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Abstract

The optimal arrangement problem is one of the best known of various
labeling problems on graphs. The problem is hard in general but is known
to be solvable in certain special cases among which are paths, cycles, and
trees. In this note we add to this list by giving a fast algorthm for the
problem when instances are confined to a particular type of Halin graph.
So far as we know. the status of the problem on Halin graphs, in general,
is open. We conclude by examining some related issues.
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1 INTRODUCTION

Let G = (V. E) be a finite graph of order n. Then the optimal linear
arrangement problem (OLA) seeks a vertex labeling f: V — {1.2..... n}
such that Z {f(u) — f(v)| is minimum over all such labelings. The
(uv)eE

problem is well-known to be hard as is its popular variant, bandwidth where
we are interested in a labeling that minimizes the largest value |f(u) —
f(v)[. On the other hand, OLA is solvable on trees following work in
Shiloach (1979) and more recently, Chung (1984). (Observe that bandwidth
remains hard, even on trees with maximum degree three.) For a review of
results including ones involving other labeling problems as well as results
on particular graphs, the reader is directed to Chung (1981).

In this note, our interest is in OLA confined to a particular subset of the
class of Halin graphs. The latter are planar graphs, with the property that
the edge set can be partitioned into a tree no vertex of which has degree
2 and a cycle C on only and all pendant vertices of the tree. So far as we
know, the status of OLA on arbitrary Halin graphs remains open. On the
other hand. we will show here that it can be solved by a fast algorithm on
the subclass of Halin graphs where the underlying tree is a caterpillar, i.e., a
tree such that the removal of degree-1 vertices leaves a path. Representative
of this set .of restricted Halin graphs is the structure shown in Figure 1. The
caterpillar is given in bold.

Figure 1: Halin graph with tree component a caterpillar

2 OLA ON ARBITRARY CATERPILLARS

In this section, we give an algorithm for solving OLA on the special tree
class of caterpillars. As it turns out, this is actually all that we need in
order to solve the problem on the corresponding Halin graph. First, we
state some well-known properties of optimal linear arrangements on arbi-
trary trees. Observe that we denote the vertex and edge sets of a graph G
by V(G) and E(G) respectively.



Property 1. An optimal linear arrangement, f* of a tree T, maps V(T
onto a set of consecutive integers.

(We will hereafter assume that vertex labels are drawn from the integers,

{1.2..... n}.)

Property 2. The vertices u and v with f*(u) and f*(v) labeled as 1 and
n respectively both are pendants, i.e., deg(u) = deg(v) = 1.

Property 3. Let P be the path in T which connects the pendants labeled 1
and n. Denote P by {4g,1,...,i:}. Then the labelings of P are “monotone”
in that

frliz) < ffliggr) fori=0,....t =1,
or
[ (i) > fliger) fori=0,...,¢t — 1.

The next property is specific to caterpillars.

Property 4. Suppose P is a path connecting a pair of pendants in T
and moreover, let this be a longest path in T. Then the graph formed by
E(T)\E(P) is a vertex disjoint collection of stars each of which is labeled
by consecutive integers.

Note that, necessarily, the path P just described will include every vertex
on the spine of the caterpillar, i.e., all vertices “vith degree at least two in
T.

Following, we state an easy lemma which establishes a lower bound on
the value v of any labeling of a caterpillar and hence for the value of an
optimal one. We then state an equally simple algorithm for labeling the
vertices of a caterpillar which achieves this value and is thus optimal. We
have
Lemma 1: Let T be an arbitrary caterpillar on n vertices and denote by
hi,t =1,2,...,t, the vertices on the spine of the underlying path P of the
caterpillar. Then

i _ 2
V(T)Zn—1+ZL@_e_9(_ha)_ﬂ_J
i=1

Proof: Consider any labeling f of 7. It is easy to see that the path
from f(i) = 1to f(j) = n in T has value at least n — 1. Now, if the edges
of this path are removed from T then the subgraph of T that results can



be expressed as a (not necessarily vertex disjoint} union of at most ¢ stars
each with order at least deg(h;) — 1. But the value of an optimal labeling

of a star of order p is well known to be {F{—J and we are done.

—_

We now state an algorithm for caterpillars. First, denoting the cater-
pillar by T, we find a path P in T as defined in Property 4. Label the end
vertices of the stated P by 1 and n respectively. Now, partition the integers
{2.3,....n—1}as {2... . ki } {ki+ 1, .. ko). o {kg+1,...,n—=1} and
label each of the g + 1 stars formed by E(T)\E(P) in an optimal way with
the integers in the respective components of the stated partition.

Clearly, the labeling of the vertices in P satisfies the monotonicity at-
tribute of Property 3 and, moreover. has a value of exactly n — 1. Each of
the stars formed by the removal of E(P) are labeled by consecutive integers
and the labeling is optimal in each case. (Note that the optimal labeling
of stars is well known and we take no space here for a description of the
strategy.) We have then that the value of the total labeling is exactly the
bound value of the lemma and is thus an optimal labeling.

We can demonstrate the procedure by operating on the tree instance
from Figure 1. Accordingly, let us select a pair of pendants and label these
by 1 and n as indicated. Removal of the edges on the path connecting
these vertices leaves the forest of stars shown in Figure 2. As suggested,
stars are easy to label in general and in this case the corresponding result
is indicated as shown.

Figure 2: OLA on a caterpillar



3 A SOLVABLE CASE OF OLA ON HALIN
GRAPHS

We are now in a position to establish that OLA is solved for the class of
Halin graphs where the tree component of the decomposition is a caterpillar.
In fact, the algorithm is already at hand: we solve OLA on the caterpillar
with the cycle labeling induced directly by the labeling of the pendants of
the tree. The bottom graph in Figure 2 illustrates the notion. Note that
in this regard, some care is required in labeling the pendants of each star.
Specifically, we want the induced labeling on the cycle to be such that the
label monotonicity property is satisfied for each of the paths (defining the
cycle) connecting vertices labeled 1 and n. For a given embedding of stars,
this is a trivial task.

We now establish that this overall strategy is correct. Let us begin with
a pair of results, the first of which is easy (and applies to any graph).
Lemma 2: Let G be a finite graph and let G',G?,... G* be any set of
edge-disjoint subgraphs of G. Then

v(G) > > wH(GY) for all § C{1,2,...,k}
i€S

D -
That is, the value of an optimal labeling for G is at least as large as the sum
of optimal values for independent labelings on subgraphs of G. This sum
is defined over any set of subgraphs; clearly it is strengthened by judicious
choices of the latter.

The next lemma is particularly important and is specific to the stated
class of Halin graphs.
Lemma 3: Let G be a Halin graph with cycle C and tree component T
which is a caterpillar. Then

2
n

t
v(G) 2 3(n ~ 1) +§L +)
where n; denotes the order of the ith star defined as per Lemma 1.

Proof: Suppose the instance is defined on graph G and that the labeling
algorithm has been applied resulting in f(G). We consider two cases: (1)
where vertices u and v with f(u) = 1 and f(v) = n are in V(C) but at
least one is not a vertex on a longest path in T'; (2) where given u and/or
v labeled as 1 and n is/are nonpendant vertices in T, i.e., not in V(C).

Consider case (1) first. Since Halin graphs are 3-connected, there must
exist in G three internally vertex-disjoint paths connecting every pair of
distinct vertices. But any path with termini labeled as say z and y has
value at least |y — z| and if the labels on the path satisfy Property 3, this



value will be exact. Hence, G will have at least one subgraph consisting
of the stated three paths connecting the vertices labeled 1 and n and this
subgraph has total label value at least 3(n—1). Now, remove this subgraph
from G and denote the result by G’. Then the degree of each vertex on
the spine of T is reduced by either 2 or 0. But then each of the stars
described in the proof of Lemma 1 is either isomorphic to a component in
G’ or is isomorphic to a subgraph of a component in G’. In either case, we
have from Lemma 2 that v(G’) is at least as large as the optimal values of
labelings of the stars. Adding this value t6 3(n — 1) produces the bound of
the lemma.

Now, consider case (2). Here, we assume that one or both of the vertices
u and v with f(u) = 1 and f(v) = n are not pendant vertices in 7. For
ease, we will consider only the case of the vertex labeled 1; the case for only
n as well as for both can be treated in identical fashion and are not pre-
sented here. Now, the same argument regarding the formation of G’ can
be employed where the aforementioned 3-path subgraph, when removed,
contributes at least 3(n — 1) as before. But now the vertex on the spine of
T which is labeled 1 has its degree reduced by 3. However, in comparing
the total label value of G’, we need only examine the effect of the stated
degree reduction at the vertex with label 1. In this regard, it is easy to
see that G’ contains edge-disjoint subgraphs that are either isomorphic to,
or that require at least the label value of the stars defined earlier, or else
G’ will contain a star of order one less but which, by hypothesis, has its
hub vertex label fixed at 1, in turn yielding a greater overall label value
than that of an optimal star of order one greater. In all cases, G’ costs at

t 2
least ZL%—J and again, we have produced the stated bound. These are
=1

the only cases we need to consider and the proof is complete.
a

For ease, both cases described in the proof of Lemma 3 are demonstrated
in Figure 3. At the top right in the figure, we show the stars that result
vis-a-vis the application of the proposed algorithm and specifically relative
to the labeling of the caterpillar. For reference, let us code these by the
letters a, b, ¢, d and e as indicated. Now, case 1 is demonstrated at
the middle/bottom left where both vertices labeled by 1 and n are on the
cycle but not as termini of a longest path in the caterpillar. The subgraph
in bold represents a choice of three vertex-disjoint paths connecting the
vertices labeled 1 and n; its removal, yielding G’ is shown directly below.
Further, subgraphs of G’ which are isomorphic to the respective stars above
are denoted as indicated.

For case 2, we will demonstrate a pair of possibilities for the sake of
clarification. The first, which we denote by subcase 2.1, assumes a label of



® subcase 2.2
Figure 3: Cases described in proof of Lemma 3



I at a nonpendant vertex of the caterpillar (with the vertex labeled n on
the cycle as shown). Again, the subgraph of 1 — n paths is denoted in bold
and G’ is given below. Instructive here is that relative to the given vertex
labeled 1, the concomitant removal of its incident edges eliminates all of
the star specified as component c at the top. However, it must be that
somewhere else in G’ there is a subgraph isomorphic to ¢ (in this case, an
edge) and so that the result of Lemma 2 is applicable. Such an alternative is
shown in the figure. On the other hand, the subcase 2.2 shows the outcome
when the label 1 is assigned to a high degree, nonpendant vertex of the
caterpillar. Here, when G’ is formed, a star is left having hub-vertex of
degree 4 and moreover, there is no subgraph (anywhere in G’) which is
isomorphic to d at the top. However, since the hub of the star formed
relative to G’ has label 1, no labeling of its adjacent vertices can result in
a value overall that is strictly better than the optimal labeling of the star
of order 6 shown by component d above. Indeed, this outcome generalizes
to any pair of stars, one of order ¢ and the other of ¢ + 1 for all ¢ greater
than 3. (Observe that orders less than this leave edges or paths of length
two and the argument for case 2.1 applies.)
We now come to the desired result.

Theorem 4: Let G be a Halin graph with cycle C and tree component T
which is a caterpillar. Then,

where v*(G) = v*(T) +2(n — 1).

(i.e., the pendant labels relative to 1" remain optimal when E(C) are ap-
pended)

Proof: The result of Lemma 3 specifies a lower bound on the cost of any
labeling which most surely holds for an optimal one. Moreover, the appli-
cation of the stated algorithm will always produce a labeling with exactly
this value and is thus optimal.

O

4 DISCUSSION

This short note raises some interesting questions. Not the least of these,
indeed probably the foremost, is the issue regarding OLA on the broader
class of arbitrary Halin graphs. If found to be polynomially solvable, such
an outcome would be particularly worthwhile. This follows since it is known
that Halin graphs are contained in the class of 3-terminal recursive graphs
and interestingly, labeling problems such as OLA are notoriously resistant
to (fast) resolution on recursive structures whereas this is not the case with

10



the vast majority of optimization problems when confined to such graphs
(c¢f. Borie et al. (1992)). By the same token, if an intractability result
could be established for the problem (on Halin graphs), the corresponding
status on the other recursive graph classes might be similarly resolvable.
Prominent among the latter is the class of partial 2-trees or series-parallel
graphs where at this point, OLA appears to be open.

On the other hand, there is an interesting subclass of series-parallel
graphs upon which OLA is solvable. Recall that outerplanar graphs are
characterized by the absence of subgraphs homeomorphic to Ky and Ks 3
(the only forbidden subgraph relative to series-parallel graphs is the first of
these) and accordingly, following a result in Frederickson and Hambrusch
(1988), OLA can be solved on this restricted class. Topologically, outer-
planar graphs are structures embeddable in the plane in such a way that
all vertices lie in the outer face. The graphs in Figure 4 illustrate some
examples.

The Frederickson-Hambrusch results notwithstanding, it should be ap-
parent that for some outerplanar structures, the simple labeling tactic de-
scribed for the restricted Halin graphs will work. Predicated upon the
simple notion that if a graph class decomposes into substructures which
can be (easily) labeled in optimal ways and that if this labeling is consis-
tent when substructrures are “composed,” then the labeling for the original
graph must be optimal. Suppose G = (V| E) to be outerplanar and let us
form edge set F = E\E(C). Let us also assume that G is not simply a
cycle or a path. First, consider the case where F is either a tree or a forest
spanning vertices in V\{z.y} where z and y are the two degree-2 vertices
in G (there must be at least two of these vertices in any outplanar graph).
Either way, we need only label vertices z and y as 1 and n respectively and
it's easy to see that there exists optimal independent labelings for the ver-
tices of the alluded to tree/forest components and which form the desired
optimal labeling property for the vertices on the cycle C, cf. the labeling
described by Property 3. The labeling in Figure 5 helps demonstrate.

Now, if the subgraph induced by removal of E(C) does not span as in-
dicated and/or is not even acyclic, it is easy to see that the “fast” labeling
strategy employed to this point will not always work, i.e., optimal labels
for components of F induce suboptimal labels for C' and conversely. For
example, in the simple outerplanar graph in part (a) of Figure 6 we could
label the subgraph F, shown in bold, as indicated but the outcome is sub-
optimal for any cycle labeling. On the other hand, the alternative in part
(b) labels C in an optimal way and the corresponding labeling for F', while
suboptimal accordingly, yields a less harmful outcome overall. We have not
bothered to refine cases which work out easily as opposed to those that
do not but it is clear that most troublesome are homeomorphs of the sort
described by the graph to the right in Figure 7(a). Structures like that in
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Figure 4. Some outerplanar graphs
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Figure 5: Optimal labeling of certain outerplanar graphs
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() ; (b)

Figure 6: Illustration of potential “problem™ cases

(a) (b)

Figure 7: General form of some easy and difficult cases
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7(b) are easy; the previous labeling strategy works as before.

Returning to a point raised at the outset, it was remarked that the
general difficulty of OLA was well known. In fact, the (recognition) problem
remains N P-Complete even when instances are restricted to the class of 2-
outerplanar graphs (refer to Frederickson and Hambrusch (1988)). Crudely
stated, a graph G is k-outerplanar if there exists an embedding of G having
disjoint cycles properly nested at most k deep (c¢f. Baker (1983)). In this
regard, outerplanar graphs are simply “l-outerplanar” and it is easy to see
that all Halin graphs are 2-outerplanar. On the other hand, series-parallel
graphs exist which are k-outerplanar for arbitrarily high k. The graph in
Figure 8 makes the point.

Regarding the notion of problem complexity, the present work has also
exposed a particularly interesting albeit slightly modified version of the
primary problem. For ease, we might call this version the partial OLA
problem where now we assume that as part of the instance, some (possibly
empty) subset of vertices have been labeled and the aim is to map the
remaining labels (from {1,2,...,n}) to the other vertices and to do so in an
optimal way overall. Indeed, it is not clear that even for graph classes where
OLA is solved, that this modified version would submit as well. In fact,
for other problems, we know that analogous “completion” problems are, in
fact, hard. Classic in this regard is the so-called 4-color completion problem
on planar graphs. Well known, of course, is that 4-colorability is decidable
(trivially) on planar graphs; however, if vertices (of a planar graph) are
preassigned any of at most four colors, deciding if the remaining vertices of
the graph can be properly colored using no more than four colors overall is
N P-Complete. The proof of this is only an exercise; the reduction is from
planar graph 3-colorability. Nonetheless, it se-ms worthwhile to consider
the aforementioned partial OLA. Presently, its status on even primitive
graph classes such as paths is not clear to us.

Finally, one might consider the following problem: Given a graph G,
find a smallest, spanning connected subgraph of G say H having the prop-
erty that the optimal linear arrangement of H is also optimal for G. Phelps
(1995) has referred to this as a “critical subgraph” version of OLA. Clearly,
the problem is well-defined in that every graph exhibits a candidate subgraph—
namely, the graph itself. More importantly, it is easy to see that the problem
possesses interest. Consider Figure 9. Assuming G to be the graph on the
left, it is easy to see that a critical subgraph results in the form of H; with
its labeling as shown to the right. Alternately, the subgraph Ho must be
labeled as indicated which, of course, is not optimal for G.

The observant reader will be quick to recognize that the results of this
note also produces an easy, critical subgraph outcome. Indeed, if G is a
Halin graph with tree component, a caterpillar, then the following is im-
mediate:
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Figure 8: Series-parallel graph that is k-outerplanar
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Figure 9: Critical subgraph concept

Corollary 5: Let G be a Halin graph with tree component T a cater-
pillar. Then T a critical subgraph of G.
O
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