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Abstract

Halin graphs are planar graphs with edge sots that can be partitioned into a tree T
with no vertex of degree 2 and a eycle 7 on only and all the leaves of the tree. In t
paper, we describe some attributes of Halin graphs among wl
3-tery

I is their containment in a

of ur

il recursive class, their status as so- called class-1 graphs, and a ki

tter how s formed (if there is a choice), the resulting tre

omorphic. We also show that two problems pert

ing to Halin subg
and supergraphs are N P- complete.

1 Introduction

A Halin graph G = (V, E) is a planar graph having the property that its edge sct
‘an be partitioned into a tree T with no vertex of degrec 2 and a cycle C which
spans the pendant or degree-1 vertices of T. The graph in Figurce 1 is Halin. The
cycle is denoted in bold (observe that its removal leaves the required tree). Such
graphs were first studied by Halin [Ha71] and exhibit an example, accordingly, of a
class of edge-minimal, planar 3-connccted graphs.

Despite their apparent simplicity, Halin graphs happen to possess a number
of particularly interesting properties. First, they are casy to recognize. This is
important since it is also known that Halin graphs are contained in a so-called
3-terminal recursive class [BPTS1b] which means that numerous otherwise hard
problems can be polynomially solved when instances are so restricted. The naive
approach suffices for recognition in that we need only embed G in the plane (we
may safely assiuine G s planar) and scarch for a face the edges of which, if removed
from G, leave a tree.

All even order Halin graphs are bicritical in that the delction of any two
vertices leaves a graph possessing a 1-factor [LP75]. They are 1-Hamailtonian, they
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arc Hamiltonian and remain so after the removal of any single vertex [B75]. They
are “almost pancyclic” in that for any Halin graph of order ", every cycle of length
3<t<nis present except possibly for one of even length [BL85]. Immediate from
this is that Halin graphs are not bipartite.

In the spirit of an carlier paper by Syslow and Proskurowsk; [SP81], we
describe additional properties and outcomes on Halin graphs among which is their
aforementioned inclusion in a so-called k-terminal recursive class and, in particular,
what this implies algorithmically. We give a proof that Halin graphs are class-
1 graphs, always having chromatic index equal to maximum degree and we also
establish a sort of uniqueness result showing that regardless of how C is chosen
(given that there are choices at all) the resulting trees formed upon the removal of
C arc isomorphic. We conelude the paper with a pair of complexity results involving
Halin subgraphs and supergraphs.

2 Algorithms on Halin Graphs

2.1 k-Terminal, Recursive Graphs

From the complexity perspective, most problems are well-solved on Halin graphs.
That is, we can assert the existence of fast algorithms for many such problems when
instances are restricted to Halin graphs. That this is so follows from the recursive
constrauctability of these graphs which in turn, is established by their membership in
a particular 3-terminal graph class described i Borie et al, [BPTo1b). Following,
we give enough detail to make this membership evident.

A k-terminal graph G = (V, T, E) has a vertex set V, an cdge set E, and a
(possibly ordered) set of terminal vertices T = {t,,. .. ) CV, where 1T <k. A
recursively constructed class C(B, R) in some universe U is specified by base graphs
B C U and a finite set of rules R = C,T..J\L where each f; . U™, [ is a
recursive composition operation with arity mi; C'is thus the closure of B in U by
rules fi, .. f Generally, for some (fixed) &, U is simply the sect of k-terminal
graphs and B is taken to be a set of conneeted k-terminal grapls (V,\T, E) with
V=r. However, cach such base graph is trivially composed of individual cdges
whose vertices are terminal, 50 it is reasonable and convenient to use C(R) to denote
C(B, R) where B ouly contains . Loosely then, a k-terminal recursive graph class
1s one where any sufficiently large member i composed from smaller members of the
same class, joined by merging the A:m::m:mi:xﬁ terininal vertices. Upon merger,
some vertices which were terminals in constituent graphs may loose terminal status
upon composition.,

Let us now consider a specific type of composition operation. Iy particular,
let a c-ary recursipe (k,u,r)-operation bhe a function AG,....,G)=G = (V,T,E)
on k-terminal graphs that satisfies the following conditions:

¢ [T <k and IT.] < k for cach G; = Vi, T, E),
oV WL?

* F ; m.;

i=1

i

I

66

g

Figure 1. A Halin graph
t
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Figure 2.

3-terminal, Halin graph initialization
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TI=ITI<s=k+u—r>0for

each {, and

s VNV, = T, NT, for each i # 1.

Thus, a (k, u,7)-operation joins k-terminal graphs G; at their common ter-
minals, producing a k-terminal grapli G where there are up to r vertices in G that
were terminals in the constituent G, and where up to u of these become undistin.
guished in the resultant G, Hence, r need never be greater than k 4 u. Also, none
of the constituent G; can have more than s
has. For any 0 SkLSr0<u< k4 2 r, we can let [k, 7]
of all {k,u, 7)-operations. To illustrate, the traditional
parallel operations [D65] are both in [2, 1, 3]
in [2,0,3]).

But if membership in

=k+u—71>0 more terminals than ¢
denote the family
and
also

and well known series
(in fact the parallel operation is

a k-terminal recursive class is good, it is reasonable
to expect that recognition of sucl membership be casily decidable. A usual test in
this regard is whether or not a member graph can be represented (efficiently) by its
decomposition tree, Indeed, recursively constructed structures are often referred to
as tree-decomposable graphs.

For a L-terminal graph &
vertex labels g and £ such that

simply

e C(R), a decomposition tree is o rooted tree witly

® v = G if v is the root,

° f,€ Rifvisan interior node,

* 90 = ful9us- .., 94, ) if interior node v has children Viyeeny Up, and
* 9, € BDifvisaleafl

Now, let G be Halin and
wuc:oﬁ.m:mu we describe
let us label terminals

assume a plane embedding as shown in Figure 2.
a template for producing a decomposition tree for G. First,
as 1y, 4y, and #5 as shown. Now, G can be decomposed by
applying a (3, 0, 3)-operation producing an edge (base graph ¢ = {t2,13} and the
graph G\c. Then, the latter can be decomposed further by a (3,1, 4)-operation in a
fairly naturaj way. To sce this, denote by h that leaf in T of G\c which is closest to
ty such that it can be reached from ¢, by a path that passes through neither other
leaves of T nor ti. (Alternatively, we could choose 4 as that leaf which is closest to
ty such that it can be reached from ¢, by a path that passes through neither other
leaves nor 1.} Then G\e is decomposed into two
and ?_,\:\..L. Finally, (3,1,4)-

degree-1 vertices

graphs with terminals ,,?:. ty, b}
operations can be nsed to climinate stibsequent,
and the process repeats until only edge base graphs result.

The full decomposition tree for the graph in Figure 2 is shown i1 Figure 3 with

the respective operations and constituent graphs indicated for eacl, interior node.
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This process is valid for any Halin graph establishing, in the context of [BPT91] and
as described above, their containment in C([3,1,4]). (Observe in Figure 3, we have
terminated decomposition when graphs, possibly not edges, result with all vertices
terminal).

2.2 Vertex Cover on Halin Graphs

It is casy to see that fast algorithins on these recursive graph classes are typically
based on dynamic programming, so that a solution to a large member can be deter-
mined directly from solutions to the smaller members which constitute it, using a
recurrence relation specific to the problem. If the number of terminals is restricted
to some fixed value k, the recurrence relatjon can be evaluated efficiently. This in
turn leads to a fast algorithm, assuming a decomposition tree for any graph in the
lass can be found quickly.

To illustrate, consider the vertez cover problem: given some (G — (V. E), we
scek a smallest subset V7 C V such that V' has nonempty intersection with every
edge {i,7} € E. Now, for any Halin graph, say H = (V,T, E) or subgraph of a Halin
graph, and for each subset S C T let us define Ps(H) to be the size of a minimum
vertex cover V' oof H such that § = V'NT. Since Halin graphs are 3-terminal
graphs, we will need to maintain 8 values for Ps(H). That is, a vertex is cither in
or out of a cover and so there are 2* choices for terminal subsets of T'= {t,,t,, t3}.

To develop appropriate recurrence relations for a dynamic programming so-
htion, we start by constructing multiplication tables for each of the composition
operations. When G| and G are composed by an operation J to form G, the mul-
tiplication table for operation f shows which of the possible pairs of sets §; C T,
and S, C 75 are compatible. In addition, the table for f shows the value of the
corresponding S C T for cach such compatible set pair,

It is now straightforward to construct the recurrence relations dircetly from
the multiplication tables. The formulas simply compute the optimal values from
among the compositions of the compatible pairs. Associated with cach graph in the
decomposition tree is an 8-tuple of the form (5, Py, Py, Py, Py, Py, P, P
The optimal vertex cover value for the instance graph is the minimum of these valuos
relative to the 8-tuple associated with the root node. Initial optimal values for the
components of the 8-tuple are found in the naive, brute force way for cach base
graph (leaf).

This yields an obvious linear time algorithm for vertex cover on any Halin
graph. The time required is linear because there is only a constant amount of
information to be computed for each node of the decomposition tree, and the size
of this decomposition tree is linear in the cardinality of the cdge set of G.

1t should also be clear that this process works for any k- terminal graph class
{for fixed k), assuming the decomposition tree is part of the instance. Indeed, formal
models of this computation have been developed which assert the existence of poly-
nomial if not linear time algorithms for many problems on such tree-decomposable
graphs (Halin, series-parallel, partial k- trees, etc.). However, these existence results
are often manifested in the form of more ad hoc strategies which pay attention to
problem specific details. The work in Boric et ql. EH«HSPQB deseribes one suely
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formal modecl.

3 GRAPH THEORETIC PROPERTIES

1 i 1 ~arlic this section we
Various interesting properties of Halin graphs were listed ﬁmlza‘.rw 1o section we
a >

described some others which help to further underscore the special n:

graphs.

3.1 Structural Properties

It is casy to sce that Halin graphs are not n_o%i _:&Q the m:_uwm.ﬂ,ﬁ.uw“ OM.H“H:MMM
That is, no subgraph of a Halin graph .wm.mmr: E_:n.r ».o:o.._.«m m:o@w.w\mo: e :w
i e ey deseonent graph b not Holin. s of comons b spiealy st
a Hali 7 very descendent graph is not Halin. s, se, 18 i /
Mfﬂ«“wom“wmmrmmmvwm no:m::.l,oamg a non:nw?o fashion. For ovmy:.hw.ry W:.”M graphs
are distinctly different from the class of series-parallel m.nmvrm 5~ ,w:m T \m., .ﬁ.o -
In fact, distinctions between Halin graphs and .mo:om.vmaa c mwmwv 18 . ?wm ﬁ:
fundamental. Indeed, the two classes of m:.:urm are EQ:.:?:,:ZW.. m:m‘ _M vm.(w\.:r
see following the result of Dirac [Di52] which asserts that ::.%. m::w,.o .TTL_ Y ::‘7,
minimum vertex degree 3 possesses a m:rmnmbr homeomorphic HMA.V_.:. .:.Mr.;. omE.«.
not series parallel. But a :onmmmm&w no:;:::“ ?Mu,_w.. graph to be Halin is tha Ty
ertex have degree at least 3 and the property follows. .
e WM.LVNM .A_MMMH.M\“ “.””..,m h:. tree and nwx.r. edge sets, respectively, then ?n. a i:.r.:,
| = k, the corresponding total edge cardinality is

craph (O of order poand for |€ carcimality &
_pw.*‘_ k1. Now, since the cycle passes through ouly and all the 1.r:;.:_? :M.Nﬂ
Mrﬁ.o are nxvnzv\, k such pendants. The maximum number of these is p — u w w:“
1s m.ldneda by star graphs, K ,_;. Hence, the largest Halin graph on p vertices has
2p — 2 edges.
2p — 2 edg . . )

The following property will be particularly useful later.

Lemma 3.1: Let G be Halin with |C] = k. Then & 1s bounded as
p/2+1<k<p—-1

Proof: The upper bound was just established. For the lower juo:ma %n M:Nm MMM,
ﬂvm a smallest cycle. Since G is Halin,.there are p — k <o1;n~nm _A: a,”ilg;?m
not pendants and which are connected by p—k —~ 1 edges. Hon.&‘ < mewmaomm _cm e
by these “tree” cdges is therefore 2(p — k — 1). Also, there are § _~ m\ ?Mw s
arc incident to the pendants of the tree. These add k to the rmmw :,.m o e
non-pendant vertex structure just described for a degree total o .lhc g ﬁ me!ﬁoo .
since every vertex in a Halin graph has degree at .Fumn 3, SE.E must MZM\Q Vlm. o
least 3(p— k) contributed by the stated p — & vertices. That is, 3(p— k) < 2; 2
and so k > p/2 4+ 1 as claimed.

0
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Observe that the graph in Figure 4a is not Halin which follows immediately
since the graph is not even 3-connected, On the other hand, the structure in part
bis Halin with C (and thus T} denoted. This graph is a supergraph of the one in
part a. Finally, in Figure 4¢ we exhibit the graph which results by adding a single
cdge to the graph in part a ({5,11}). This graph remains non-Halin and moreover,
cannot be made so by the addition of any edges. From Lemma 3.1 we know that the
size k of a cycle in any Halin completion of the stated graph must have at least nine
edges. There are only two possibilitics in this regard given by edges in the cycles
denoted by vertex sequences {1,5,9,13, 14,8,4,3,2} and {1,5,11,16, 12,7,4,3,6}.
But the removal of the respective cycle edges does not leave a tree and the addition
of any new edges to the given graph can only decrease k.

Now, for a Halin graph G, it is obviously not truc that the bipartition {7, C}
is unique. Alternately, there may be more than one choice for the cycle. Trivially,
Ky suffices to make the point. Of interest, however, is the following result:

Theorem 3.2: Let G = (V,E) be a Halin graph having at least two distinct decom-
positions. If these are given by {T},C,}, {1:,C),. .., {T.,C.}, then for any pair C;
and C; we have that G\C; and G\C; are isomorphic. '
Proof: Every cycle C1,Cy,...,C,in G has the same (edge) cardinality which follows
trivially since | E| is fixed with value VI+]C]-1. Now, let C; and C; be any distinct
pair of cycles. Clearly, these cycles cannot be vertex disjoint since otherwise G\C;
(resp. G\C}) would not form a tree. But these cycles cannot be edge-disjoint either
for then they would pass through a vertex of degree at least 4, a contradiction.
Henee, they have nonempty intersection. On the other hand, C; and C; define faces
in the plane embedding of G and sinee each pair of faccs in a plane graph (with
vertex degree at least 3) share exactly one edge, we have that C; and C; interscct
in exactly one place accordingly.

Now, let the two cycles consist of & edges from G. We know that the number
of distinct vertices in Ci and C; is 2k — 2 which is bounded from above by V] =p.
Obscrve that the subtraction of 2 follows from the common cdge in both cycles.
Equivalently, & is thus bounded by p/2+1. But we also know from Lemma 3.1 that
in any Halin grapl, & must be at lcast P/2 4+ 1 and so we have that k = p/2+ 1.
This implics that [Vlis even. But C; and C; pass through only vertices of degree 3
and since [Cy] + ICil = p+ 2, we know that G is cubic.

Let e € Cin C; be given by z,y and let us form G\e = H. In H,deg, =
deg, = 2, with deg, = 3 elsewhere. But cach Cj\e and Ci\e is a path from z to
¥. Let us call these paths I and P; where cach consists of p/2 + 1 vertices. Recal
that these paths are internally disjoint. But H is a graph where the vertex degree
Is 3 everywhere other than at z and y and thus every internal vertex (ones other
than z and y) in P, is matched to a similar internal vertex in P

The only way this can be done and preserve planarity (recall that e is in G)
is as follows:
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But G\C: removes P; from H and G\C; removes P; accordingly, leaving in each
case trees T; and T; which are isomorphic. This completes the proof.
.}

.»mm:m::m?w&onunosmaonQm: Figure 5. There are three Halin bipartitions
induced by cycles Cy, Cy, and Cy which are indicated in bold. Tt is also easy to see
that the value of # in the statement of the above theorem is bounded by 4. This
follows since the requirement that every pair Ci and C; have an edge in common
corresponds to a complete graph I, in the planar dual of G. Note that it is also
asy to construct nonisomorphic Halin graphs on a vertex set V and which have
cquivalent cycle lengths. j )

3.2 Edge-Coloring on Halin Graphs

Recall that the chromatic index of a graph is the least mumber of colors needed to
color the edges of the graph so that no two cdges sharing a common vertex have
the same color. If the maximum vertex degree in the graph is A then certainly
the chromatic index must be at least A. But Vizing [V64] proved that it is never
more than A + 1; however, in general, it is hard to decide which value is correct.

Moreover, graphs which always require A colors are referred to as class 1 graphs ¢
while those graph classes with members possibly requiring A + 1 are called class 2.

OGur result js that Halin graphs are class 1 in that A is always the correct value.
We also show Low to create the coloring,

Consider first an casy lemma.

Lemma 3.3: Let G = (V,TUC) be a Halin graph and let H be a hamiltonian cycle
in G. Then the graph resulting from the removal of H from G is a forest,

Proof: Assume otherwise. If G’ is the graph formed by the removal of H, then ’
any cycle in G corresponds to vertices in G each with degrec at least 4. But then
such vertices in G could not be part of C and are then interior in T which is a
contradiction,

a

We now can establish the following.

Theorem
index A.
Proof: We shall prove the result in two parts. For the first, let us assume that
the number of vertices in G is even and suppose we have an existing hamiltonian
cycle in G say H. Removing H produces G which is, from the previous lemma,
a forest and hence is bipartite. But every bipartite graph is class 1 and colorable
with exactly A — 2 colors in this casc. The remaining two colors can be used to
correctly color H since H has an even number of vertices,

4: Let G be Halin with maximum degree A, Then G has chromatic

Now, assume G has an oddaimber of vertices: As before let H be ahamilto-
nian cycle in G. There must then exict an edge (z,y) € C\H since H is hamiltonian. . o
But then since z and y are degree-3, there is an edge (y,z) € H. Let us color all W Figure 5. Alternative Halin bipartitions
but (y,z) in H using two colors. This leaves A — 2 colors overall. Again, removal .
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of H from G yiclds a forest which we can color with these A — 2 colors with the
exception of edge (z,y). Note that (z,y) is an isolated component since r and y
are degree-3. Now, there also exists an edge (2,w) ¢ H. But {(z,w) is colored as
part of the forest. Let us color (z,y) with this color which s admissible since (z, ¥)
Is isolated. We are now left with only (y,2). But the other edges incident to y and
those incident to z have been colored with 3 colors (2 from H and 1 for the {z,y)

and (z,w) color) leaving & ~ 3 > 1 colors to choose from for (y, z).
O

The graph in Figure 6 illustrates the coloring for the (more interesting)
sccond part of the proof.

4 HALIN SUBGRAPHS AND SUPERGRAPHS:
COMPLEXITY RESULTS

As suggested carlier, existing results have established that the underlying recursive
structure of Halin graphs is sufficient to guarantee that most interesting graph
problems can be solved accordingly, But this also holds, for a host of other recursive
structures as well, As a consequence, it has been intimated in the literature that
a potential use for the rich solvability status of recursive graphs is in the role of
approximation. That is, given a graph G not known to be in such a class (or any
well-solved elass), how reasonable is it to create an approximation for G which
15, then produce the (existing) solution on the latter whicli in turn, leads to a
candidate solution for G? In [CNP83] this notion was entertained for the traveling
salesman problem whereby Halin subgraphs were projected as the approximating
graphs. In this section, we show that using Halin graphs in such a context might
be problematic. We begin with a subgraph approximation case

4.1 Halin Subgraphs

Let us state our problem in the following way:

Pj: Given a graph G = (V,E) and an integer ¢, does @ have a Halin subgraph
G = (V=, E~) where V- CV,E-CE and 1E=| > ¢7

We have:

Theorem 4.1: Py is N P-Complete.
Proof: Our reduction is from the longest cycle problem restricted to planar graphs.

Its statement is given below:

Pe: Given aplanar graph G = (V, E) and an integer & with V] 2 &k >3, does there
exist a cycle in G of length at least 4?
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From Pc we shall create an instance of P;; as indicated in Figure 7a. First, on every.

edge of G from Py we insert a single vertex. Then, to this homeomorph, we add 3

single “supervertex,” v, which is connected to every other vertex. Set ¢ = 4k.
Letting the constructed instance graph for Ly be G = (V7 E"), we have

V£ vertices inserted on edges in B

VS VUG (o)

E- 2 edges formed by the subdivision induced by ¥
E: 2 {(mg)li € V')

E' 2 EUE,

Observe that Vi =1E||
3IE[+ V).

1= VIHIEl+1, 1B = 2B |E,| = WVI+|E],and |E'] =

Now suppose there exists a cycle in G of length at least & By construction,

a cycle of length & in @ implies a cycle of length 2k in G, since cach odge in E
was split to form two £ edges (identifiable with one 1+ vertex). So this cycle in
G’ passes through 24 vertices, each of which is connected to v, by an edge in E,.
These 2k edges form a star on 2k +1 vertices with vy at the “hub.” Adding the 2k
eyele edges produces a wheel and Lence the desired Halin subgraph of size 4k, The
construction is demonstrated in Figure 7h (k = 4).

Conversely, let us assume there exists a Halin subgraph of G/, denoted as
G~ =(V-, E~) where V- C V! and E- C E" and with edge cardinality at least 4%,
Observe that cach edge in B must be cither a cyele edge in E7 a {ree edge in E-|
or outof E-. In addition, we will abuse the terminology somewhat by referring to
a “pendant” in a Halin graph when what we really mean is a degree-1 vertex in the
tree portion of such a graph.

Now, m:vvomo vy 18 not in V= Then none of the E, edges can be in the
stated subgraph which leaves each V* vertex in G7 incident to ouly two edges. But
since no vertex in a Halin graph can have degree less than three, these vertices and
the edges incident to them (edges in E*) also cammot be in the stated subgraph.
This leaves no edges at all, so no Halin graph is even possible, contrary to our
assumption. Hence, v, € V.

Next we establish that vr is not a pendant. Suppose otherwise. Then the
hypothesized cycle would pass through v, implying that cxactly two of the edges
in E; are cyele edges, and exactly one edge in E, is a tree edge. But by the size of
E~ and the bound on any cycle length from Lemma 3.1, we know that the assumed
cycle must pass through at lecast one V* vertex that is not adjacent to vz by a
eyele edge. Then, the remaining edge incident to that 1+ vertex must be a free
edge in £~ But such an edge connects the stated 1/ vertex directly to v, which
contradicts the degree requirement on vz and denies that G~ is Halin (see Figure
8a). Therefore, v, cannot be a pendant, and thus hag no cycle edges incident to it

Now in G v, is connected to every other vertex by an edge in E.. Since
vy € V7 each of these E, edgesin E= is a tree edge counecting v, to another vertex
v in G'. There are four possibilities: (a) y is in V and is a pendant, (b)yisin Vv
and is not a pendant, (¢) y is in V- and is a pendant, or (D yisin V= and is not
a pendant., Following, we examine cases (b) and (d) and show that they are not
possible.
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(a)

(b)

Figure 8.

» Case (b). Since we suppose that

mcident to y mnust also be tree od
vertices in 17*

Y is not a pendant, at least two E* edges
st ges. Both of these edges lead to degree-3
Seesin T ?.o ML@MMM%% Nrnmon,\o.am_nmm, say p. If pis a pendant, then both
: ‘ S mncident to 1t must be cycle edges. B
edges leads back to v, whi i ! S endant Tt s
s ba = which contradicts that v, s i
e ‘ at vy 1s not a pendant. If p is not
M__Mx :L.:MM; Mr_ﬁ 1 MEMT of the other two edges incident to it arc tree Q:Mem but
P one that leads back to v, forms a cve i clectod th
! e Lo vy a cycle with the edges selected thus far
and G~ could not be Halin, Thercfore, case (b} is impossible -
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e Casc (d). Since we suppose that y is not a pendant and y is in V*, both of
the other two edges incident to y must also be iree edges. Let these two edges
be incident to vertices a and b in V. Now suppose a and b are both pendants.
Then the cycle passes through both a and 5. This defines two edge-disjoint
simple paths from a to b that do not pass-through non-pendant vertices v,
and y. Further, since a and b are both in V, there must be at least one vertex
in V" on cach of these paths. Let any V* vertex on one path be u, and any 1*
vertex on the other path be v. Now, since u is of degree three in the subgraph,
the non-cycle edge incident to u (which leads back to v;) must be a tree edge.
The same is true for vertex v. However, this forms a subgraph homeomorphic
to I35, with bipartition {{vz, a, b}, {y,u,v}} (sce Figure 8b). Similarly, if onc
or both of ¢ and b are not pendants, then the additional tree cdges required
to connect them to pendants will again produce a N33 homeomorph when
added to the previous construction. In either case we deny planarity in the
liypothesized subgraph so case {d} is also impossible.

Having chosen vertex y arbitrarily, we may conclude that every vertex in the
hypothesized Halin subgraph with the exception of v, must be a pendant vertex.
But this can occur only with the tree edges forming a star having hub v,. Clearly,
such a (Halin) graph has exactly half of its edges in the cycle and half in the tree,
all of the latter incident to v,. Since we have supposed the existence of a Halin
subgraph with |[E~| > 4k, we know that at least 2k edges must form the cycle in
G~. This cycle is represented by a vertex sequence alternating between vertices in
V and those in V*. But in the construction of G, each edge of G was “split” into
two edges by the insertion of a V” vertex. Thus, the cycle portion of G~ having at
least 2k edges corresponds exactly to a cycle in G of length at least k.

As indicated, it is easy to test if a graph is Halin so Pj; is in NP and the
result of the theorem follows.

6]

An easy corollary results by fixing k in the above theorem. Letting k = |V
we have:

Corollary 4.2: Deciding if G = (V, E) possesses a spanning Halin subgraph is N.P-
Complete.
[}

It is worth pointing out that results similar to Theorem 4.1 exist for other
classes of graphs. Most of these are familiar in the context of so-called edge
and/or vertex deletion problems among which are the results reported in Yan-
nakakis [Ya78,Ya81a,b] and in particular, in Asano [As87] where a result analogous
to Theorem 4.1 for series-parallel graphs (holding even on planar instances) is given.
In this latter regard, we mention that the same result was obtained independently
and reported in [Ho91].
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4.2 Halin Supergraphs
Especially in view of the aforementioned references, sub

graph decisions often exhibit
a complexity status th

at is not unexpected; many are N P-Complete. On the other
hand, corresponding questions regarding supergraph constructions appear to |

more interesting {complexity status notwithstanding)
Cowmplete

he
- Typical of these is the (N P-
) Hamiltonien Completion problem [GJ79): Given G = (V,Eyand k < V]
does there exist a superset E' C E such that IE\E| < k and ¢' = (V,E") is
Hamiltonjan?

There are, of course, uninteresting versions of the supergraph problem. For
example, if a graph is not series-parallel (indeed, not a partial k-tree for some k)
then adding edges cannot make it so. This doesn’t carry over for the Halin graph
case however (sce the graphs in Figure 4).

Let us state our supergraph problem as follows:

Pl Given a graph G = (V, E), docs there exist a set of e

dges E*
the supergraph G+ = (V, E*) is Halin?

mmuum:nwlri
(Equivalently: Is G a subgraph of any Hal
that G is not Halin since testing for this property is casy. We may also assume that
G is not 3-conneeted, following from the property that Halin graphs are ne
3-connected and minimal in this regard.

Our next result shows that resolving Pf is no e
graph version.

in graph?) Recall that we may assume

ssarily
asicr than the previous, sub-

Theorem 4.3: P is N P-Complete.

ﬁgow?d‘.i:emgzmmrwga:nﬁwom m.oBZSAm?o:mmosmwvw,wmn::oz problem
the statement of which appears below: ‘

Pap: Given a set 4 of 3m clements, an integer bound B, and an integer size s(a)

for cachi @ € 4 such that B/4 < sla) < B/2 and where Yoaeas(a) = mDB,
can A be partitioned into m triples Ay, A, .. A, such that, for 1 <7 <
m,Toeq8(a) = B?

{Observe that each A; must contain exactly three elements from A).

From an instance of Pyp let us create an instance of P} as indicated in Figure
9. Attached to vertex t are “tails” which correspond to the elements in A with the
length of cach tail related to the size of the respective element. Tl
of the graph and in particular the m “seginents™
A Ay AL, each with size B w
vertices inserted within each segmer
vertices as shown.

1¢ upper part
correspond to the desired sets
here the latter-is denoted by the B darkened
1t. Segments are connected by the large, open
For ease, we shall use the terms
vertex to denote these vertices. Clear]
not Halin nor is it 3-connected.

For the first direction, assume that a suitable
cordingly, we can construct a “H

“intrasegment” vertex and

“intersegment” y, the graph in the figure is

partition of 4 exists. Ac-
alin completion” of G in the following manner.
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ils i 1 ior face bor :d by interseg-

For cach A, place the three relevant tails in an interior ?nc_ vc,:m:r\; Wufolci,w

| L vertices, intr all e ese faces a “scctor”).

;:2: vertices, intrasegment vertices, and ¢ (we call cach of M Smw Mm:; T

wm,w m:,g cach pendant vertex of a tail create two c&mamv?ows t MJ pen .ov fo an adi

. i ices - e if any) other (degree-2) verte :

air of intrasegment vertices. For each (if ¢ : n e

cont pair of B i intrasegment vertex. In this way, we adc

il. cre > edge from the tail to an intrasegm x. 1 5 wa

il creats one cee i that planarity is maintained.

‘ = = dges. [t is easy to see that ple .
Toea(s(a)=1)+3 = D edg S in graph H = (V, Ey) with
et ion i lete yielding a Halin graph \

The construction 1s now complete ) 1 : e
E,, defined by E augmented with the new edges just momnz_uo;w the MM\ ?onmv%
w . es are :
.:R those defining the face denoted by f, say .mw? and the tree edg g
B, i strates the construction. .
EnEs. Pevre mo mnamﬂwwpmm:o exists a Halin completion of G, say G = (V,E°).
N lant vertex, since its degree in
’ ' Now, vertex t must be a non-pendant vertex, simce
W B¢ = EUE’. Now, ’ ; e s degree 1
WA xeeceds 3 (we avoid trivialities in the statement of Nvum“v. ﬂﬁﬂr:u,w:_mmm " :M
] exoeed n : te - ) ~Or 1]
imply : > ¢ is a cycle edge. Acc o1y,
in Figure 9) arc tree cdges implying that edge ¢ is a ¢ dge. Acc b
(in Figare 0) o 1 b 1dants, which implies that edges
intersegment vertices incident to edge ¢ must be pendants, al edges
e el i at the cycle subgraph in G is
-yele edges as well. But this means that the cycle :
a and b are cyele edges as we A
ace ; or bface of f created in G*. s, the .
ither defined by face f of G or asu T et -
:::n“_ yart of the tree in G€. Observe also that the upper portion of G (in Figy

i : srefore may assume an
W:v:.f ;ﬁ:w by edges z,y, and ¢ is 3-connected and we therefore may assume a1

inscribe Jdges @,

i it as shown in Figures 9 and 10. .
anbedding of it as shown in 9 and ‘ ke
. If the munber of cycle edges in G¢ = k, we must have ::;. A > M:. _Am«m:ﬂ.

(B+1)+41, where din( f) denotes the dimension or number of edges defining face
m +1, rre din( :
f. Also recall that & has a natural lower bound:

k> VI/2+1=(2m(B-1)+1))/2+1=m(B —1)+2.

> have total
But the vertices in the tails of G have degree less than 3 EHM ﬂwﬂon&cw,W..MMM;l:i
1 ‘ st 1 is deficiency has to have been satisfied by edges attache
ficiency at least mB. This deficiency e b isfied B ached
Mrm:E 7.& vertices but not extending between distinct tails nor Gn;oon: MrmMEo
. . i ies the ils are part of a tree.
vertices of the same tail which in either case denies that the tails are part ¢

Henee, |E'} > mD.

On the other hand, the intrasegment vertices in G all hiave &cmz«..o 2 msmmn.v_cm
a deficiency of B as well. But in G we have |E| = 2B — m + 2 and ,HMMNW&\H w:”_”
graph of order p with a cyele of length &, we know therc are p+ k-1 e rhvm. ,UHM o
construction, G must then have size m?.:@w — 1)+ 1)+ k — 1. Letting wp Hﬁ
number of edges to add to G to create G it is casy to see that § = NHHH Q,:. M A. :NW
us suppose that & is different from its upper bound of m(B +1) + 1. ~ ﬁ:. o
and E' caunot be formed as required. Hence, & = :.N.Cw + 1)+ 1 and the n‘@nﬂ.p ._ :
G is defined explicitly by face f. Thus all the <mnsﬁnw on \ are ?,:,r:;».aow .Fow
and their deficiency is mB. Exactly B of thesc are E.wn::c.L in cach mcnooM .uwnw.pwa.:
these edges connect precisely those vertices of the tails which E:mn. be E,d hec AA:n_:
the sectors. Morcover, if any tail vertex is connected to a vertex in a given v.mo ~cn
so must every other vertex in that tail since G© is Ex.,:p.n. ”Hr:.m, every onc of t FM
m sectors has exactly three tails from G embedded within it with cach nosm—wwﬁ_,o,a
by exactly B edges to the respective vertices on face f. w:n.ﬂro: nu.&.u o ‘;nvw
mmn"OaL.:Z embeddings forms a triple which corresponds to a suitable 3-partition o

A
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Figure g9, Construction for Theorem 4.3
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The transformation from Pp to form G is valid following the strong sense
status of Pyp, which along with P{’s inclusion in NP yields the desired result.

0O

5 SUMMARY

The work reported in this paper reflects very little of the intent of our original
rescarch effort. Indeed, the primary aim in the latter was to examine the role of re-
cursive graph classes in the context of approximation. As suggested at the beginning
of Scction 4, the recursive class of Halin graphs appeared to be an interesting model
with which to procecd, largely because subgraph as well as supergraph contructions
are possible for nonHalin structures.

The complexity results in Section 4 would suggest, however, that using Halin
graphs in this fashion might be more complicated than one would mitially be led
to believe.  Also, as mdicated eatlier, it does not appear that sunilar (recursive)
structures such as partial 2-trees provide meaningful alternatives. Note that this
pessimism is not directed at the aforementioned approximation notion in general,
but rather, at the explicit role played by structures like Halin graphs in such a
context.

As a theoretical matter, it would be interesting to strengthen the result
of Theorem 4.1 by clarifying the issue of whether or not a graph possesses any
Halin subgraph. On the other hand, from a practical perspective, this might be
somewhat academic since, if there is any use for Halin graphs in the approximation
sense described, our interest would be in large subgraphs in any event. Still; as
a complexity matter, the result would be an important one from the viewpoint of
completcness.

Halin completion

Figure 10.
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