series-parallel graphs.  We start by establishing the values of m K( , , )2 • • , since K 2  is 

the only base graph for series-parallel graphs.  Since T k= = 2 , there are 2 42 =  subsets of 

T to be accounted for.  We denote these subsets as N, L, R, B indicating neither, left, right, or 

both terminal vertices colored blue, respectively.  Then it is easy to see that m K( , , )2 • •  is as 

shown in Table 4.1. 

 

Table 4.1  m K( , , )2 • •  
 

    0 1 2    
   N 0 ∞ ∞    
   L ∞ 1 ∞    
   R ∞ 1 ∞    
   B ∞ ∞ 0    

 

 

For example, m K L( , , )2 1 1=  since the minimum number of cut edges that partition V such that 

1 vertex is on the blue side and 2 1 1− =  is on the red side, such that L is entirely blue and 

T L−  is entirely red, is 1.  Similarly, m K L( , , )2 0 = ∞  since (obviously) there is no cut in K 2  

with zero vertices colored blue such that the left terminal is colored blue. 

 We now describe the calculation of m G( , , )• •  as a function of m G( , , )1 • •  and 

m G( , , )2 • • .  As indicated above, the size of the table m G( , , )• •  grows (albeit polynomially) 

with the size of the graph under consideration.  Following the composition rules presented in the 
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previous section, for series-parallel graphs there are only three different ways to combine G1  

and G2  to obtain G.  First, one terminal of G1  can merge with one terminal of G2  with the 

merged terminal losing its terminal status.  This is called a series operation.  Second, both 

terminals of G1  can merge with both terminals of G2 , that is one terminal of  G1  merges with 

one terminal of G2  and the other terminal of  G1  merges with the other terminal of G2 .  No 

vertex loses its terminal status and this is called a parallel operation.  Finally, one terminal of 

G1  can merge with one terminal of G2  as in a series operation, but the merged vertex retains its 

terminal status and one of the unmerged terminals loses its terminal status (again maintaining the 

original number of terminals).  This is called a jacknife operation.  Following, we describe how 

to calculate m G( , , )• •  from m G( , , )1 • •  and m G( , , )2 • •  for each of these operation types. 

 When G1  and G2  are combined to form G, there are sixteen possible permutations, 

namely { , , , } { , , , }N L R B N L R B× .  Some of these permutations are compatible and others 

are not.  A specific permutation is incompatibile when merged terminals have different parity.  

 First we address the series operation, where the right terminal of G1  merges with the 

left terminal of G2  and that vertex loses its terminal status.  The left terminal of G1  remains as 

the left terminal of G, and the right terminal of G2  remains as the right terminal of G.  The eight 

compatible operations are NN, LN, RL, BL, NR, LR, RB, and BB.  It is easy to see that NN  in 

G1  and G2 , respectively, yields N in G, as does RL, since only the merged terminal is permitted 

to be blue and the others must be red (in the case of NN, the merged terminal is red, and for RL 
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it is blue).  Similarly, it is clear that LN and BL in G1  and G2 , respectively, yield L in G, NR 

and RB in G1  and G2 , respectively, yield R in G, and LR and BB in G1  and G2 , respectively, 

yield B in G.  Using these facts we can write recursive expressions that implement Algorithm 4.1 

for series operations as follows: 

 

{ }m G N k m G N k l m G N l m G R k l m G L ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + − + +1 2 1 2 1  

 

{ }m G L k m G L k l m G N l m G B k l m G L ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + − + +1 2 1 2 1  

 

{ }m G R k m G N k l m G R l m G R k l m G B ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + − + +1 2 1 2 1  

 

{ }m G B k m G L k l m G R l m G B k l m G B ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + − + +1 2 1 2 1 . 

 

Note that we account for the merged terminal being blue (and hence counted both in G1  and 

G2 ) by adding 1 in those instances.  

 For the parallel operation, the left terminal of G1  merges with the left terminal of G2  

and the right terminal of G1  merges with the right terminal of G2 .  None terminals lose their 

terminal status.  The four compatibile operations are NN, LL, RR, and BB.  Obviously, NN in 

G1  and G2 , respectively, yields N in G, LL in G1  and G2 , respectively, yields L in G, RR in 
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G1  and G2 , respectively, yields R in G, and BB in G1  and G2 , respectively, yields B in G.  It is 

again straightforward to determine the appropriate recurrence relations: 

 

{ }m G N k m G N k l m G N ll( , , ) min ( , , ) ( , , )= − +1 2  

 

{ }m G L k m G L k l m G L ll( , , ) min ( , , ) ( , , )= − + +1 2 1  

 

{ }m G R k m G R k l m G R ll( , , ) min ( , , ) ( , , )= − + +1 2 1  

 

{ }m G B k m G B k l m G B ll( , , ) min ( , , ) ( , , )= − + +1 2 2 . 

 

This time we add 0, 1, or 2 to account for the number of blue terminals in the composition. 

 For the jacknife operation, the right terminal of G1  merges with the left terminal of G2  

and the right terminal of G2  loses its terminal status.  The left terminal of G1  remains as the left 

terminal of G, and the merged terminal remains as the right terminal of G.  The eight compatible 

operations are the same as those for the series operation, namely NN, LN, RL, BL, NR, LR, 

RB, and BB.  Now we see that NN and NR in G1  and G2  , respectively, yield N in G, LN and 

LR yield L, RL and RB yield R, and BL and BB yield B.  Finally, the recursive expressions that 

implement Algorithm 4.1 for jacknife operations are: 
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{ }m G N k m G N k l m G N l m G N k l m G R ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + − +1 2 1 2  

 

{ }m G L k m G L k l m G N l m G L k l m G R ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + − +1 2 1 2  

 

{ }m G R k m G R k l m G L l m G R k l m G B ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + + − + +1 2 1 21 1  

 

{ }m G B k m G B k l m G L l m G B k l m G B ll( , , ) min ( , , ) ( , , ), ( , , ) ( , , )= − + + − + +1 2 1 21 1 . 

 

Again the merged terminal is accounted for by adding 1 as required.  

 Figures 4.10 - 4.12 demonstrate the notion of series, parallel, and jacknife operations, 

respecively.  In Figure 4.10, the right terminal of G9  and the left terminal of G10  are merged in a 

series operation to form G11 . 

 

S

G9 G10

G11

 

Figure 4.10  Series Example 
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In Figure 4.11, the left and right termini of G5  and G8 , respectively, are merged in a parallel 

operation to form G9 . 

 

P

G5G8

G9

 

Figure 4.11  Parallel Example 

 

In Figure 4.12, the right terminal of G9  and the left terminal of G10  are merged in a jacknife 

operation to form G17 . 
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J

G9 G10

G17

 

Figure 4.12  Jacknife Example 

 

 The recurrence relations given above can also be expressed in a tabular format.  The 

tables for series operations are presented below as Tables 4.2 - 4.5, the tables for parallel 

operations are Tables 4.6 - 4.9, and the tables for jacknife operations are Tables 4.10 - 4.13. 
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Table 4.2  Series Table for NN and LN Cases 
 

   N,0 N,1 N,2 N,3 N,4 N,5 N,6     
  N,0 N,0 N,1 N,2 N,3 N,4 N,5 N,6     
  N,1 N,1 N,2 N,3 N,4 N,5 N,6 N,7     
  N,2 N,2 N,3 N,4 N,5 N,6 N,7 N,8     
  N,3 N,3 N,4 N,5 N,6 N,7 N,8 N,9     
  N,4 N,4 N,5 N,6 N,7 N,8 N,9 N,10     
  N,5 N,5 N,6 N,7 N,8 N,9 N,10 N,11     
  N,6 N,6 N,7 N,8 N,9 N,10 N,11 N,12     
  L,1 L,1 L,2 L,3 L,4 L,5 L,6 L,7     
  L,2 L,2 L,3 L,4 L,5 L,6 L,7 L,8     
  L,3 L,3 L,4 L,5 L,6 L,7 L,8 L,9     
  L,4 L,4 L,5 L,6 L,7 L,8 L,9 L,10     
  L,5 L,5 L,6 L,7 L,8 L,9 L,10 L,11     
  L,6 L,6 L,7 L,8 L,9 L,10 L,11 L,12     

 

 

Table 4.3  Series Table for RL and BL Cases 
 

   L,1 L,2 L,3 L,4 L,5 L,6    
  R,1 N,1 N,2 N,3 N,4 N,5 N,6    
  R,2 N,2 N,3 N,4 N,5 N,6 N,7    
  R,3 N,3 N,4 N,5 N,6 N,7 N,8    
  R,4 N,4 N,5 N,6 N,7 N,8 N,9    
  R,5 N,5 N,6 N,7 N,8 N,9 N,10    
  R,6 N,6 N,7 N,8 N,9 N,10 N,11    
  B,2 L,2 L,3 L,4 L,5 L,6 L,7    
  B,3 L,3 L,4 L,5 L,6 L,7 L,8    
  B,4 L,4 L,5 L,6 L,7 L,8 L,9    
  B,5 L,5 L,6 L,7 L,8 L,9 L,10    
  B,6 L,6 L,7 L,8 L,9 L,10 L,11    
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Table 4.4  Series Table for NR and LR Cases 
 

   R,1 R,2 R,3 R,4 R,5 R,6   
  N,0 R,1 R,2 R,3 R,4 R,5 R,6   
  N,1 R,2 R,3 R,4 R,5 R,6 R,7   
  N,2 R,3 R,4 R,5 R,6 R,7 R,8   
  N,3 R,4 R,5 R,6 R,7 R,8 R,9   
  N,4 R,5 R,6 R,7 R,8 R,9 R,10   
  N,5 R,6 R,7 R,8 R,9 R,10 R,11   
  N,6 R,7 R,8 R,9 R,10 R,11 R,12   
  L,1 B,2 B,3 B,4 B,5 B,6 B,7   
  L,2 B,3 B,4 B,5 B,6 B,7 B,8   
  L,3 B,4 B,5 B,6 B,7 B,8 B,9   
  L,4 B,5 B,6 B,7 B,8 B,9 B,10   
  L,5 B,6 B,7 B,8 B,9 B,10 B,11   
  L,6 B,7 B,8 B,9 B,10 B,11 B,12   

 

 

Table 4.5  Series Table for RB and BB Cases 
 

    B,2 B,3 B,4 B,5 B,6     
   R,1 R,2 R,3 R,4 R,5 R,6     
   R,2 R,3 R,4 R,5 R,6 R,7     
   R,3 R,4 R,5 R,6 R,7 R,8     
   R,4 R,5 R,6 R,7 R,8 R,9     
   R,5 R,6 R,7 R,8 R,9 R,10     
   R,6 R,7 R,8 R,9 R,10 R,11     
   B,2 B,3 B,4 B,5 B,6 B,7     
   B,3 B,4 B,5 B,6 B,7 B,8     
   B,4 B,5 B,6 B,7 B,8 B,9     
   B,5 B,6 B,7 B,8 B,9 B,10     
   B,6 B,7 B,8 B,9 B,10 B,11     
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Table 4.6  Parallel Table for NN Case 
 

   N,0 N,1 N,2 N,3 N,4 N,5 N,6   
  N,0 N,0 N,1 N,2 N,3 N,4 N,5 N,6   
  N,1 N,1 N,2 N,3 N,4 N,5 N,6 N,7   
  N,2 N,2 N,3 N,4 N,5 N,6 N,7 N,8   
  N,3 N,3 N,4 N,5 N,6 N,7 N,8 N,9   
  N,4 N,4 N,5 N,6 N,7 N,8 N,9 N,10   
  N,5 N,5 N,6 N,7 N,8 N,9 N,10 N,11   
  N,6 N,6 N,7 N,8 N,9 N,10 N,11 N,12   

 
 
 

Table 4.7  Parallel Table for LL Case 
 

   L,1 L,2 L,3 L,4 L,5 L,6   
  L,1 L,1 L,2 L,3 L,4 L,5 L,6   
  L,2 L,2 L,3 L,4 L,5 L,6 L,7   
  L,3 L,3 L,4 L,5 L,6 L,7 L,8   
  L,4 L,4 L,5 L,6 L,7 L,8 L,9   
  L,5 L,5 L,6 L,7 L,8 L,9 L,10   
  L,6 L,6 L,7 L,8 L,9 L,10 L,11   
 
 
 

Table 4.8  Parallel Table for RR Case 
 

   R,1 R,2 R,3 R,4 R,5 R,6   
  R,1 R,1 R,2 R,3 R,4 R,5 R,6   
  R,2 R,2 R,3 R,4 R,5 R,6 R,7   
  R,3 R,3 R,4 R,5 R,6 R,7 R,8   
  R,4 R,4 R,5 R,6 R,7 R,8 R,9   
  R,5 R,5 R,6 R,7 R,8 R,9 R,10   
  R,6 R,6 R,7 R,8 R,9 R,10 R,11   
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Table 4.9  Parallel Table for BB Case 
 

    B,2 B,3 B,4 B,5 B,6    
   B,2 B,2 B,3 B,4 B,5 B,6    
   B,3 B,3 B,4 B,5 B,6 B,7    
   B,4 B,4 B,5 B,6 B,7 B,8    
   B,5 B,5 B,6 B,7 B,8 B,9    
   B,6 B,6 B,7 B,8 B,9 B,10    

 
 

Table 4.10  Jacknife Table for NN and LN Cases 
 

   N,0 N,1 N,2 N,3 N,4 N,5 N,6     
  N,0 N,0 N,1 N,2 N,3 N,4 N,5 N,6     
  N,1 N,1 N,2 N,3 N,4 N,5 N,6 N,7     
  N,2 N,2 N,3 N,4 N,5 N,6 N,7 N,8     
  N,3 N,3 N,4 N,5 N,6 N,7 N,8 N,9     
  N,4 N,4 N,5 N,6 N,7 N,8 N,9 N,10     
  N,5 N,5 N,6 N,7 N,8 N,9 N,10 N,11     
  N,6 N,6 N,7 N,8 N,9 N,10 N,11 N,12     
  L,1 L,1 L,2 L,3 L,4 L,5 L,6 L,7     
  L,2 L,2 L,3 L,4 L,5 L,6 L,7 L,8     
  L,3 L,3 L,4 L,5 L,6 L,7 L,8 L,9     
  L,4 L,4 L,5 L,6 L,7 L,8 L,9 L,10     
  L,5 L,5 L,6 L,7 L,8 L,9 L,10 L,11     
  L,6 L,6 L,7 L,8 L,9 L,10 L,11 L,12     
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Table 4.11  Jacknife Table for RL and BL Cases 
 

   L,1 L,2 L,3 L,4 L,5 L,6    
  R,1 R,1 R,2 R,3 R,4 R,5 R,6    
  R,2 R,2 R,3 R,4 R,5 R,6 R,7    
  R,3 R,3 R,4 R,5 R,6 R,7 R,8    
  R,4 R,4 R,5 R,6 R,7 R,8 R,9    
  R,5 R,5 R,6 R,7 R,8 R,9 R,10    
  R,6 R,6 R,7 R,8 R,9 R,10 R,11    
  B,2 B,2 B,3 B,4 B,5 B,6 B,7    
  B,3 B,3 B,4 B,5 B,6 B,7 B,8    
  B,4 B,4 B,5 B,6 B,7 B,8 B,9    
  B,5 B,5 B,6 B,7 B,8 B,9 B,10    
  B,6 B,6 B,7 B,8 B,9 B,10 B,11    

 

Table 4.12  Jacknife Table for NR and LR Cases 
 

   R,1 R,2 R,3 R,4 R,5 R,6   
  N,0 N,1 N,2 N,3 N,4 N,5 N,6   
  N,1 N,2 N,3 N,4 N,5 N,6 N,7   
  N,2 N,3 N,4 N,5 N,6 N,7 N,8   
  N,3 N,4 N,5 N,6 N,7 N,8 N,9   
  N,4 N,5 N,6 N,7 N,8 N,9 N,10   
  N,5 N,6 N,7 N,8 N,9 N,10 N,11   
  N,6 N,7 N,8 N,9 N,10 N,11 N,12   
  L,1 L,2 L,3 L,4 L,5 L,6 L,7   
  L,2 L,3 L,4 L,5 L,6 L,7 L,8   
  L,3 L,4 L,5 L,6 L,7 L,8 L,9   
  L,4 L,5 L,6 L,7 L,8 L,9 L,10   
  L,5 L,6 L,7 L,8 L,9 L,10 L,11   
  L,6 L,7 L,8 L,9 L,10 L,11 L,12   
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Table 4.13  Jacknife Table for RB and BB Cases 
 

    B,2 B,3 B,4 B,5 B,6     
   R,1 R,2 R,3 R,4 R,5 R,6     
   R,2 R,3 R,4 R,5 R,6 R,7     
   R,3 R,4 R,5 R,6 R,7 R,8     
   R,4 R,5 R,6 R,7 R,8 R,9     
   R,5 R,6 R,7 R,8 R,9 R,10     
   R,6 R,7 R,8 R,9 R,10 R,11     
   B,2 B,3 B,4 B,5 B,6 B,7     
   B,3 B,4 B,5 B,6 B,7 B,8     
   B,4 B,5 B,6 B,7 B,8 B,9     
   B,5 B,6 B,7 B,8 B,9 B,10     
   B,6 B,7 B,8 B,9 B,10 B,11     

 

 

 Each entry in the tables above includes an element of { , , , }N L R B  and a value of i.  As 

an example, suppose we merge the right terminal of G9  with the left terminal of G10  (a series 

operation) to form G11  as shown in Figure 4.10.  Suppose we are interested in σ 2 , the 

minimum number of cut edges that partition V G( )11  such that i = 2  vertices are on one side 

and n i− = − =6 2 4  are on the other side.  Since { , , , }N L R B  exhausts all the possibilities, 

we can state this using the notation we developed above: 

 

min ( , , ) min{ ( , , ), ( , , ), ( , , ), ( , , )}{ , , , }j N L R B m G j m G N m G L m G R m G B∈ = =11 2 11 11 11 112 2 2 2 2σ . 
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But Algorithm 4.1 makes finding each of these m G j( , , )11 2  terms easy.  For this illustration we 

use the tables above, but the recurrence relations presented earlier in this section work just as 

well.  For j N= , for instance, we note each place in the tables where N ,2  appears.  There 

are three places it appears in Table 4.2 and two places in Table 4.3.  Each of these 

corresponds to a way to obtain m G N( , , )11 2  from m G( , , )9 • •  and m G( , , )10 • • .  The algorithm 

simply compares all of these alternatives and selects a best one.  To complete the picture, 

consider Table 4.14 below. 

 

Table 4.14  m G( , , )9 • •  
 

     0 1 2 3 4 5       
    N 0 2 2 4 ∞ ∞       
    L ∞ 2 2 2 2 ∞       
    R ∞ 2 2 2 2 ∞       
    B ∞ ∞ 4 2 2 0       

 
 

 

The entries in this table are in practice computed from the children of G9  in the decomposition 

tree, but here they are simply given to show how the table entries for the next graph (namely 

G11 ) are computed.  By referring to Table 4.14 for G9  and Table 4.1 for G10 , it is easy to 

compute each value of m G( , , )11 • • .  For example, using the appropriate recurrence relation, 

 

m G N( , , )11 2 =  
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{ }min ( , , ) ( , , ), ( , , ) ( , , )l m G N k l m G N l m G R k l m G L l9 10 9 10 1− + − + + =  

min{ ( , , ) ( , , ), ( , , ) ( , , ), ( , , )
( , , ), ( , , ) ( , , ), ( , , ) ( , , )}

m G N m G N m G N m G N m G N
m G N m G R m G L m G R m G L

9 10 9 10 9

10 9 10 9 10

2 0 1 1 0
2 2 1 1 2

+ + +
+ + =

 

min{ , , , , }2 0 2 0 2 1 2 2+ + ∞ + ∞ + + ∞ = . 

 

Furthermore, the final value 2 arises from (only) m G N m G N( , , ) ( , , )9 102 0+  which tells us how 

to find the set of blue vertices in G11  with the minimum number (in this case 2) of cut edges that 

partition V G( )11  such that two vertices are on the blue side and four are on the red side, and 

such that ∅  is entirely blue and T is entirely red.  The m G N( , , )10 0  indicates an N,0 blue 

subset of G10  gave rise to the N,2 blue subset of G11 .  This N,0 blue subset of G10  is just K 2  

with no vertices blue; hence neither of the two vertices of G11  that correspond to these two 

vertices is blue in this case.  Similarly, the m G N( , , )9 2  indicates that an N,2 blue subset of G9  

also gave rise to the N,2 blue subset of G11 .  Normally we would continue to backtrack; we 

would determine how our N,2 blue subset of G9  was formed (from the children of G9  in the 

decomposition tree) and in this fashion we eventually work our way to leaves of the 

decomposition tree, thus determining which vertices of G11  give us our N,2 blue subset.  In this 

case it is easy to see that the only allowable subset of G9  of the desired type consists of the two 

adjacent non-terminal vertices (the lowest two in G9  in Figure 4.10), since they allow 

m G N( , , )9 2 2=  to hold as required. 
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 We note that there may be several choices of subsets that allow a given value of 

m G( , , )• • .  For example, consider m G L( , , )9 2 .  Table 4.14 shows that m G L( , , )9 2 2= , but if 

we attempt an analysis like that of the previous paragraph we will eventually discover that this 

value can arise from coloring blue the left terminal of G9  and either one of the two adjacent 

vertices.  This potential ambiguity will become an important issue in section 6.1, but it poses no 

problems for our present purposes. 

 The general approach should now be clear.  Moreover, we can then calculate 

m G( , , )• •  for any recursive graph using this strategy thus making it easy to obtain σ i
i V1 1≤ ≤ −
∑ .  A 

complete example appears as Appendix I. 

 Given an efficient means of calculating σ i
i V1 1≤ ≤ −
∑  for any recursive graph G, there are 

several natural questions that are raised.  Can we recognize σ-good graphs (that belong to a 

recursive class) in polynomial time?  Can we quickly find optimal labelings for recursive graphs 

based partly on our knowledge of σ i
i V1 1≤ ≤ −
∑ ?  If not, can σ i

i V1 1≤ ≤ −
∑  help us find sub-optimal 

labelings that serve as reasonable approximations for the optimal labelings?  These questions, 

and some related ones, are discussed in depth in Chapter VI. 
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CHAPTER V 

APPROXIMATION 

 

 
 Like other NP-Complete problems in general, there is a need to find good solutions in 

practice for the linear arrangement problem.  Accordingly, we now examine some issues related 

to finding approximate solutions to OLA.   

 

5.1  Decompositions  

 Suppose we consider the following general (and loosely stated) approach to finding 

approximate solutions to OLA.  For a graph G, decompose it in some way, resolve OLA on 

some or all of the “pieces” in the decomposition, and then use that labeling somehow for G.  

Obviously, we have been intentionally vague about several things related to this idea.  Following, 

we are more precise. 

 Clearly, the nature of the “decomposition” is critical.  Since we have to label every 

vertex in G, it is rational to first consider finding some spanning subgraph H of G.  Then, 

assuming OLA can be efficiently solved on H at least one strategy would be clear.  The labeling 

we find for H would be taken as our labeling for G and we would be assured of at least having 
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a candidate solution for OLA on G.  Since OLA is solved on trees, a reasonable choice for H 

might be “some” spanning tree.  Unfortunately, however (and not surprisingly), this approach is 

flawed.  Calling this strategy when H is a tree ATree , we have 

 

Theorem 5.1:  Let G be a finite, simple graph and H an arbitrary spanning tree of G.  Then the 

ratio of the total arrangement cost for G under ATree  to OLA(G) is not bounded by any 

k < +∞ . 

 

Proof:  Consider a graph G on 2k  vertices with k ≡ 0 2(mod )  of the form shown in Figure 

5.1.  Suppose we select a spanning tree H as indicated in Figure 5.2.  An optimal labeling for H 

is shown on the figure which we denote as f H
* . 

 

...

...
 

Figure 5.1  Example Graph G 
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Figure 5.2  Graph H with Optimal Labeling f H
*  

 

It is easy to verify that the labeling shown is optimal for H, so we have 

 

( )σ H f H k k kH, ( )* = = − + − = −OLA 2 1 2 3 3 . 

 

Also, it is easy to see that 

 

( )σ G f k k
k

k k k
H, * = − + −





+ − = − +3 3
2

1 2 1 4 4 2
2

. 

 

Alternatively, suppose we select a different spanning tree, say  ′H  as shown in Figure 5.3 with 

its optimal labeling f H′
*  indicated. 
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Figure 5.3  Graph ′H  with Optimal Labeling f H′
*  

 

We have 

 

( )σ ′ = ′ = − + −





= −′H f H k
k k

H, ( )* OLA 2 1 3
2

1
7
2

4 . 

 

But when f H′
*  is patched back in to G, we have  

 

( )σ G f
k

k
k

H, *
′ = − + − = −

7
2

4 2 1
11

2
5 , 

 

and it is easy to verify that f H′
*  is optimal for G.  But then 

 

lim k

k k

k→∞

− +

−
= ∞

4 4 2
11

2 5

2

, 

 

and we have the desired result. 
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n  

 

 Further, we note that members of the graph class depicted by G in the proof above are 

free of subgraphs homeomorphic to K 4 , so the particular strategy ATree  is doomed to 

potentially poor performance for particularly sparse graphs.  The following corollary is 

immediate. 

 

Corollary 5.1:  The result of Theorem 5.1 holds even for G contained in the class of partial 2-

trees. 

n  

 

 The illustration above shows that poor or “unlucky” choices of H can lead to arbitrarily 

poor labelings in G.  Of course, we need H to be a member of a solvable class and trees suffice 

in that regard.  Indeed, one of the two trees above was a correct choice in that its optimal 

labeling was optimal for G.  Unfortunately, there are graphs for which no spanning tree (as a 

candidate for H) exists having this property.  Such a graph is given in section 6.2, along with 

further discussion of this topic.    

 There are certainly other notions of decomposition.  The recursively constructed graphs 

addressed in section 4.2 are decomposed naturally as the parse tree is traversed.  For general 

graphs, another approach is the following.  Given a graph G, partition the vertex set into two 
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sets A and B.  Then solve OLA on the subgraph of G induced by A and on the subgraph of G 

induced by B, or continue by partitioning A and B further.  The integers { }12, ,..., A  are used to 

label A and { }A A V G+ +1 2, ,..., ( ) are used to label B. Obviously edges “crossing” the 

partition(s) are unaccounted for but if the number of such edges is small compared to the size of 

the graph then this approach may work well.  Indeed, a strategy related to this is outlined in 

Hansen [22] where for a generalized version of linear arrangement (where points are embedded 

in ℜ d  instead of ℜ 1 ), the idea results in a scheme having a performance bound of ( )O Vlog2 .  

As indicated, Hansen’s work depends on finding partitions that are reasonably good in the 

sense that a relatively small number of edges cross the partition. 

 

5.2  Approximations Based on Cut Sets  

 In Chapter III we described a bound on OLA(G) based on certain nested cut sets in G.  

A logical question to ask at this point concerns how tight the bound of Theorem 3.1 is in 

general.  In the case of the discrete torus, we saw that the bound was quite strong.  

Unfortunately, we can find other graphs that show the bound does not always exhibit this 

characteristic. 

 Consider the graph formed by n complete graphs, K K Kn1 2, ,...,  and one additional 

vertex where one vertex of each Ki  is connected to the additional vertex.  We denote the graph 

formed this way by ( )S Kn .  An example for n = 4  appears as Figure 5.4 below. 
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Figure 5.4  ( )S K4  

 

 Now, consider ( )( )OLA S Kn .  Actually, an optimal labeling is not important.  For our 

purposes, it is enough to simply show a bound.  Since we know from Chapter I that  

 

( )OLA K
n n n

n =
− +( ) ( )1 1

6
  and 

 

( )OLA S
n

n =










2

4
, 

 

we can quickly see that 

 

( )( )OLA S K
i i i n

n
i n

≥
− +

+
+







 =

≤ ≤
∑ ( ) ( ) ( )1 1

6
1

41

2

 

( )n n n n n
n

( )( ) ( )+ + −
+

+







 =

1 2
24

1
4

2 2
4Ω       (5.1) 



 90

 

The first term is the minimum cost for the cliques and the second term is the minimum cost for 

the remaining edges. 

 Now, consider the cut set bound of Theorem 3.1.  For ease, we will consider the case 

where n ≡ 0 4(mod ) .  Observe that  

 

V i
n n

i n

= + = +
+

≤ ≤
∑1 1

1
21

( )
. 

 

Since V  is even, we have by (4.1) that 

 

σ σi
i V

i

i
n n1 1 1

1
4

2
≤ ≤ − ≤ ≤

+
∑ ∑=

( )

. 

 

It is easy to see that for 1
1

4
≤ ≤

+
i

n n( )
, σ i = 1  for the first n terms, σ i = 2  for the next 

n − 1 terms, σ i = 3  for the next n − 2  terms, and so on.  Now we add these terms (the 

calculation is tedious), and the following lemma gives the result. 

 

Lemma 5.1:  For the graph ( )S Kn , 
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( )
σ i

i V

p n n p p p

1 1

21 3 3 1 2 2 1

6≤ ≤ −
∑ =

+ + − + −( ) ( ) ( )
, 

 

where 

 

p
n n n

=
− + + + +











( )2 2 1 2 1
2

2

 

 

 and p is the number of σ i  values (not terms) that are all contained in the first 
n n( )+ 1

4
 terms 

of the sequence { }σ σ σ1 2 1, ,..., V − . 

 

Proof:  We think of the σ i  terms as being in a triangular array as that depicted for n = 8  in 

Figure 5.5 below.   

 

1 1 1 1 1 1 1 1 
 2 2 2 2 2 2 2 
  3 3 3 3 3 3 
   4 4 4 4 4 
    5 5 5 5 
     6 6 6 
      7 7 
       8 

Figure 5.5  σ i   values for n = 8  
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To find σ i
i V1 1≤ ≤ −
∑ , we must add some complete rows of the triangular array, and some number of 

terms from the next row.  Let p be the number of complete rows.  Then we see that  

 

σ σi
i V

i

i
n n j i n j i nj pj p

j p
n n

1 1 1
1

4
11

2 2 1
1

4
1

≤ ≤ − ≤ ≤
+ ≤ ≤ ≤ ≤≤ ≤≤ ≤

∑ ∑ ∑ ∑∑∑= = + +
+

−




















( )
( )

( )
. 

 

The first double sum simply adds up the σ i  values in this first p rows.  The other term multiplies 

the σ i  value in row p + 1 (which is p + 1) by the number of terms yet to be included in the 

sum.  When the value of p given in the statement of the lemma is substituted into the above 

expression (and some algebra is performed), the result of the lemma is produced.  Thus all that 

remains is to establish the value of p. 

 To determine p, we want to know when n n n n+ − + − + − +( ) ( ) ( ) ...1 2 3  gets to 

n n( )+ 1
4

.  To answer this, we simply solve for x in the following: 

 

( )n i
n n

i x

− − =
+

≤ ≤
∑ ( )

( )
1

1
41

. 

 

Typically this will not happen at the end of a row, so we don’t expect the result to be an integer 

in general.  The solution is 
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x
n n n

=
− + + + +2 2 1 2 1

2

2

 

 

which when rounded down to the nearest integer gives us the desired value of p and the result 

follows. 

n  

 

 Observe that for ( )S Kn , ( )σ i
i V

O n
1 1

3

≤ ≤ −
∑ = .  Now combining this result with (5.1), the 

following theorem is immediate. 

 

Theorem 5.2:  Let G be a finite, simple graph.  Then the ratio of σ i
i V1 1≤ ≤ −
∑  to OLA(G) is not 

bounded by any k < +∞ . 

n 

 

 Due to the presence of large cliques in ( )S Kn , we know these graphs do not have a 

constant bound on their tree-width (it is well known that K n  has tree width n − 1).  In this 

regard, it would be interesting to find a class of graphs that does have bounded tree-width 

where the cut set bound also performs poorly (i.e., no constant performance).  If such a graph 

existed, then even though it would have sufficient structure to allow us to find σ i
i V1 1≤ ≤ −
∑ , we 
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would not be in a better position to state the value of OLA(G), to say nothing of actually finding 

a labeling that realizes this value.  Unfortunately, we have been unable to find such a graph. 

 Consider the (series-parallel) graph ( )S Cn  which we shall define similarly to ( )S Kn .  

The graph ( )S Cn  consists of n cycles, C C Cn1 2, ,...,  and one additional vertex where one 

vertex of each Ci  is connected to the additional vertex.  To avoid dealing with graphs that are 

not simple, we define C1  as the edgeless graph on one vertex and C2  as the graph with two 

vertices and one edge ( K 2 ).  Figure 5.6 shows an example of this graph for n = 4 .   

 

 

Figure 5.6  ( )S C4  

 

 It should be apparent that σ i
i V1 1≤ ≤ −
∑  for ( )S Cn  is the same as that for ( )S Kn , and we 

note that this value is ( )O n 3 .  Unfortunately, the best labelings for ( )S Cn  are also ( )O n 3 , so 

this class of graphs does not provide the phenomenon we seek.   
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5.3  Heuristic for OLA Based on Eigenvalues  

 Recall that in section 3.1 we introduced and defined the terms Laplacian matrix and 

Laplacian eigenvalues.  Several researchers have discussed a heuristic based on λ 2 ( )G .  For 

example, see Blanks [4], Juvan and Mohar [26], and Liu and Vanelli [27].  Although the 

heuristic has no known performance bounds, empirical studies have been conducted which 

appear in the above references.   

 The heuristic is quite simple.  Given a graph G, we compute Laplacian matrix L(G) and 

its eigenvalues.  The eigenvector ru2  associated with λ 2 ( )G  is then computed.  The vertex 

associated with the smallest element of ru2  gets the label “1”.  Then the vertex associated with 

the second smallest element of ru2  gets the label “2”, and so on.  In this fashion, a labeling is 

quickly found for G.   

 Juvan and Mohar [26] provide motivation as to why this approach provides reasonably 

good results for many labeling problems.  Their study suggests that this heuristic works for any 

of the minimum-p-sum problems (recall this is defined in Chapter I).  In addition to a theoretical 

motivation, they also provide empirical evidence to support that claim for { }p ∈ ∞1 2, , . 

 Our purpose here is not to discuss this heuristic, but merely to use it as another means 

of finding reasonable labelings for the graphs under study.  Appendix 2 has code for this 

heuristic written using the Combinatorica package of Mathematica.  Table 5.1 shows some 

performance data on some of the graphs from this thesis.  The first column contains several 

graphs that have been under investigation in this thesis. G13  and G15  are series-parallel graphs 
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from the example of Appendix I, and H2 1.  is the Halin graph of Figure 2.1.  The graphs ( )S K8  

and ( )S C8  were defined in section 5.2.  The second column lists the eigenvalue based bound of 

section 3.1 for each graph.  The third column gives the cut set bound of section 3.2, while the 

next column is the cost of an optimal labeling.  The last column lists the result of Algorithm 5.1 

using the code in Appendix II. 

 The heuristic seems to perform reasonably well for the graphs tested.  The reader will 

note, however, that the heuristic achieved relatively poor results for T10 10,  and T20 20, , since the 

“obvious” labeling given in Figure 4.8 has costs 1980 and 15960, respectively.  Although the 

performance of the heuristic is not guaranteed in a formal sense, Algorithm 5.1 provides a 

reasonable first idea of how a graph should be labeled.  The output includes a visual 

representation of the graph with the labeling found, so the user can see the results without having 

to interpret an adjacency matrix.  Finally, Algorithm 5.1 
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Table 5.1  Algorithm 5.1 Test Data 
 

 λ2

2 1
6

( )G
n −  σ i

i V1 1≤ ≤ −
∑  OLA(G) σ ( , )G f  

P10  1.62 9 9 9 
P25  1.64 24 24 24 
C10  6.30 18 18 18 
C25  6.53 48 48 48 
W10  24.22 43 43 43 
W25  111.09 204 204 204 
K10 15,  1040 1230 1230 1375 
T10 10,  636.55 1788 1828 2272 
T20 20,  2610.3 13880 14280 17992 
G13  4.15 10 10 10 
G15  11.97 33 34 42 
H2 1.  16.49 67 75 76 
( )S K8  26.90 31 ≤ 252 274 

( )S C8  17.72 31 ≤ 97 119 

 

 

produces its results quickly.  All the graphs in Table 5.1 except T20 20,  take less than a minute to 

complete.  With 400 vertices, T20 20,  is much larger than the other graphs considered and takes 

several minutes.  In addition, it is likely that the code in Appendix II can be improved to speed 

up the performance of the heuristic. 

 The heuristic is especially useful when graphs that lack obvious structure are considered.  

As an illustration, consider the following example.  Mathematica has a built-in function 

RandomGraph[n,p] that generates a random graph on n vertices where 
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Figure 5.7  RandomGraph[35,.11] 

 

1

2

3

...

35

 

Figure 5.8  Partial Output of Algorithm 5.1 
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every possible edge exists with probability p.  Figure 5.7 shows one such realization for n = 35  

and p = 011. .  After Algorithm 5.1 is run on this instance, part of the output is shown in Figure 

5.8.  The graphs in Figures 5.7 and 5.8 are isomorphic; only the embedding is changed.  One 

look at Figure 5.7 should convince the reader of the utility of Algorithm 5.1 for this type of 

graph.  The original (random) labeling had a cost of 783 and the labeling shown in Figure 5.8 

has a cost of 288.  It should be noted as well that this example is quite small.  This graph was 

chosen to have only 35 vertices to make the performance of the heuristic visually apparent for 

this instance.  This type of performance is easy to demonstrate on graphs of several hundred 

vertices, but the visual portion of the output is more difficult to interpret.   
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CHAPTER VI 

CONCLUSIONS AND DIRECTIONS FOR FURTHER 

RESEARCH 

 

 This thesis has addressed some of the issues associated with the celebrated Linear 

Arrangement Problem.  In Chapter I, we surveyed the graph classes for which OLA is solved.  

In Chapter II, we exhibit a class of graphs where OLA can be solved, mostly using first 

principles.  In Chapter III, several bounding strategies were introduced, including cut set 

bounds.  Next, we showed how these cut set bounds can work in practice, and we show a 

broad class of graphs where we can efficiently calculate them.  In Chapter V, we addressed the 

issue of approximation. 

 There is much room for continued research into the Linear Arrangement Problem and its 

relatives.  We conclude with a discussion of some directions for further investigations. 

  

6.1  Determining if a Recursive Graph is σ-good  

 The results of section 4.2 provide an efficient means of calculating σ i
i V1 1≤ ≤ −
∑  for any 

recursive graph G.  But does this outcome help us find a labeling that minimizes OLA(G) for 
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such graphs?  Of course if we can somehow find a labeling with cost equal to σ i
i V1 1≤ ≤ −
∑ , then by 

Theorem 3.1 we are done since no arrangement can cost less.  Similarly, if we find sufficient 

evidence to conclude that G is not σ-good, then we know from Theorem 3.2 that the σ i
i V1 1≤ ≤ −
∑  

bound is not attainable and so any labeling with cost σ i
i V1 1

1
≤ ≤ −
∑ +  would be optimal. 

 So far, we have primarily presented only ad-hoc approaches for finding labelings.  

Solutions for the caterpillar Halin graphs presented in Chapter II and for the discrete torus given 

in Chapter IV rely on the special structure of the respective graphs.  Of course, unless P NP=  

, no methods exist that will always find optimal labelings for arbitrary graphs.  Still, the situation 

may be more hopeful for recursive graph classes.  This would be consistent with outcomes 

relative to the majority of hard graph problems.  However, Algorithm 4.1 does not appear to 

help us in this regard, since it does not produce labelings at all.  In this section we will discuss 

some of the issues related to attempts to modify Algorithm 4.1 in order to obtain labelings for 

recursive graphs.  Our approach will be loosely based on an idea introduced at the end of 

section 4.2 - the idea of determining which vertices are “blue” for a given value of m G S i( , , ) . 

 Consider a layered graph ′ = ′G V A( , )  defined recursively as follows.  Let 

V G n( ) =  and suppose G to be a recursive graph with terminal set T and where 

G f G G= ( , )1 2 .  Recall from section 4.2.2 that there may be several ways to obtain a certain 

value of m G S i( , , )  from m G( , , )1 • •  and m G( , , )2 • • .  Here, we create a vertex in ′V  for every 
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such option.  We shall use the notation [ ]S i
j

,  to denote the vertex of ′G  corresponding to the 

jth way to obtain the value m G S i( , , ) .  Whenever m G S i i( , , ) = σ , we will distinguish 

corresponding vertices of ′G  by darkening them.  We shall use the notation [ ]( )Pred G j
S i

1
,  to 

denote a vertex of ′G1  corresponding to the value from m G( , , )1 • •  that was used to calculate 

m G S i( , , ) .  We construct an arc of ′G  from [ ]Q k
j

,
1
 to [ ]′ +Q k

j
, 1

2
 whenever the following 

three conditions are satisfied: 

 

• either Q Q= ′  or Q t Q∪ = ′{ }  for some t T∈ , 

• there is an arc in ′G1  from [ ]( )Pred G j
Q k

1 1
,  to [ ]( )Pred G j

Q k
1 2

1′ +, , and  

• there is an arc in ′G2  from [ ]( )Pred G j
Q k

2 1
,  to [ ]( )Pred G j

Q k
2 2

1′ +, . 

 

Note also that whenever [ ]( )Pred G ji
Q k,

1
 = [ ]( )Pred G ji

Q k′ +, 1
2

, we say that an arc exists 

for that i.  Finally, we will remove each vertex v V G∈ ′( )  where either there is no path from 

[ ]∅,0  to v or there is no path from v to [ ]T n, .  We will also remove all arcs incident with such 

vertices.  Now let us initialize the recursive definition by showing the layered graph for K 2  

below in Figure 6.1.   
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N

L

R

B

0       1       2

 

Figure 6.1  ′K 2  

 

Note that Appendix III exhibits complete examples of this construction for the graphs of 

Appendix I. 

 The motivating idea behind the rules given for the construction of ′G  is to allow an arc 

from [ ]Q k
j

,
1
 to [ ]′ +Q k

j
, 1

2
  where Q T⊆  and ′ ⊆Q T  exactly when there is a valid 

transition from Sk  to Sk+1  in G of the type indicated.  By this we mean that is must be 

possible to find some S V Gk ⊆ ( )  where S kk =  and c S S m G S T kk k k( , ) ( , , )= ∩ , and 

some S V Gk+ ⊆1 ( )  where S kk + = +1 1 and c S S m G S T kk k k( , ) ( , , )+ + += ∩ +1 1 1 1 , with the 

restriction that S Sk k⊆ +1 .  In this case Q S Tk= ∩  and ′ = ∩+Q S Tk 1 .  With this 

construction, we then seek to determine if there is a chain of valid transitions for all 0 ≤ ≤k n .  

This chain corresponds to a path from [ ]∅,0   to [ ]T n,  in ′G . 

 As an illustration, consider the graph G13  from section 4.2.  The graph appears in 

Figure A1.1, the values of m G( , , )13 • •  are in Table A1.6, and ′G13  appears as Figure A3.6.  



 104

First note that there is an arc from [ ]L,1  to [ ]B,2  in ′G13 .  This means there is a subset 

S V G1 ⊆ ( )  with S T L1 ∩ =  and a subset S V G2 ⊆ ( )  with S T B2 ∩ =  such that S S1 2⊆ , 

S ii = , c S S m G L( , ) ( , , )1 1 13 1= , and c S S m G B( , ) ( , , )2 2 13 2= .  If (in G13 ) we let S1  be the 

left terminal and S2  be the left terminal and the right terminal, we see that these conditions are 

all satisfied. 

 Now we observe that ′G13  has no arc from [ ]N ,2  to [ ]L,3 .  This means there should 

not exist subsets of V(G), S2  and S3 , with S T N2 ∩ = , S T L3 ∩ = , S ii = , 

c S S m G N( , ) ( , , )2 2 13 2= ,  and c S S m G L( , ) ( , , )3 3 13 3= , where S S2 3⊆ .  Again this is correct 

since the only candidate for S2  with property N consists of the two adjacent vertices of degree 

2.  Adding the left terminal to this set gives a cut set size of 3 which is not optimal for [ ]L,3 . 

 We can go further.  Observe that ′G13  has paths from [ ]N ,0   to [ ]B n,  that go 

exclusively through darkened vertices.  One such path is [ ] [ ] [ ] [ ] [ ]N L L L B, , , , , ,..., , , ,0 1 2 6 7 .  

We can extract a labeling for G13  from this path as follows.  For ease, Figure 6.2 depicts G13  

with labeled vertices. 

 

f

a

b c

d e

g
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Figure 6.2  G13  

 

Obviously, S0 = ∅ .  The next step in the path is [ ]L,1 , so { }S f1 = .  Now since 

m G L( , , )13 2 2= , vertex b must be next and { }S f b2 = ,  (the other possibilities either give a 

higher cut set value or violate S T L2 ∩ = ).  For S3 , there are two valid choices.  We can 

select either { }S f b a3 = , ,  or { }S f b d3 = , , .  We observe here that in general, the presence 

of too many of these choices may indicate that extracting labelings for G from paths in 

′G cannot be done efficiently (i.e., polynomially).  Fortunately, in this case it makes no 

difference which one we pick; either choice eventually leads to an optimal labeling.  Suppose we 

choose { }S f b a3 = , , .  Then following similar reasoning, we select { }S f b a d4 = , , , , 

{ }S f b a d e5 = , , , , , { }S f b a d e c6 = , , , , , , and S V G7 13= ( ) .  These sets induce the labeling 

shown in Figure 6.3 which is optimal for G13 .  Furthermore, since these sets satisfy Definition 

3.1, we know that G13  is σ-good. 

 

1

3

2 6

4 5

7

 

Figure 6.3  G13  with Optimal Labeling 
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 The case of G15  is even more intriguing. ′G15 , shown in Figure A3.9, has no path 

exclusively through darkened vertices from [ ]N ,0  to [ ]B,14 .  The lack of such a path 

“suggests” that G15  is not σ-good, and this is indeed the case.  We see from Table A1.8 that 

σ 5 2= , and only the five vertices of the rightmost C5  can serve as S5 .  Similarly, σ 9 2= , and 

S9  can only be the other nine vertices of G15 .  Clearly, S5
⊆ S9 , so G15  is not σ-good.  

Therefore, by Theorems 3.1 and 3.2,  

 

OLA( )G i
i V

15
1 1

33> =
≤ ≤ −
∑σ . 

 

Consider, however, the path [ ] [ ] [ ] [ ] [ ] [ ] [ ]N N N R R B B, , , ,..., , , , ,..., , , , ,..., ,0 1 5 6 9 10 14 .  This 

path only goes through one non-darkened vertex.  Furthermore, m G R( , , )15 9 3=  and σ 9 2= , 

so  

 

m G S i i
i V

( , , )15
1 1

1
path
∑ ∑= +

≤ ≤ −

σ . 

 

Since there is no darkened vertex path, the sum of the m G S i( , , )15  values along this path is 

obviously the smallest possible for ′G15 .  When we extract a labeling from this path, we obtain 

the one shown in Figure 6.4 below.  The labeling has a total cost of 34 which by the previous 

inequality is optimal for G15 . 
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Figure 6.4  G15  with Optimal Labeling 

 

 The above observations give rise to two conjectures about the relationship between G 

and ′G . 

 

Conjecture 6.1:  G is σ-good ⇔  there exists a path in ′G  from [ ]∅,0  to [ ]T n,  that passes 

exclusively through darkened vertices.  

n 

 

If Conjecture 6.1 is true, there is an efficient way of checking if any recursive graph is σ-good.  

Presently, we have no proof that this conjecture is true; however, neither do we have a 

counterexample indicating that it is false.  A logical direction for further research would be to 

attempt to resolve this conjecture one way or the other. 
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Conjecture 6.2:  Every [ ]∅,0  to [ ]T n,  path in ′G  corresponds to some labeling α  of G, 

where ( )m G S i G( , , ) ,
path
∑ = σ α . 

n 

 

If Conjecture 6.2 is true, it may lead to an interesting heuristic for OLA on any recursive graph.  

The notion is to find ′G , then find a cheapest path through it, where a cost of m G S i( , , )  is 

incurred at every vertex [ ]S i
j

,  along the path.  The labeling conjectured to exist for G is then 

extracted from this path.   

 Unfortunately, even if Conjecture 6.2 is true there are potential problems that may make 

implementing the suggested heuristic difficult.  For one, we have suggested that it may not be 

easy to find a labeling in G that corresponds to the path in ′G .  The labeling for G15  shown in 

Figure 6.4 above is illustrative.  There are “dead end” subsets -- subsets that satisfy cut set 

values for the current and all previous vertices on the path, but which cannot be extended 

appropriately.  For example, to get from [ ]N ,0  to [ ]N ,4 , we could select the vertices with 

labels (in Figure 6.4) 13, 14, 12, and 11, in that order.  In each case 1 4≤ ≤i , the set Si  so 

defined satisfies the relevant cut set value from Table A1.8.  Only when we try to build S5  from 

S4  would we get “stuck”.  If, instead of 13, 14, 12, and 11, we had selected 1, 2, 3, and 4, (or 

2, 1, 5, and 4 or several other possibilities), we would have no problem making the transition to 

S5 .  Furthermore, we have no indication prior to getting stuck that we are on a dead end path.  
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This suggests that extracting a labeling for G that corresponds to a path in ′G  may not be 

efficiently computable, at least not with current methods. 

 Another potential problem is that a graph G may have a layered graph ′G  with no path 

from [ ]∅,0  to [ ]T n,  at all.  This is in fact the case.  Consider the graph G of Figure 6.5, which 

happens to be a partial 1-tree (i.e., a tree) and therefore a recursive graph. 

 

 

Figure 6.5  Example Graph G with no Path in ′G  

 

Since all partial j-trees are also partial i-trees for i j≥ , we can treat this graph as a two 

terminal (series-parallel) recursive graph.  Now consider m G( , , )• •  in Table 6.1 and the 

corresponding layered graph in Figure 6.6, which has no [ ]N ,0  to [ ]B,8  path at all.  The cut 

separating [ ]N ,0  from [ ]B,8  is shown as a dashed line in the figure. 

 

Table 6.1  m G( , , )• •  
 

  0 1 2 3 4 5 6 7 9   
 N 0 1 1 2 1 2 2 ∞ ∞   
 L ∞ 1 2 2 3 2 3 3 ∞   
 R ∞ 3 3 2 3 2 2 1 ∞   
 B ∞ ∞ 2 2 1 2 1 1 0   
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Figure 6.6  Layered Graph for Graph of Figure 6.5 

 

While this graph does not disprove Conjecture 6.2, it certainly is ominous for the heuristic 

described above, since that procedure would fail to produce any labeling for the graph of 

Figure 6.5. 

 Despite these problems, there is still hope that this type of approach to OLA on 

recursive graphs will improve understanding.  A proof of Conjecture 6.1 would be an interesting 

outcome.  Indeed, perhaps there are some modifications that could be made to the procedure 

that defines how layered graphs are constructed and that makes either of the conjectures easier 

to prove or disprove. 
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6.2  Critical Subgraphs  

 Another interesting question to arise from this research is the idea of critical 

subgraphs.  Formally, we have the following statement:   

 

PCS:  Given a graphG V E= ( , ) , find a smallest, spanning connected subgraph of G say 

H having the property that at least one optimal linear arrangement of H is also optimal 

for G. 

 

Phelps [31] has referred to this as a “critical subgraph” version of OLA.  Indeed, we have seen 

this concept before.  In Chapter I, we saw that there are optimal labelings for the star graph that 

are also optimal for the corresponding wheel.  The solution methodology for Halin graphs when 

the tree component is a caterpillar presented in Chapter II is completely based on the critical 

subgraph concept.  Clearly, Theorem 2.1 states that the caterpillar is a critical subgraph for the 

corresponding Halin graph.  Of course, in Chapter V we alluded to the use of spanning trees as 

critical subgraphs and saw some of the difficulties that can arise. 

 Clearly, PCS is well-defined in that every graph exhibits a candidate subgraph--namely, 

the graph itself.  More importantly, it is easy to see that the problem possesses interest.  

Consider Figure 6.7.  Assuming G to be the graph on the left, it is easy to see that a critical 
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subgraph results in the form of H1  with its labeling as shown to the right.  Alternately, the 

subgraph H 2  must be labeled as indicated which, of course, is not optimal for G. 

 

G

H1

H2

1 2

34

12

34

 

Figure 6.7  Critical Subgraph Concept 

 

 There are some interesting questions in this area.  Are there classes of graphs for which 

critical subgraphs can be found where OLA is hard on the instance graph, but (efficiently) 

solvable on the critical subgraph?  For example, if it could be shown that every graph of a 

certain class has a spanning tree as a critical subgraph, then since OLA is known for trees the 

only issue would be one of actually finding the correct spanning tree. It was shown in Chapter V 

that selecting the correct tree can be a significant problem.  It has been shown by Easton [14] 

that any attempt to produce a theorem that proves that all graphs have a critical subgraph that is 

a spanning tree is doomed to fail.  A graph that establishes this fact is shown in Figure 6.8. 
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Figure 6.8  Graph with no Spanning Tree a Critical Subgraph 

 

 Despite significant efforts, OLA continues to be an interesting and difficult problem.  

Although this thesis has made some contribution to the field, the status of OLA on even primitive 

structures like partial 2-trees remains open.  
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APPENDIX I 

 

EXAMPLE CALCULATION OF 
r
σ  FOR A SERIES-

PARALLEL GRAPH  

 

 In this Appendix we show a complete example of how to calculate 
r
σ   for a series-

parallel graph in accordance with the procedure shown in section 4.2.  Following, we present 

the decomposition tree as Figures A1.1 and A1.2. 
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Figure A1.1  First Part of Decomposition Tree 
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P

G9

S

G11a G11b

G14

G15

 

Figure A1.2  Second Part of Decomposition Tree 

 

 We now show tables representing m G( , , )• •  for each graph in the tree.  We omit 

repeating tables in cases where the graphs are the same (as is the case, for example, with G3  

and G8 ). 
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Table A1.1  m G( , , )1 • •  
 

     0 1 2     
    N 0 ∞ ∞     
    L ∞ 1 ∞     
    R ∞ 1 ∞     
    B ∞ ∞ 0     

 
 
 

Table A1.2  m G( , , )3 • •  
 

    0 1 2 3    
   N 0 2 ∞ ∞    
   L ∞ 1 1 ∞    
   R ∞ 1 1 ∞    
   B ∞ ∞ 2 0    

 
 

 
Table A1.3  m G( , , )5 • •  

 
    0 1 2 3 4    
   N 0 2 2 ∞ ∞    
   L ∞ 1 1 1 ∞    
   R ∞ 1 1 1 ∞    
   B ∞ ∞ 2 2 0    

 
 
 

Table A1.4  m G( , , )9 • •  
 

   0 1 2 3 4 5   
  N 0 2 2 4 ∞ ∞   
  L ∞ 2 2 2 2 ∞   
  R ∞ 2 2 2 2 ∞   
  B ∞ ∞ 4 2 2 0   

 



 118

 



 119

Table A1.5  m G( , , )11 • •  
 

   0 1 2 3 4 5 6   
  N 0 2 2 3 3 ∞ ∞   
  L ∞ 2 2 2 2 1 ∞   
  R ∞ 1 2 2 2 2 ∞   
  B ∞ ∞ 3 3 2 2 0   

 
 

 
Table A1.6  m G( , , )13 • •  

 
  0 1 2 3 4 5 6 7  
 N 0 2 2 3 3 2 ∞ ∞  
 L ∞ 1 2 2 2 2 1 ∞  
 R ∞ 1 2 2 2 2 1 ∞  
 B ∞ ∞ 2 3 3 2 2 0  

 
 

 
Table A1.7  m G( , , )14 • •  

 
 0 1 2 3 4 5 6 7 8 9 10 11 

N 0 2 2 3 3 2 3 3 3 3 ∞ ∞ 
L ∞ 2 2 2 2 1 2 2 2 2 1 ∞ 
R ∞ 1 2 2 2 2 1 2 2 2 2 ∞ 
B ∞ ∞ 3 3 3 3 2 3 3 2 2 0 

 
 
 

Table A1.8  m G( , , )15 • •  
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
N 0 2 2 3 3 2 3 3 3 3 5 5 7 ∞ ∞ 
L ∞ 4 4 4 4 3 3 3 3 4 3 3 3 3 ∞ 
R ∞ 3 3 3 3 4 3 3 3 3 4 4 4 4 ∞ 
B ∞ ∞ 7 5 5 3 3 3 3 2 3 3 2 2 0 
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APPENDIX II 

 

MATHEMATICA CODE FOR ALGORITHM 5.1 

 

(*  This computes the cost "cost" of a graph *) 
ComputeCost[f_Graph] :=  
  Module[{p}, sqcost = 0; cost = 0; bw = 0; Do[ 
    cost = cost + Edges[f][[i,j]]*Abs[i - j]; 
    sqcost = sqcost + Edges[f][[i,j]]*(i-j)^2; 
    If[Abs[i-j]*Edges[f][[i,j]] > bw,  
       bw = Abs[i -j]*Edges[f][[i,j]]] 
    ,{i, 1, V[f]}, {j, i, V[f]}]] 
 
OlaHeur[g_Graph] :=  
  Module[{w}, 
(* p gives the eigensystem of the matrix whose main 
diagonal elements are vertex degrees and off diagonal 
element (i,j) = -1 if vertex i is adjacent to vertex j 
and 0 otherwise. 
q sorts the eigenvalues 
The do loop finds the index of the 2nd smallest EV 
  *)  
g = CircularVertices[g];    
ShowLabeledGraph[g]; 
ComputeCost[g]; 
 Print[cost]; 
 Print[sqcost]; 
 Print[bw]; 
Print["Above are before, below are after, heuristic"]; 
p = Eigensystem[N[DiagonalMatrix[Map[(Apply 
    [Plus,#])&, g][[1]]] - Edges[g] ] ]; 
q = Sort[p[[1]]]; 
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Do[If [p[[1,i]] == q[[2]], ix = i], {i, V[g]}]; 
s = p[[2,ix]]; 
Flag = Table[False, {V[g]}]; 
A = Table[0, {V[g]},{V[g]}]; 
BiggestLeft = -10000; 
Do[ 
  Do[If[s[[j]] > BiggestLeft && Flag[[j]] == False, 
     jx = j; BiggestLeft = s[[j]] ], {j,1,V[g]}]; 
  Flag[[jx]] = True; 
  A[[i,jx]] = 1; 
  BiggestLeft = -10000, 
{i,1,V[g]}];  
  
ga = CircularVertices[ 
 Graph[A.Edges[g].Transpose[A],g[[2]]]]; 
ComputeCost[ga]; 
ShowLabeledGraph[ga]; 
Print[cost]; 
Print[sqcost]; 
Print[bw]; 
Print["second smallest eigenvalue is ",q[[2]]]; 
Print["largest eigenvalue is ",q[[V[ga]]]]; 
Print["Juvan/Mohar bounds on linear arrangement cost:"]; 
Print[q[[2]]*((V[ga])^2-1)/6," < LA < 
",q[[V[ga]]]*((V[ga])^2-1)/6]; 
Print["Juvan/Mohar bounds on squared arrangement cost:"]; 
Print[q[[2]]*(V[ga]*(V[ga])^2-1)/12," < LA^2 < 
",q[[V[ga]]]*(V[ga]*(V[ga])^2-1)/ 
12] 
]  
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APPENDIX III 

 

LAYERED GRAPHS FOR EXAMPLE OF  

APPENDIX I 

 

 This Appendix includes the layered graphs for the example of Appendix I as described 

in section 6.1.  In cases where there is more than one “way” to achieve a certain value 

m G S i( , , ) , we use the notation S k S k1 1 2 2/  on the layered graph to show the origin of that 

value, where if G f G G= ( , )1 2 , then 

 

[ ] [ ]( )S k S iG j1 1 1
, ,= Pred , and 

[ ] [ ]( )S k S iG j2 2 2
, ,= Pred . 
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Figure A3.1  ′G1  
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Figure A3.2  ′G3  
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Figure A3.3  ′G5  
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Figure A3.4  ′G9  
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Figure A3.5  ′G11  
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Figure A3.6  ′G13  

 
 
 

N

L

R

B

0         1         2         3         4         5         6         7         8         9        10        11
N0/N4

B6/B2

L5/R2

B2/B6

B6/B3

L5/R3

B3/B6

B6/B4

B4/B6 B5/B6

B6/B5

N0/N3

N4/N0N3/N0

N0/N2

N2/N0N1/N0

N0/N1

R1/L4R1/L3

 
Figure A3.7  ′G14  
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Figure A3.8  ′G15  Before Removal of “Dead Ends” 
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Figure A3.9  ′G15  After Removal of “Dead Ends” 
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