
ON THE COMPLEXITY OF CERTAIN COMPLETION
PROBLEMS

by

S. B. Horton∗, T. Easton† and R. Gary Parker†

Abstract

Many combinatorial problems that are efficiently solvable are made more dif-
ficult by the imposition of a partial solution. For example, while the celebrated
four-color theorem guarantees that every planar graph can be four colored, if
some of the vertices are colored as part of the instance, deciding if the remaining
vertices can be properly colored with a total of four colors is NP-complete. In-
terestingly, this phenomenon can also occur when the unconstrained problem is
very easy or even trivial. In this regard, this paper gives some recent results for
completion problems related to linear arrangement and latin square construc-
tion.

*Department of Mathematical Sciences, United States Military Academy. West
Point, NY 10996. This research is supported in part by a grant from the Faculty
Development and Research Fund, Office of the Dean, United States Military
Academy.
† School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA. 30332-0205.

1 INTRODUCTION

1.1 Completion Problems

Let Π be a well-solved problem in the usual sense (i .e.,Π ∈ P) and let the set
of instances be given by DΠ. Now, consider a modification to Π created by
allowing an instance I ∈ DΠ to be “restricted” in the sense that some subset of
variables in potential candidate solutions to I are fixed. Then the sort of question
that interests us here asks if there is an admissible completion for I subject to
the stated, fixed conditions. Note that we include optimization problems in the
obvious way where completions, if relevant, are evaluated against some threshold
value that is part of I.

It is easy to create completion problems that fit within the framework posed
above. Hereafter denoted by ΠF , some of these are natural, some less so. In
addition, some cases are not so interesting while others can lead to results that
are surprising. In this paper, we consider four examples of the latter variety.

1.2 Organization

The paper is organized in the following way. In the next section, we give some
complexity results for certain completion problems. In the first subsection,
we prove some complexity results related to the optimal linear arrangement
problem. Following, we prove some similar results for a related graph labeling
problem, the bandwidth problem. We then describe some outcomes regarding
the complexity of completing latin squares. After which, various graph coloring
completion problems are considered. We conclude the paper with a summary
and directions for further research.

2 SOME COMPLEXITY RESULTS

2.1 Optimal Linear Arrangement

Given a simple, finite graph G = (V,E) of order n, the OPTIMAL LINEAR
ARRANGEMENT problem (OLA) seeks a vertex labeling f : V → {1, 2, . . . , n}
such that

∑
(u,v)∈E |f(u)− f(v)| is minimum over all such labelings. For ease,

let us denote the value of an admissible labeling of a graph G by L(G). Optimal
labelings are denoted by f∗ and their values by L∗. OLA is well-known to be
NP-hard in general but solvable on trees following work reported in Shiloach
(1979) and more recently, in Chung (1984). The problem is also solved on the
class of outerplanar graphs; planar graphs without subgraphs homeomorphic to
K4 or K2,3 (Frederickson, et al. (1988)).

An interesting modification to OLA results if we assume that some (possibly
empty) subset V ⊆ V is pre-labeled from integers in α ⊆ {1, 2, . . . , n} and the

notion now is to label the remaining vertices in V \V with the other, “unused”
labels and to do so in an optimal way overall, given the fixed labeling initially
imposed. The decision version of the problem is simply to determine if there
exists a labeling f∗(G) satisfying the constraints of the pre-labeled vertices such
that L∗(G) ≤ k. Calling this version PARTIAL ARRANGEMENT (OLAF), it
is not at all clear what its status is, even for graph classes where it is trivial
to solve OLA. For example, if G is a simple path, Pn we do not know how to
solve the partial arrangement version, but neither do we have an NP-hardness
outcome. On the other hand, if we are allowed to further restrict and/or relax
instances, we can produce some results.

For a solvable case of OLAF for arbitrary graphs, suppose we take G to be
any graph on n vertices and further, let us assume that G has no edges between
vertices in V \V . Then, for such instances, OLAF is easily solved as a weighted
bipartite matching problem. We simply form a (complete) bipartite graph G =
(A,B,E) where A = V \V (the unlabeled vertices) and B = {1, 2, . . . , n}\α (the
set of available labels). For i ∈ A and j ∈ B, let wij be the weight on edge (i, j)
which we define to be the arrangement cost of assigning label j to vertex i.

Alternately, with different restrictions we can produce negative results. First
we consider the case where G is a forest of paths.

Theorem 1: Given a graph G that is the disjoint union of simple paths, OLAF

is NP-complete.

Proof: The problem is clearly in NP ; given a labeling it is easy to test if its
value satisfies the threshold, k.

Our reduction is from the 3-PARTITION problem, the statement of which
appears below:

Given a set A of 3m elements, and integer B ∈ Z+, and an integer size s(a) ∈ Z+

for each a ∈ A such that B
4 < s(a) < B

2 and where
∑

a∈A s(a) = mB, can A
be partitioned into m disjoint sets A1, A2, . . . , Am such that for 1 ≤ i ≤ m,∑

a∈Ai
s(a) = B?

From an instance of 3-PARTITION we create an instance of OLAF as fol-
lows. Let k = 2m(B − 1). The instance graph G consists of a disjoint union
of 3m+ 1 paths. The first 3m paths correspond to the elements of A and have
length s(aj) for each respective aj ∈ A. The last path has length m + 1, and
each vertex in this path has a fixed label. The ith vertex in this path has label
1 + i(B + 1) for i = 0, 1, . . . ,m. An illustration of the construction is shown in
Figure 1; the vertices in V are embedded across the top of the figure with their
respective fixed labels indicated.

(⇒) Suppose there exists a suitable partition relative to the instance for 3-
PARTITION. Among the integers from 1 to 1 +m(B + 1) inclusive, there are

Figure 1: Reduction Mapping

m groups of B consecutive integers that are not used as fixed labels. Now, we
use a set of B consecutive integers to label the B vertices of G corresponding
to some Ai. We label these three paths in the obvious optimal way, incurring
a cost of

∑
a∈Ai

(s(a) − 1). We do this for each of the m different Ai’s. This
yields a total labeling having a cost of

∑

a∈A

(s(a)− 1) +m(B + 1) = mB − 3m+m(B + 1) = 2m(B − 1)

so L∗(G) ≤ k as required.

(⇐) Now suppose G can be labeled so that L∗(G) ≤ k. We will show that this
is possible only when there is a suitable partition that solves 3-PARTITION.
First observe that

L∗(G) ≥ m(B + 1) +
∑

a∈A

(s(a)− 1) = m(B + 1) +mB − 3m = k

so we can assume L∗(G) = k. First note that the path that is partially labeled
is actually completely labeled, and its cost is m(B + 1). Further, note that
every other path in G corresponding to a ∈ A must be labeled using s(a) con-
secutive integers if a value L∗(G) = k is to be achieved. But since the partial

labeling leaves “blocks” of B consecutive integers, it is clear that the condition
L∗(G) = k can only occur if there is a suitable partition relative to the instance
of 3-PARTITION. ✷

To demonstrate the reduction, consider an instance of 3-PARTITION with
m = 3, B = 19, and A = {5, 5, 5, 5, 6, 7, 7, 8, 9}. This is a “yes” instance since
we can take A1 = {5, 5, 9}, A2 = {5, 7, 7}, and A3 = {5, 6, 8}. For each i,
the subgraph corresponding to Ai is labeled with one of the available sets of
consecutive integers. The labeled graph that results is shown in Figure 2. The
horizontally embedded path contains the fixed labels (1,21,41, and 61) and the
vertically embedded paths correspond to the elements of A. The graph in the
figure is completely labeled to satisfy L∗(G) = k = 2m(B − 1) = 108 according
to the strategy described above.

Figure 2: OLA Reduction Mapping Example

The following corollaries are immediate.

Corollary 2: Let G satisfy the conditions of Theorem 1. Then OLAF remains
hard for |V |

|V | ≤ m+1
mB+m+1 . ✷

For large values of m and B, this means a very small ratio (in the limit about
1
B) of fixed labels to total vertices can be enough to make the problem difficult.

Corollary 3: Let G satisfy the conditions of Theorem 1. Then OLAF remains
hard when only one of the paths contain members of V . ✷

We also note that by employing a similar reduction strategy (i.e., from 3-
PARTITION), we can create modifications that establish the NP-completeness
of some related problems. Again, our intention is that we preserve the desired
effect of having problems which are trivially solvable without fixed labels but
which are not so otherwise.

Theorem 4: OLAF is NP-complete when G is a caterpillar, i.e. a tree such
that the removal of all the degree-1 vertices results in a path. ✷

Theorem 5: OLAF is NP-complete when (the multigraph) G is a path with
multiple edges. ✷

Theorem 6: Given a graph G = (V,E) that is a disjoint union of paths, an
integer k, and a subset V ⊆ V , deciding if G is a spanning subgraph of some
connected graph G′ = (V,E′) such that L∗(G′) ≤ k is NP-complete. ✷

Proofs of Theorems 4 and 5 appear in Easton (1999), and Theorem 6 is due to
Horton (1997).

2.2 Bandwidth

In this section, we give some results for the BANDWIDTH problem that are
similar in spirit to those of the previous section. Given a simple, finite graph
G = (V,E) of order n, the BANDWIDTH problem seeks a vertex labeling
f : V → {1, 2, . . . , n} such that max(u,v)∈E |f(u) − f(v)| is minimum over all
such labelings. We again denote the value of an admissible labeling of a graph
G by L(G). Optimal bandwidth labelings are denoted by f∗∗ and their values
by L∗∗. As is the case with OLA, the decision version of BANDWIDTH is
NP-complete. Unlike OLA, BANDWIDTH remains hard when the instances
are restricted to be trees with no vertex of degree greater than 3. Note however
that BANDWIDTH is similar to OLA in that it is trivial to solve when G is
a forest of paths. We again modify the basic problem by assuming that some
(possibly empty) subset V ⊆ V is pre-labeled from integers in α ⊆ {1, 2, . . . , n}
and our aim is to label the remaining vertices in V \V with the other, “unused”
labels and to do so in an optimal way overall, given the fixed labels of the initial
labeling. The decision version of the problem is simply to determine if there
exists a labeling f∗∗(G) satisfying the constraints of the pre-labeled vertices
such that L∗∗(G) ≤ k. We will call this problem PARTIAL BANDWIDTH
(BWF). As was the case with OLAF , weighted bipartite matching efficiently
solves instances of BWF in which there are no edges between vertices in V \V .

Next, we sketch the proof of a theorem for BWF that is analogous to Theorem
1 for OLAF .

Theorem 7: Given a graph G that is the disjoint union of simple paths, BWF

is NP-complete.

Outline of Proof: The problem is clearly in NP ; given a labeling it is easy to
test if its value satisfies the threshold, k.

Our reduction is again from the 3-PARTITION problem. From an arbitrary
instance of 3-PARTITION we create an instance of BWF as follows. Let k = 1.
The instance graph G consists of a disjoint union of 3m paths and m + 1 iso-
lated vertices. As in the reduction in Theorem 1, the 3m paths correspond to
the elements of A and have length s(aj) for each respective aj ∈ A. The m+ 1
isolated vertices each have a fixed label; for i = 0, 1, . . . ,m, the ith vertex has
label 1 + i(B + 1). The construction looks just like the illustration shown in
Figure 1 except the horizontally embedded edges should be ignored. Now with
a line of reasoning very similar to that of Theorem 1, it is easy to see that
the resulting graph can be labeled so that L∗∗(G) = 1 if and only if there is a
3-partition of the integers from the instance of 3-PARTITION. ✷

Figure 3 demonstrates this reduction using the same example that was used in
section 2.1. The graph is completely labeled to satisfy L∗∗(G) = k = 1.

The following corollaries are immediate.

Corollary 8: Let G satisfy the conditions of Theorem 7. Then BWF remains
hard for |V |

|V | ≤ m+1
mB+m+1 . ✷

Corollary 9: Let G satisfy the conditions of Theorem 7. Then BWF remains
hard when only isolated vertices have fixed labels. ✷

It is interesting to compare Corollary 9 with Corollary 3. While the latter shows
OLAF is hard on a forest of paths with fixed labels restricted to one compo-
nent, the former demonstrates that BWF is hard for such graphs even when the
instance has no edges incident with vertices with fixed labels.

Corollary 10: Let G satisfy the conditions of Theorem 7. Then BWF remains
hard for k = 1. ✷

Therefore, it is hard to determine if a partially labeled forest of paths can be
completely labeled to achieve L∗∗(G) = k = 1.

Figure 3: BWF Reduction Mapping Example

2.3 Latin Squares

Latin squares have been extensively studied, because they arise in a variety
of combinatorial design settings including problems in group theory, statistics,
scheduling theory, etc. Interested readers are directed to Colbourn and Dinitz
(1996) for a more extensive list of applications, problems and results.

A latin square of order n is an n × n array with each cell containing an
element from the set ψ = {1, 2, . . . , n} and where each row and column of the
array contains each element in ψ exactly once. An easy way to create a latin
square is to simply fix in the first row, any permutation of the integers 1, 2, . . . , n
and then cyclically permute this row in consecutive rows 2 through n. Clearly
this can be accomplished in polynomial time.

A solution to a latin square consists of an assignment of integers to cells.
Thus, a partially completed latin square is a latin square with some cells prela-
beled. Naturally, we want to know the complexity status of completing a par-
tially filled square. For ease, we will refer to this as a latin square completion
problem (LSF).

In 1984, Colbourn proved that a LSF is NP-complete. Here we give a
strengthened result showing that it remains NP-complete even if there are at
most 3 blank cells in any row or column and the only integers missing are 1, 2 and
3. This outcome coupled with the following polynomial-time case completely
specifies the complexity status of completing partial latin squares.

1, 2
2, 3

1, 2, 3

1
2

2
3

1
2
3

1, 2
2, 3

1, 2, 3

1 2
2 3

2 3 1

1
2

2
3

1
2
3

4 5 3
4 1 5
5 3 1 2 4

5 4
3 2 4 1 5

Figure 4: A partially completed latin square, its framework, and a completion
of the framework

Let S be a partially completed latin square with at most 2 blank cells in any
row and column. Create a graph G = (V,E) with the vertex set corresponding
to the blank cells with two vertices adjacent if they have either the same a row
or column in S. Clearly, G consists of disjoint paths and cycles. Now solve
a restricted vertex coloring problem (each vertex can be colored by at most 2
colors) for each component. If no coloring exists for at least one component, then
S is not completable. Otherwise, an admissible labeling is generated. Solving
such a restricted graph coloring problem can easily be accomplished in linear
time.

Keeping with the expository nature of this paper, we will not give detailed
proofs of all of the theorems and lemmas presented hereafter. Still, we will
provide a sufficient amount of insight so that the reader can provide the details.
Each of the proofs presented in this section can be found in their entirety in
Easton and Parker (2000).

In establishing the complexity result, we will employ a notion and hence
some language that coincides with that used in Colbourn’s paper: the concept
of a latin square framework (hereafter called a framework). Specifically, a frame-
work is identified with blank cells of a partially completed latin square. In each
row and column of the implied framework, certain elements are missing. Ac-
cordingly, let us create lists of these missing elements that are identified with
the respective rows and columns of the framework. These lists will assist with
bookkeeping and represent which elements can be placed in the blank cells of a
particular row (column). Figure 4 contains a partially completed latin square,
the corresponding framework with its row/column lists, and an admissible la-
beling of the framework.

Some observations regarding frameworks are in order. Naturally, the number
of cells in a row (column) corresponds exactly to the number of elements in the
list of that row (column). Second, the number of appearances of an element, say
a, in the row lists equals the number of appearances of a in the column lists for
every a ∈ ψ. Finally, and of central importance, there exists a completion to a
partially completed latin square instance if and only if there exists a completion

to the corresponding framework.
We now establish a particularly key outcome.

Lemma 11: Completing a latin square framework with at most 3 cells in any
row or column is NP-complete even if the only elements are 1, 2 and 3.

Outline of Proof: We employ a reduction from the NP-complete problem that
we will refer to as MONOTONE ONE-IN-THREE 3SAT (MO3-SAT) (Schaefer
(1978)) which is specified formally as follows:

Given a set of literals U = {u1, . . . , un}, a collection C = {c1, . . . , cm} of clauses
over U such that |ck| = 3 and no ck ∈ C contains a negated literal for k =
1, . . . ,m, does there exist a truth assignment such that exactly one literal is
true in each ck ∈ C?

Our aim is to construct a latin square framework L from an instance of
MO3-SAT. To this end, let pi denote the total number of appearances of literal
ui in C for i = 1, . . . , n. Now we construct two elemental frameworks given by
Ui and Ck which will be copied a number of times in the construction of L. The
Ui and Ck frameworks correspond to literals ui and clauses ck, respectively.

Each Ui framework has 8pi rows and 9pi columns where i = 1, . . . , n (see
Figure 5 for the case when pi = 3). Observe that this structure is formed from
an 8× 9 framework that is repeated pi times (Figure 5 uses bold lines to denote
these repetitions). These repetitions are placed along the “main” diagonal with
one column of overlap. Further, the last of these 8 × 9 frameworks contains a
blank cell in row 8(pi−1)+6, column 1 instead of column 9(pi−1)+10. Finally,
observe that every row and column has the same number of cells as elements
in the respective list except for rows and columns of the form 8(q − 1) + 2 and
9(q − 1) + 9 for q = 1, . . . , pi respectively. The other two cells will be added in
the construction of the Ck frameworks.

Now, in order to insure that there is no row or column overlap between any
pair of frameworks Ui and Uj for i �= j we will place the Ui structure along
the main diagonal of L beginning in the upper left hand corner. With this, we
complete the portion of L that is associated with the literals of the MO3-SAT
instance.

We now turn to the construction of Ck frameworks (the general pattern de-
picted in Figure 6 will be instructive in this regard). Without loss of generality,
we may assume that clause ck contains the rth appearance of literal ui, the sth

appearance of uj , the tth appearance of ul and that i < j < l. We place blank
cells in row 8(r − 1) + 2 of framework Ui in both the first and second columns
of the constructed Ck framework. Similarly, blank cells are also located in both
the first and second row of the Ck framework in column 9(r − 1) + 9 of the
Ui framework. The missing cells for the Uj and Ul frameworks are dealt with
similarly; again, the structure depicted in Figure 6 should clarify.

1, 2
1, 2, 3
1, 3

1, 2, 3
1, 3
1, 2
2, 3

1, 2, 3
1, 2

1, 2, 3
1, 3

1, 2, 3
1, 3
1, 2
2, 3

1, 2, 3
1, 2

1, 2, 3
1, 3

1, 2, 3
1, 3
1, 2
2, 3

1, 2, 3

1

2

1

2

2

3

1

3

1

3

1

3

1

2

2

3

1

2

3

1

2

1

2

2

3

1

3

1

3

1

3

1

2

2

3

1

2

3

1

2

1

2

2

3

1

3

1

3

1

3

1

2

2

3

1

2

3

Figure 5: The Ui framework if pi = 3

One Ck framework is created for each clause ck and these are placed so
that there is no column or row overlap between any pair Ck and Cl for k �= l.
Furthermore, no Ck and Ui frameworks overlap with the exception of the cells
specified previously. This can be assured by also placing the Ck frameworks
along the main diagonal of L and with this, the creation of the entire framework
L is now complete. A conforming framework L is shown in Figure 7 for the
simple instance C = c1 = (u1 ∧ u2 ∧ u3). Note that we have again denoted
the separation between the U1, U2, U3 and Ck frameworks by bold lines. In
addition, we have labeled L with a feasible labeling as this will help with the
remainder of the proof.

In every row (column) of L the number of cells in each row (column) is
at most 3 and is identical to the number of labels in the respective lists. The
construction producing L is polynomial in the size of the MO3-SAT instance and
so it remains to show that C can be satisfied if and only if L can be completed.

1, 2, 3
1, 2, 3
1, 2, 3

1, 3
1, 3
1, 3

1, 2, 3
1, 2, 3

1, 3
1, 3
1, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

3

1

3

1

3

1

3

1

3

1

3

1

2

3

C
o
l.

9

(r-1)

o
f

Ui

C
o
l.

9

(s-1)

o
f

Uj

C
o
l.

9

(t-1)

o
f

Ul

C
o
l.

1
o
f

Ck

C
o
l.

11
o
f

Ck

Row 9(r-1)+2 of Ui

Row 9(s-1)+2 of Uj

Row 9(t-1)+2 of Ul

Row 11 of Ck

Row 1 of Ck

Figure 6: An example of the Ck framework with ui, uj, ul ∈ ck

(⇒) Suppose that there exists an assignment to the literals, say T such that
exactly one literal in each ck is true for k = 1, . . . ,m. Now, if ui is true in T ,
then label the cell in row 1, column 1 of Ui with the integer 1. With this, the
remaining cells in Ui have to take on specific values. A sample of this labeling is
in Figure 7 in the U1 framework for pi = 1. The reader can make the extension
for other pi values. Important is that every cell in row 8(q − 1) + 2, column
9(q − 1) + 3 and also row 8(q − 1) + 7, column 9(q − 1) + 9 is labeled with a 3
for all q = 1, . . . , pi and the appropriate k ∈ {1, . . . ,m}.

If ui is false in T , then label the cell in row 1, column 1 of the Ui framework
with 2. Once again this forces the labeling of the remainder of the cells in Ui.
An example can be found in the U2 or U3 frameworks in Figure 7. Observe,
that the two cells mentioned in the preceding paragraph are now forced to be

1, 2
1, 2, 3
1, 3

1, 2, 3
1, 3
1, 2
2, 3

1, 2, 3
1, 2

1, 2, 3
1, 3

1, 2, 3

1, 3
1, 2
2, 3

1, 2, 3
1, 2

1, 2, 3
1, 3

1, 2, 3
1, 3
1, 2
2, 3

1, 2, 3

1

2

1

2

2

3

1

3

1

3

1

3

1

2

2

3

1

2

3

1

2

1

2

2

3

1

3

1

3

1

3

1

2

2

3

1

2

3

1

2

1

2

2

3

1

3

1

3

1

3

1

2

2

3

1

2

3

1, 2, 3
1, 2, 3

1, 2, 3
1, 3
1, 3
1, 3
1, 2, 3
1, 2, 3
1, 3
1, 3
1, 3

1

2

3

1

2

3

1

2

3

1

2

3

1

3

1

3

1

3

1

3

1

3

1

3

1

2

3

1 2
3

1 3
1 2 3

1 3
2 1

2 3
1 2 3

2 1
2

3 1
2 3 1

3 1
1 2

3 2
3 1 2

2 1
2

3 1
2 3 1

3 1
1 2

3 2
3 1 2

2 1

1 3

3 1

3
1

3

1
3

1
2 1 3

2
1

1

3

3

1

3
1

3
1

3
1

2
1
3

3
2

3

Figure 7: An example of a labeled L if C = c1 = {u1, u2, u3}

labeled 2.
This labeling scheme is performed for every literal. The outcome is that the

only cells remaining unlabeled in L are those present in the Ck frameworks.
Accordingly, assume that clause ck contains an appearance of ui, uj and ul.
Then since exactly one literal satisfies each ck, there are three possible labelings
of the Ck framework. A sample labeling of Ck is given in Figure 7 (the C1

framework) if ui is true, uj is false, and ul is false. The reader can easily modify
this labeling for the other two cases. Finally, adopting one of these concludes
the labeling process; all cells in L are admissibly labeled using only and all the
available labels for each row (column) and the first direction is complete.

(⇐) Conversely, suppose that there is a completion to the framework L. Then we

can begin by examining a single Ck framework of L. Without loss of generality,
let us assume that clause ck contains the rth appearance of ui, the sth appearance
of uj, and the tth appearance of ul. Column 1 of the Ck framework must contain
the labels 1, 2 and 3. We will only examine the cells in row 8(r − 1) + 2 of the
Ui framework; the cells in row 8(s− 1)+ 2 of the Uj framework and 8(t− 1)+ 2
of the Ul framework follow similarly. Three cases exist.

Case 1: The cell in row 8(r−1)+2 of the Ui framework, column 1 of the Ck

framework is labeled 1. Then the cell in row 8(r − 1) + 2 of the Ui framework,
column 2 of the Ck framework cannot be labeled a 2 (see the column list) and
hence must be labeled a 3. Therefore, the cell in row 9(r − 1) + 2, column
9(r − 1) + 3 of the Ui framework must be labeled 2 and then all of the cells in
the Ui framework are forced to take on specific values. Set ui to be false.

Case 2: The cell in row 8(r − 1) + 2 of the Ui framework, column 1 of the
Ck framework is labeled 2. Then clearly the cell in row 9(r − 1) + 2, column
9(r − 1) + 3 of the Ui framework is labeled 3 and as a consequence, all of the
cells in the Ui framework are required to be specific values. Set ui to be true.

Case 3: The cell in row 8(r−1)+2 of the Ui framework, column 1 of the Ck

framework is labeled 3. Then, the cell in row 9(r−1)+2, column 9(r−1)+3 of
the Ui framework is labeled 2 and as before, all of the cells in the Ui framework
are again forced to take on specific values. Set ui to be false.

The above scheme is repeated for every k ∈ {1, . . . ,m}. Clearly, there is no
inconsistency in the assignments (i.e. setting ui to both true and false) to the
literals because every cell in row 8(q − 1) + 2 of Ui, column 1 of Ck must all
be labeled 2 or all be labeled either 1 or 3 for q = 1, . . . , pi and the relevant
k ∈ {1, . . . ,m}.

Now, since the framework has an admissible completion, every column 1 of
the Ck framework must contain a single 1 (equivalently one literal set to false),
a single 2 (equivalently one literal set to true), and a single 3 (another literal
set to false) for k = 1, . . . ,m. Therefore, the assignment given has exactly one
literal true in every ck for k = 1, . . . ,m. This completes the second direction.

Finally, given a candidate labeling, verification that it is admissible can be
accomplished in polynomial time. This establishes membership in NP and the
proof of the lemma is complete. ✷

The aim then is to create a partially completed latin square having a frame-
work identical to that produced from Lemma 11. Fortunately, by employing
a result from Ryser (1951) we can guarantee that for any framework L there
exists a partially completed latin square containing L. The proof follows almost
identically to a similar proof by Colbourn (1984), and once again the exact de-
tails can be found in Easton and Parker (2000). Formally, we have:

Theorem 12: For every latin square framework L with r rows and c columns,
there exists a latin square S of size 2max {r, c} × 2max {r, c} which has L as

a framework. Moreover, S can be constructed in polynomial time. ✷

We can now strengthen Colbourn’s result with a short proof. Formally:

Theorem 13: LSF is NP-complete even if at most 3 cells are unfilled in any
row or column and only the integers 1, 2 and 3 are missing from the square.

Proof: Given an arbitrary instance of MO3-SAT we simply create the latin
square framework L as indicated in Lemma 11 after which we apply Theorem
12 to this framework to obtain a partially completed latin square S. Since L
has at most 3 blank cells (using only 1, 2, and 3) in any row or column , so does
S. Clearly, S is completable if and only if L is completable.

Constructions implied by both Lemma 11 and Theorem 12 require poly-
nomial time and therefore, the construction of S is polynomial. A candidate
solution for a partially completed latin square can be verified easily, so the de-
sired result follows. ✷

Now with the main result of Theorem 13 established, various useful corol-
laries and theorems easily follow.

Corollary 14: Completing a partially filled latin square is NP-complete even if
the proportion of prelabeled space to total space is arbitrarily close to one (1− 3

n).
✷

Taking an opposite perspective, we could also consider how sparse a partially
completed latin square can be and still maintain an NP-completness outcome.
Accordingly, a well known result holds that if a partially completed latin square
has at most n (the length of a side) filled cells, then determining whether it
can be completed is decidable in polynomial time (Smetaniuk (1981)). Thus,
an outcome with only a constant number of elements in every row and column
would, in a sense, be the best attainable (if P �= NP). In fact, we can obtain a
result along these lines.

Theorem 15: Completing an n × n partially completed latin square is NP-
complete even if there are, on average, no more than 3 + 1

n prelabeled elements
in any row or column.

Outline of Proof: Let S be a n × n latin square derived Theorem 13. Now,
create a partially completed latin square S′ from S by adding several 3 × 3
latin squares (using the numbers 1 through 3) along the main diagonal. Add a
sufficient number of these 3× 3 latin squares so that the length of a side is n3.
To do this we must require that |S| mod 3 ≡ 0 (it is an exercise to show that
this is always possible). It is also an exercise to prove that S is completable if
and only if S′ is completable. Thus, this construction of the latin square is also

NP-complete. But the total number of prelabeled elements divided by the size
of the square is bounded above by n2+3n3

n3 = 3 + 1
n . ✷

Obviously, Theorem 15 could be strengthened to produce an average which is
even closer to 3, i.e., create S′ such that the length of a side is n4. Then the
average number of prelabled cells is no more than 3 + 1

n2 .

2.4 Graph Coloring

A natural source for completion problems arises in the context of traditional
graph coloring; however, some care needs to be exercised in order that interest
be preserved. In both edge and vertex coloring cases, the general problems
are hard and so color-completion questions accordingly are not relevant to us
here. On the other hand, when graph classes are restricted, certain coloring
problems are easy and so examining complexity status when edges/vertices are
precolored is meaningful. Classes that are most interesting in this regard are
bipartite graphs (for both edge and vertex coloring cases) and planar graphs
(vertex coloring).

2.4.1 Edge Coloring

Given a finite graph G = (V,E), the edge coloring problem (EC) seeks the
minimum number of colors required in order that each edge be colored and
no two adjacent edges share the same color. Vizing (1964) showed that the
minimum number of colors (the chromatic index) is either ∆ or ∆ + 1 where
∆ is the maximum vertex degree of the graph. Holyer (1981) proved that
determining the actual value remains NP-complete even on planar graphs with
maximum degree 3. On the other hand, König (1916) showed that all bipartite
graphs can be colored with exactly ∆ colors. Moreover this coloring can be
found in polynomial time.

A solution to EC is an assignment of colors to edges. Hence, if we denote
a completion version by ECF then the edge color-completion problem, ECF

assumes that some edges are precolored (with no more than ∆ colors) and asks
if the graph can be color-completed with at most ∆ colors used overall.

First we note that if there are at most 2 uncolored edges incident to any
vertex, then ECF is solvable for any graph. Formally:

Theorem 16: Given a graph G, ECF is polynomial time solvable if each vertex
has at most 2 incident uncolored edges. ✷

It is worth pointing out that this result is a bit trickier than one might imagine.
Removing from G those edges that are precolored, leaves a subgraph with com-
ponents that are either paths or cycles. The proof then involves a construction

of a certain auxiliary digraph, one for each component of this subgraph. Within
each such digraph, a particular source-sink directed path is sought. If this path
exists, then the respective component will be colorable in a valid way; if not,
then no such valid coloring (and hence color completion of G) is possible.

While Theorem 16 holds for arbitrary graphs, a general result regarding
ECF is not interesting to us because edge-coloring is hard in general. However,
for arbitrary bipartite graphs, edge-coloring is easy as was indicated previously,
so examining the status of ECF possesses interest in our stated, completion
context. Since every latin square can be viewed as an edge coloring of a Kn,n

(a complete bipartite graph on n and n vertices), the following is an obvious
outcome from Theorem 13.

Corollary 17: ECF is NP-complete if G is a complete bipartite graph, at most
∆ colors are used, and every vertex has at most 3 uncolored incident edges. ✷

The above theorem does not bound ∆ by a constant. Trivially, the best pos-
sible NP-hardness outcome would be for ∆ = 3. A result along these lines
is available from the problem known as list coloring (edge and vertex) (Vizing
(1976), Erdos (1979)). Edge list coloring is defined as follows: Is there a coloring
of the edges of a graph such that no two adjacent edges are colored the same
color and each edge e is colored from a list of permitted colors L(e). Observe
that every ECF problem is an edge list coloring problem, however; there exists
list coloring problems which are not ECF problems. In 1992, Kubale proved
that list coloring bipartite graphs with degree at most 3 using only 3 colors is
NP-complete. Fortunately, this list coloring problem can be represented in an
ECF context. Therefore, determining whether a partially edge colored bipartite
graph with max degree 3 can be colored with at most 3 colors is NP-complete.
However, using Theorem 13 we can strengthen this result by requiring that the
bipartite graph also be 3-regular. Formally:

Theorem 18: ECF is NP-complete if G is a 3-regular bipartite graph and at
most ∆ = 3 colors are used.

Proof: We employ Theorem 13 to generate a latin square S of size n× n with
at most 3 blank cells in any row or column and only missing the integers 1, 2,
and 3. Create a partially colored complete bipartite graph G = Kn,n where
edge {i, j} is assigned color k, if cell i, j is labeled k in S. Naturally, if {i, j}
is blank, then edge {i, j} is uncolored. Generate G′ by removing from G all
edges colored colors 4 to n. Since every row and column of S contains exactly
one appearance of each of the labels 4 to n, G′ is a 3-regular bipartite graph.
Furthermore, G′ has some edges precolored from colors 1, 2 and 3. It remains
to show that G′ is 3 edge colorable if and only if S is completable.

(⇒) For the first direction, assume C is an edge coloring ofG′ using only 3 colors.

Label the blank cells in S according to the colors assigned to the corresponding
edges by C. Trivially, this is an admissible labeling of S.

(⇐) Conversely, assume that T is an assignment that completes S. Color any
uncolored edges in G′ according to the label supplied by T . By definition of a
latin square, this coloring of G′ is a valid coloring. Furthermore, only 3 colors
are used as required.

Finally, the construction of G′ is clearly polynomial. Furthermore, verifying
a candidate solution to ECF can easily be accomplished in polynomial time. ✷

We have completely classified ECF on bipartite graphs. That is, if each
vertex has at most two incident uncolored edges, then the problem is polynomial
time solvable whereas if the bound is relaxed to at most three uncolored incident
edges, the problem is NP-complete.

2.4.2 Vertex Coloring

The VERTEX COLORING problem (VC) is celebrated in graph theory. The
aim is to find the minimum number of colors that can be assigned to vertices
of a graph so that each vertex is colored and no two adjacent vertices share
the same color. Garey, et al. (1976) proved that determining the actual value
or chromatic number, is NP-complete even for planar graphs with maximum
degree 3. However, all bipartite graphs can be colored with 2 colors in O|E|
effort, and of course, all planar graphs can be colored with at most 4 colors as
established in Appel, et al. (1977). The latter requires O(n2) steps as shown
by Robertson et al. (1997).

Now, for VC the relevant “completion version” assumes that at most k colors
have been used to precolor vertices. Then given this partial coloring, VCF asks
if a k-color completion of the graph is possible where k is meaningful for the
particular graph class being considered.

Suppose G is a bipartite graph, i.e. 2-colorable. Then consistent with the
color-completion theme, the natural question that arises is whether or not a
partially k-colored bipartite graph can be color-completed using no more than
k colors in total. Of course, the algorithm to decide the issue when k = 2 is
immediate. We simply start with any precolored vertex and attempt to color
the uncolored adjacencies in the obvious way. This process is well-defined in
the sense that it will either terminate with a total, 2-coloring or stop with an
inconsistency, whereupon we can safely conclude that a 2-color completion of
the stated graph is not possible.

Note that if a bipartite graph is not k-color completable then it must at least
be k + 2-color completable, which is easy to establish. That is, if the graph is
not so completable, simply remove the portion that is colored; the remainder is
certainly bipartite which is two colorable and the outcome is evident. In fact,

we cannot do better than this in the sense that there are instances that when
partially 2-colored, cannot be completed with 3 colors.

On the other hand, if we do not restrict k to 2, the status of VCF changes
substantially. As before, a result can be obtained from the list coloring litera-
ture. A vertex list coloring problem seeks a coloring of the vertices such that no
two adjacent vertices are colored the same color and every vertex v is colored
from a set L(v) of admissible colors.

Unlike edge list colorings, vertex list colorings can always be expressed as a
VCF problem. In stating this, care needs to taken because if a vertex list col-
oring problem is limited to a specific class of graphs (i.e. 2-connected graphs),
then a the graph of the corresponding VCF problem may not be contained in
the same class of graphs. To create a VCF problem from a vertex list color-
ing problem simply attach precolored pendants to every vertex to reduce the
available colors from which each vertex can be colored, creating the desire lists.
Kubale (1992) showed that vertex list coloring a bipartite graph with at most 5
colors overall is NP-complete. Clearly, adding these precolored pendants pre-
serves bipartness. Therefore, we can obtain:

Theorem 19: Given a bipartite graph G with some vertices precolored where
at most 5 colors are used, then deciding whether G can be colored with at most
5 colors is NP-complete. ✷

We omit the proof since it is a trivial exercise to adapt Kubale’s proof to our
setting here. In any event, the outcome that deciding bipartite k-color com-
pletability is hard coupled with the easy outcome that such graphs are always
k + 2-color completable, begs the question regarding k + 1 completability. The
following result settles the matter:

Theorem 20: Given a bipartite graph G with some vertices precolored where
at most k colors are used, then deciding whether G can be colored with at most
k + 1 colors is NP-complete. ✷

Again, we omit the proof. The details are nearly identical to those in Theorem
19 with only a minor adjustment.

Suppose now that G is planar. Unlike the bipartite case, fixing k here and
asking for a k-color completion possesses interest in at least one obvious setting,
i.e. k = 4. That is, given a planar graph G and with some subset of vertices
colored using no more that 4 colors, is G 4-color completable?

Theorem 21: VCF is NP-complete on planar graphs and with k = 4.

Proof: The reduction is from theNP-complete problem of deciding 3-colorability
on planar graphs (Garey, et al. (1976)). Let G = (V,E) be any planar graph
and let H denote the set of faces of G excluding the infinite face. Then

create G′ = (V ′, E′) where V ′(G′) = V (G)
⋃{vh : h ∈ H} and E′(G′) =

E(G)
⋃{{u, vh} : u is on the border of the face h, h ∈ H}. Pick a single color

and assign it to each vertex in the set {vh : h ∈ H}. Clearly, deciding whether
G′ is 4-color completable is equivalent to asking whether the original graph G
can be 3 colored. VCF is certainly in NP and so the theorem follows. ✷

3 SUMMARY

The four cases that we have described in the previous section are natural can-
didates for the “completion” analysis that forms the basis of this exposition.
In each setting, the general problem is hard but when instances are restricted
to various, special classes of structures, easy, even trivial algorithms exist. In-
terestingly then, is that even when confined to these primitive structures, the
respective completion versions become hard. Most notable are those results
suggesting that very little needs to be “fixed” in order to change complexity
status.

Of course, further work would be worthwhile in terms of extending this
overall exercise to other problems. Some of this has been done in the research
reported in Easton (1999). Still, there remain sources where new (and interest-
ing) cases may be found. Among these, likely contexts would include scheduling
theory, integer programming, and related subdisciplines in combinatorial analy-
sis. In the context of the problems considered in this paper, resolution of the
open cases is also an evident direction of study. Prominent in this regard would
be definitive results for OLAF and BWF on simple paths.

4 REFERENCES

[1] Adolphson, D. and T. C. Hu, “Optimal Linear Ordering,” SIAM J. Appl.
Math, 25, 403-423 (1973).

[2] Appel, K. and W. Haken, “Every planar map is 4-colorable-1: Discharg-
ing,” Ill. J. Math., 21, 429-490 (1977).

[3] Appel, K. and W. Haken, “Every planar map is 4-colorable-2: Reducibil-
ity,” Ill. J. Math., 21, 491-567 (1977).

[4] Chung, F. R. K., “On Optimal Linear Arrangements of Trees,” Comp. &
Maths. with Appls., 10, 43-60 (1984).

[5] Colbourn, C., “The Complexity of Completing Partial Latin Squares,”
Discrete Applied Mathematics, 8, 151-158 (1984).

[6] Colbourn, C. and J. H. Dinitz (editors), The CRC Handbook of Combina-
torial Designs, CRC Press; Boca Raton, Florida, (1996).

[7] Diestel, R., Graph Theory, Springer-Verlag, New York (1997).

[8] Easton, T., “On Partial Completion Problems,” Ph.D. Dissertation, School
of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA (1999).

[9] Easton, T. and R. G. Parker “On Completing Latin Squares,” to appear
in Discrete Applied Mathematics.

[10] Easton, T., S. B. Horton and R. G. Parker, “A Solvable Case of the Linear
Arrangement Problem on Halin Graphs,” Congressus Numerantium, 119,
3-17 (1996).

[11] Erdös, P., A. Rubin and H. Taylor, “Choosability in graphs,” Congressus
Numerantium, 26, 125-157 (1979).

[12] Even, S. and Y. Shiloach, “NP-completeness of Several Arrangement Prob-
lems,” Report No. 43, Department of Computer Science, Technion, Haifa,
Israel (1975).

[13] Frederickson, G. N. and S. E. Hambrusch, “Planar Linear Arrangements
of Outerplanar Graphs,” IEEE Transactions on Circuits and Systems, 35,
323-332 (1988).

[14] Garey, M. and D. Johnson, Computers and Intractibility: A guide to the
theory of NP-completeness, W.H. Freeman, San Francisco, (1979).

[15] Garey, M., D. Johnson and L. Stockmeyer “Some simplified NP-complete
graph problems,” Theor. Comput. Sci., 1 237-267 (1976).

[16] Harper, L. H., “Optimal Numberings and Isoperimetric Problems on Graphs,”
J. Combinatorial Theory, 1, 385-393 (1966).

[17] Holyer, I., “The NP-completeness of edge-coloring,” SIAM J. Comp., 10
718-720 (1981).

[18] Hopcroft, J.E. and R.M. Karp, “An n
5
2 Algorithm for Maximum Matching

in Bipartite Graphs,” SIAM J. Computing, 2 225-231 (1973).

[19] Horton, S. B.,“The Optimal Linear Arrangement Problem: Algorithms
and Approximation,” Ph.D. Dissertation, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA (1997).

[20] König, D., “Über Graphen und ihre anwendung auf determinantentheorie
und mengenlehre” (German), Math. Ann., 77 453-465 (1916).

[21] Kubale, M., “Some Results Concerning the Complexity of Restricted Col-
orings of Graphs,” Discrete Applied Mathematics, 36 571-582 (1992).

[22] Kumar, S. R., A. Russell, and R. Sundaram, “Approximating Latin Square
Extensions,” Algorithmica, 24 128-138 (1999).

[23] Robertson, N., D. P. Sanders, P. D. Seymour and R. Thomas, “A new
proof of the 4 colour theorem”, Journal Combin. Theory Ser. B., 70 2-44
(1997).

[24] Ryser, H., “A Combinatorial Theorem with Application to Latin Rectan-
gles,” Proc. Amer. Math. Soc., 2 550-552 (1951).

[25] Schaefer, T.J., “The Complexity of Satisfiability Problems,” Proc. 10th
Ann. ACM Symp. on Theory of Computing, Assoc. Computing Machin-
ery, New York, 216-226 (1978).

[26] Shiloach, Y.,“A Minimum Linear Arrangement Algorithm for Undirected
Trees,” SIAM Journal of Computing, 8 15-32 (1979).

[27] Smetaniuk, B., “A New Construction on Latin Squares - I: A proof of the
Evans Conjecture,” Ars Combin., 11 155-172 (1981).

[28] Tuza, Z. and M. Voigt, “List Colorings and Reducibility,” Discrete Applied
Mathematics, 79 247-256 (1997).

[29] Vizing, V., “On an estimate of the chromatic class of a P-graph,” Diskret.
Analiz (Russian), 3 25-30 (1964).

[30] Vizing, V., “Vertex colorings with given colors,” Diskret. Analiz (Russian),
29 3-10 (1976).

