
Broadcast Domination Algorithms for Interval

Graphs, Series-Parallel Graphs, and Trees

Jean R. S. Blair∗ Pinar Heggernes† Steve Horton∗

Fredrik Manne†

Abstract

Broadcast domination assigns an integer value f(u) ≥ 0 to each
vertex u of a given graph, such that every vertex u with f(u) = 0
is within distance f(v) from a vertex v with f(v) > 0. We can
regard the vertices v with f(v) > 0 as broadcast stations, each having
a transmission power that might be different from the powers of
other stations. The optimal broadcast domination problem seeks
to minimize the sum of the costs of the broadcasts assigned to the
vertices of the graph. We present dynamic programming algorithms
that solve the optimal broadcast domination problem for the first
classes of graphs with non-trivial solutions: interval graphs, series-
parallel graphs, and trees. We also show that optimal broadcast
domination is equivalent to optimal domination on proper interval
graphs.

1 Introduction and motivation

Domination in graphs is a well known and thoroughly studied subject [15,
16]. A dominating set S is a subset of the vertices in a graph such that
every vertex in the graph either belongs to S or has a neighbor in S. The
standard optimal domination problem seeks a dominating set of minimum
cardinality. Numerous variants of this problem have been studied [2, 15, 16,
23]. For example, optimal r-domination seeks a dominating set of minimum
cardinality such that every vertex of the graph is within distance r of some
vertex of the dominating set [17, 26]. The (k, r)-center problem seeks an
r-dominating set that contains at most k vertices [1, 12].

An application of the standard domination problem was given by Liu
in 1968 [22]: a dominating set represents a set of cities having broadcast

∗United States Military Academy, West Point, New York 10996 USA,
Jean.Blair@usma.edu, Steve.Horton@usma.edu

†University of Bergen, N-5020 Bergen, Norway, Pinar.Heggernes@ii.uib.no,

Fredrik.Manne@ii.uib.no

1

stations, where every city can hear a broadcast station placed in it or in
a neighboring city. Even though this model is limited by the fact that
all broadcast stations are assumed to have the same transmission power,
it has spawned several variants. For example, r-domination is a natural
generalization of this model that assumes an ability to hear broadcasts
that originate from a distance of at most r.

Recently, Erwin introduced the concept of broadcast domination [9]
in which the broadcast stations (i.e., vertices in the dominating set) are
permitted to have different transmission powers. This is a more realis-
tic model of broadcast reachability than the standard domination problem,
since transmitters are not, in general, identical. For example, FM radio sta-
tions are distinguished both by their transmission frequency and by their
ERP (Effective Radiated Power). A transmitter with a higher ERP can
transmit further, but it is more expensive to build and to operate. Based
on this, the broadcast domination problem seeks to compute an integer
valued broadcast function f on the vertices, such that every vertex of the
graph is distance at most f(v) from some vertex v that has f(v) > 0. A
broadcast domination is optimal if it minimizes the sum of the costs of the
broadcasts across all vertices in the graph. These costs are typically taken
to be the f(v) values. Other related broadcast problems are discussed in
[8].

In this paper, we present polynomial time algorithms that solve the
optimal broadcast domination problem on interval graphs, series-parallel
graphs, and trees. The standard optimal domination problem is NP-hard
on, for example, planar graphs [12], bipartite graphs [7], and chordal graphs
[3], but can be solved in polynomial time on, for example, AT-free graphs
[21], permutation graphs [11], and interval graphs [10]. Some variants of
the problem, like the ones previously mentioned, have straightforward re-
ductions from the standard domination problem, showing that they are
NP-hard on arbitrary graphs. However, the computational complexity of
optimal broadcast domination on general graphs is an open problem [8].
Easy polynomial time solutions have been found for paths, cycles, com-
plete graphs, and grid graphs. In each of these cases, there are optimal
solutions that either are also solutions to the standard domination prob-
lem, or have exactly one non-zero broadcast located at the center of the
graph [8]. The classes of graphs we address in this paper do not exhibit
this property, thereby lending interest to our algorithms. In addition, we
observe in Section 6 that the existence of the series-parallel algorithm is
not anticipated by current theory regarding algorithms on recursively con-
structed graph classes.

This paper is organized as follows. Necessary graph terminology and
background, including a formal definition of broadcast domination, is given
in the next section. Sections 3, 4, and 5, respectively, describe algorithms

2

for interval graphs, series-parallel graphs, and trees. Section 6 provides a
brief summary with some concluding remarks.

2 Broadcast domination

All graphs in this paper are simple and connected. Let G = (V, E) be a
graph with n = |V | and m = |E|. For any vertex v ∈ V , the neighborhood
of v is the set N(v) = {u | uv ∈ E} and the closed neighborhood is the set
N [v] = N(v) ∪ {v}. Similarly, for any set S ⊆ V , N(S) = ∪v∈SN(v) − S
and N [S] = N(S) ∪ S. A set S is a dominating set if N [S] = V . The
minimum cardinality of a dominating set of G is denoted by γ(G).

The distance, d(u, v), between two vertices u and v in G is the smallest
number of edges on a path between u and v in G. The eccentricity, e(v),
of a vertex v is the largest distance from v to any vertex of G. The radius,
rad(G), of G is the smallest eccentricity in G. The diameter, diam(G), of
G is the largest eccentricity in G.

A function f : V → {0, 1, · · · , diam(G)} is a broadcast if for every vertex
v ∈ V , f(v) ≤ e(v). The set of broadcast dominators defined by f is the
set Vf = {u | f(u) > 0}. The set of vertices that a vertex v can hear is
Hf (v) = {u ∈ Vf | d(u, v) ≤ f(u)}. We will omit the subscript f when
the broadcast function is clear from the context. The cost of a broadcast f
incurred by a set S ⊆ V is f(S) =

∑
v∈S f(v). Thus, f(V) is the total cost

incurred by broadcast function f .1 We say that G has an f(V)-broadcast.
A broadcast is dominating if |H(v)| ≥ 1 for every vertex v of G. The

term γb(G) denotes the minimum cost of a dominating broadcast on G.
We will refer to a dominating broadcast of cost γb(G), as an optimal
broadcast. Although a broadcast function is allowed to assign values from
{0, 1, ..., diam(G)}, we never need to assign values larger than rad(G) to
any vertex in order to achieve an optimal broadcast. Choosing a vertex
v of minimum eccentricity and assigning f(v) = rad(G) while assigning
f(w) = 0 to all other vertices w, defines a dominating broadcast on G.
We will call such a broadcast a radial broadcast. For some graph classes, a
radial broadcast is also an optimal broadcast, and such graphs are called
radial [8]. However, for interval graphs, series-parallel graphs, and trees,
radial broadcasts are not necessarily optimal, as can be seen from the fol-
lowing simple example. Consider a path on 6 vertices: v1, v2, ..., v6. A
radial broadcast f requires f(v3) or f(v4) to be 3, which is the radius of
a path on 6 vertices. However a dominating broadcast f ′ of cost 2 can be
achieved by assigning f ′(v2) = f ′(v5) = 1.

1The cost function might also be defined differently, reflecting the possibility that the
cost of providing a broadcast f(v) is not equal to f(v). Our algorithms can easily be
adapted to alternate cost functions.

3

A broadcast is efficient if every vertex hears exactly one broadcast, that
is, for every v, |H(v)| = 1. The following result from [8] is central to several
of our results.
Theorem 2.1 (Dunbar et. al. [8]) Every graph G has a γb(G)-broadcast
that is efficient.

Before we continue, we also observe that the following more restricted
problem is NP-complete, which follows immediately by restriction from
dominating set. restricted broadcast domination (rbd): Given a
graph G = (V, E), and positive integers K, M ≤ |V |, is there a broadcast
domination f of G such that

∑
v∈V f(v) ≤ K and maxv∈V f(v) ≤ M?

3 Interval graphs

In this section we give a dynamic programming algorithm for computing
an optimal efficient broadcast on an interval graph. Moreover, we show
that for proper interval graphs our problem reduces to the dominating set
problem. First some notation.

A graph G = (V, E) is an interval graph if sets of consecutive integers
(intervals) can be assigned to every vertex, such that the sets I(u) and I(v)
corresponding to vertices u and v intersect if and only if uv ∈ E. Interval
graphs can be recognized and the corresponding intervals of the vertices
of the graph can be constructed in linear time [4]. It is implicit from [13]
and [18] that the integers constituting the intervals can be chosen from
the set {1, 2, ..., n}. The interval graph property is hereditary [14], thus
induced subgraphs of interval graphs are also interval. An interval graph is
called proper interval if no interval is completely contained within another
interval. Roberts [25] has shown that an interval graph is proper if and
only if it contains no induced copy of K1,3.

By the above mentioned results, the vertices of an interval graph can
be sorted in non-decreasing order of the left endpoints of their correspond-
ing intervals in linear time. Let V = {v1, v2, ..., vn} be the sorted order
of the vertices of a given interval graph G = (V, E). In the rest of this
section, we will always assume that the vertices of a given interval graph
are sorted in this manner. In addition, we will not distinguish between
vertices and their corresponding intervals; thus we will use vertex vi and
interval vi interchangeably. We define Gij to be the subgraph of G induced
by vertices/intervals vi, vi+1, ..., vj , with 1 ≤ i ≤ j ≤ n. We also denote the
left and right endpoints of an interval vi by l(vi) and r(vi) respectively.

A broadcast with f(vi) > 0 is, by definition, heard by exactly those in-
tervals vj where d(vi, vj) ≤ f(vi). Therefore, we commence by establishing
a method for constructing shortest paths in interval graphs. Assuming that
i < j, the shortest path P = {vi = p0, p1, ..., pk = vj} that we will be using

4

is defined such that pt+1 is chosen to be the vertex of N(pt) with largest
right endpoint, for each t between 0 and k− 2. A formal algorithm for this
process, which we call SP, is given below:

Algorithm Shortest Path (SP)
Input: G, vi, vj .
Output: A minimum length path P between vi and vj .
k = 0; pk = vi; P = {pk};
while pk 6∈ N(vj) do

Choose pk+1 to be an interval in N(pk) with largest right endpoint;
P = P ∪ {pk+1}; k = k + 1;

P = P ∪ {vj}; /∗ Note that vj = pk ∗/

Lemma 3.1 P is a shortest path between vi and vj .

Proof. Let S = {vi = s0, s1, . . . , st = vj} be a shortest path from vi to vj

and assume on the contrary that |S| < |P |. Let pk be the first interval such
that pk 6= sk, where 0 < k < t. We will show that sk can be replaced by pk

in the shortest path and the result will follow by induction. First, note that
the interval sk+1 cannot intersect with sk−1, otherwise sk is redundant in
S. If r(vk+1) < l(vk−1), meaning that sk+1 is completely to the left of sk−1,
then some sl with l > k + 1, must intersect with sk−1 in order to reach vj ,
and both sk and sk+1 are redundant. Thus sk+1 must lie completely to the
right of sk−1. Since pk is adjacent to sk−1 and stretches at least as far right
as sk, pk will also intersect with sk+1 and the result follows.

Corollary 3.2 Let f be a dominating broadcast function on G with vi ∈
Vf . If vj hears vi, where i < j, then every vertex vk hears vi, for i < k < j.

Corollary 3.3 If d(vi, vk) = d(vi, vj) = t for some i, k, j satisfying i <
k < j, then d(vi, vq) = t for every q satisfying k < q < j.

Proof. By Lemma 3.1 every interval vq with r(pt−2) < l(vq) ≤ r(pt−1) is
of distance t from vi. Since the intervals are ordered by their left endpoints
this includes vk, vl, and any vertex vq with k ≤ q ≤ l.

A shortest path P from vi to vj , where j < i, can be found in a manner
similar to algorithm SP; the only difference is that one selects an interval
with the smallest left endpoint in each step. Due to the fact that we have
ordered the intervals by their left endpoints, there is no result similar to
Corollary 3.2 when j < i. This is reflected in the following observation:

Observation 3.4 Let d(vi, vj) = t with j < i, and let P be a shortest
path between vi and vj found as described above. Then for any k with
r(vk) < l(pt−1), we have d(vi, vk) > t.

5

Proof. The result follows since a shortest path from vi to vk requires more
than t intervals.

It follows from Observation 3.4 that even if vj hears vi, there might exist
a vk with j < k < i, such that vk does not hear vi. For this situation to
happen, we must have l(vj) ≤ l(vk) and r(vk) < l(pt−1), where t = d(vi, vj).
Both proper interval graphs and efficient broadcasts in general avoid this
situation, as stated in the following corollary.

Corollary 3.5 Let f be a dominating broadcast function on G with vi ∈
Vf . If G is proper interval or f is efficient, then the following is true: If
vj hears vi with j < i, then every vertex vk hears vi, for j < k < i.

Proof. Assume that G is proper interval or that f is efficient, and let there
exist a k with j < k < i, such that vk does not hear vi, although vj hears
vi. As discussed above, vk must satisfy r(vk) < l(pt−1) and l(vj) ≤ l(vk),
and vk is therefore completely contained within vj . This contradicts the
fact that G is proper interval. Let vq 6= vi be any vertex that vk hears.
Then vj also hears vq contradicting the fact that f is efficient, since vj then
hears both vq and vi.

For proper interval graphs we have a result analogous to Corollary 3.3.

Corollary 3.6 If G is proper interval and d(vi, vk) = d(vi, vj) = t for some
k, j, i where k < j < i, then d(vi, vq) = t for each value q with k < q < j.

Proof. By Corollary 3.5 it follows that any vq with k < q < i has d(vi, vq) ≤
t. If d(vi, vq) < t then we must have r(vj) < r(vq) and vj is contained in
vq contradicting the fact that G is proper interval.

Now we present a result that resolves one of the mentioned open prob-
lems in [8].

Theorem 3.7 For any proper interval graph G, γb(G) = γ(G).

Proof. Let G = (V, E) be a proper interval graph, and let f be an optimal
efficient broadcast on G, where f(v) > 1 for some vertex v. We will show
that there exists a dominating broadcast f ′ on G where f ′(v) ≤ 1 for every
vertex v, and where f ′(V) = f(V).

Let vi be a vertex of G with f(vi) = t > 1. We denote the set of vertices
at exact distance d from vi with indices larger than i by Xd

r and those
with indices smaller than i by Xd

l . From Corollaries 3.3 and 3.6 it follows
that the vertices that hear vi can be partitioned into consecutive subsets:
Xt

l , X
t−1
l , . . . , X1

l , {v}, X1
r , X2

r , . . . , Xt
r. We will show that there exists a

vertex vk in Xt−1
r that is adjacent to every vertex in Xt−1

r ∪Xt
r. Similarly

it can also be shown that there exists a vertex vj in Xt−1
l that is adjacent

6

to every vertex in Xt−1
l ∪ Xt

l . Thus we can set f ′(vk) = f ′(vj) = 1 and
f ′(vi) = f(vi) − 2, and every vertex that hears f(vi) will still hear at least
one other vertex in f ′ without increasing the total cost of the broadcast.
Now, since f is efficient, no vertex vl 6= vi, j < l < k has f(vl) > 0. Thus,
we can continue in the same way to decrease the power of each vertex vi

with f(vi) > 1 until all vertices have power ≤ 1.
It remains to prove the existence of vk (and also vj). Let vk be the vertex

with largest index in Xt−1
r . Observe first that no vertex v in Xt−1

r can
have r(v) > r(vk), because otherwise v would contain vk as a subinterval,
contradicting the fact that G is proper interval. Since every vertex x in Xt

r

must be adjacent to some vertex in Xt−1
r , it follows that x must also be

adjacent to vk. To see that vk must be adjacent to every vertex in Xt−1
r

note first that vk must be adjacent to some vertex vl in Xt−2
r . It follows

that any vertex in Xt−1
r not adjacent to vk will be completely contained in

vl. The proof of existence for vj is similar; here we pick vj to be the vertex
of Xt−1

l that has the smallest index.

The following example shows that the above theorem does not apply to
interval graphs in general. Let G = (V, E) be the interval graph defined by
V = {a, b, c, d, e, f} and E = {ab, bc, ce, ef, cd}. With f(c) = 2 an optimal
broadcast of total cost 2 is achieved. However, this cannot be achieved by
assigning f(v) = f(w) = 1 for any pair of vertices v, w ∈ V .

3.1 An algorithm for interval graphs

We now present a dynamic programming algorithm for computing an op-
timal efficient broadcast on an interval graph G in O(n3) time. This time
complexity is achieved with the help of an O(n2) preprocessing step that
computes radial broadcasts on all subgraphs Gij . The discussion and analy-
sis of this preprocessing is postponed until Section 3.2. Although here we
only compute the cost of an optimal solution, extending the results to com-
pute the solution itself is straight forward, and does not add to the time
complexity.

It follows from Corollaries 3.2 and 3.5 that an optimal efficient broadcast
consists of a set of broadcast dominators that each dominates exactly one
subgraph Gij and nothing outside of Gij . Since the solution is efficient,
there is no overlap between the dominated subgraphs. Noting that in a
connected graph we will never have a broadcast dominator that dominates
only itself, we get the following recursion for finding a minimum cost non-
radial efficient solution for Gij : γ = mini<k<j Opt(i, k) + Opt(k + 1, j).
The minimum cost of dominating Gij and nothing else is then given by
Opt(i, j) = min{MinRad(i, j), γ}.

Note that it is possible that there is no efficient optimal solution for
one or both of Gik and Gk+1,j that cannot be heard from outside these

7

subgraphs. If this is the case we set Opt(i, j) = ∞. If we consider Gik then
an efficient optimal solution exists if and only if Gik can be decomposed
into one or more non-overlapping graphs, each dominated by exactly one
broadcast dominator that cannot be heard from outside of the correspond-
ing subgraph.

Initially we determine for each i and j, i ≤ j, if there exists a radial
broadcast for Gij that cannot be heard from outside of Gij . If a radial
solution exists, then its cost is stored in MinRad(i, j). If there is no such
solution then MinRad(i, j) = ∞.

The following O(n3) time dynamic programming algorithm, which we
call Interval Broadcast Domination (IBD), progresses by building efficient
optimal solutions to all Gij containing l intervals before moving to graphs
containing l + 1 intervals. The correctness and the O(n3) time complexity
of IBD follows from the above discussion.

Algorithm Interval Broadcast Domination (IBD)
Input: An interval graph G;
Output: γb(G) = Opt(1, n).
Compute all radial solutions and place them in a table MinRad;
for i = 1 to n − 1 do

Opt(i, i + 1) = MinRad(i, i + 1);
for i = 2 to n − 1 do

for j = 1 to n − i do
γ = minj+1≤k≤j+i−2{Opt(j, k) + Opt(k + 1, j + i)};
Opt(j, j + i) = min{MinRad(j, j + i), γ};

3.2 Computing radial solutions

We now describe how MinRad(i, j), a radial broadcast needed to dominate
exactly Gij , can be computed efficiently for all i, j. If no such solution
exists, i.e., if all radial solutions can be heard from outside of Gij , then
MinRad(i, j) = ∞.

We first consider what part of the graph would be dominated if we
were to set f(vk) = t, t > 0. Let vi and vj be the respectively lowest and
highest numbered vertices that are dominated by f(vk) = t. It follows from
Corollaries 3.2 and 3.5 that every vertex in Gij must hear f(vk) if we are
going to consider vk as a candidate for a radial broadcast dominator. We
will look at Gik and Gkj separately starting with Gkj .

Since any sub-path of a shortest path is also a shortest path, it follows
that if vk = p0, p1, . . . , pt = vj , with t > 1, is a shortest path from vk to
vj given by Algorithm SP, where k < j, then there is a shortest path of
length t − 1 from p1 to vj . Similarly, if there is a shortest path of length
t − 1 from p1 to vj then there is a shortest path from vk to vj of length

8

t − 1 if vkp2 ∈ E; otherwise the shortest length is t. In terms of broadcast
domination this means that f(vk) = t will dominate exactly the same set
of vertices in Gp1,n as f(p1) = t− 1 would. Assuming k < p1, by Corollary
3.2 every vertex in Gk+1,p1−1 will also hear f(vk) = t. Thus if vj is the
highest numbered vertex that can hear f(p1) = t − 1 then f(vk) = t will
dominate Gk+1,j and no vertex in Gj+1,n. Setting f(vk) = 1 will dominate
Gk+1,j where vj is the highest numbered vertex with l(vj) ≤ r(vk). This
value can be found by searching through the neighbors of vk.

The complete algorithm, called Maximal Right Domination(MRD), is
given below. This algorithm returns a table R(k, f(vk)) containing the
maximum value q ∈ H(vk) for each vk ∈ V and 1 ≤ f(vk) ≤ er(vk)
where er(vk) denotes the right eccentricity of vk, i.e., the largest distance
from vk to any vertex that has a larger index than k. In order to perform
these computations efficiently the vertices should be processed in order of
decreasing right endpoints. For each vertex vk we search for the the highest
numbered adjacent vertex in order to determine the reach of f(vk) = 1. We
then search for its neighbor vq with the largest right endpoint. From this
we copy the values for how far f(vq) = t will reach in Gq,n, 1 ≤ t ≤ e(vq).

Algorithm Maximal Right Domination(MRD)
Input: An interval graph G;
Output: A table R(k, f(vk)) = max{q | vk ∈ H(vq)} with

1 ≤ f(vk) ≤ er(vk) for each vk ∈ V .
for k = n downto 1 do

R(k, 1) = max{q | l(vq) ≤ r(vk)};
Choose p1 to be an interval in N(vk) with largest right endpoint;
for i = 1 to er(p1) do

R(k, i + 1) = R(p1, i);

Determining the value of R(k, 1) for each vk has an accumulated cost
of O(m) = O(n2). Since at most n − 1 values are set for each interval, the
overall time for MRD is O(n2).

The computation of which lower numbered vertices will be dominated
by f(vk) = t is similar. The differences are twofold: while MRD processes
the vertices by decreasing right endpoints, we now process the intervals by
increasing left endpoints; and every f -value on a vertex might not yield a
broadcast that can be used in an efficient solution. Assume f(vk) = 1 and
that vq is the lowest numbered vertex adjacent to vk , q < k. Then from
Corollary 3.5 it follows that if there is any vertex in Gq+1,k−1 not adjacent
to vk then f(vk) = 1 cannot be used in building an efficient solution. To
obtain values for f(vk) > 1, it is sufficient to copy these from the same vq .
This follows since vk will dominate the same vertices using strength t as vq

does with strength t−1. And if f(vq) = t−1 cannot be used in an efficient

9

solution then neither can f(vk) = t. The total computation can be carried
out in O(n2) time.

Combining the results for which vertices f(vk) = t will dominate, we
can decide whether or not f(vk) = t can be used in a radial solution of
some Gij . If this is the case and t is lower than the previous lowest f()
value used for this graph, we set MinRad(i, j) = t. For all values of i and
j where there does not exist a radial solution that cannot be heard from
outside of Gij , we set MinRad(i, j) = ∞. It follows that the whole process
can be carried out in O(n2) time.

4 Series-parallel graphs

In this section we describe a dynamic programming algorithm for computing
a minimum cost broadcast function that dominates a series-parallel graph.
Throughout this section we assume the given graph is series-parallel, and
use r to represent the radius of the graph.

Informally, a recursive graph class is one in which any sufficiently large
member in the class can be formed by successively joining smaller members
in the class at specific vertices called terminals.2 Series-parallel graphs are
partial 2-trees, a recursive graph class with 2 terminals. We use tL(G) and
tR(G) to denote the left terminal and the right terminal of G, respectively.
Every member of the class can then be decomposed into base graphs, typi-
cally taken to be a single edge, i.e., the K2. This decomposition is specified
by a decomposition tree that identifies two children for each non-leaf node
of the tree, and an associated operation that combines the children to create
the parent. Series-parallel graphs can be recognized and a corresponding
decomposition tree can be constructed in linear time [27].

Let G = (V, {tL(G), tR(G)}, E) and let Gj = (Vj , {tL(Gj), tR(Gj)}, Ej)
for j = 1, 2 be 2-terminal graphs. Define the series operation as s(G1, G2) =
G if tL(G1) = tL(G), tR(G1) = tL(G2), and tR(G2) = tR(G). This oper-
ation associates tR(G1) with tL(G2) and then the resulting vertex loses
its status as a terminal. The left jackknife operation, left(G1, G2) = G,
is the same as series, except that the associated vertex retains its termi-
nal status, becoming tR(G), and tR(G2) loses its terminal status. The
right jackknife operation right(G1, G2) = G is analogous. Finally, define
the parallel operation as p(G1, G2) = G if tL(G1) = tL(G2) = tL(G) and
tR(G1) = tR(G2) = tR(G). Note that in each case, the resulting graph G
has two terminals.

2A more formal description of recursively constructed graphs can be found in [20].
Examples of how this recursive structure can be used to solve graph problems appear in a
host of references among which are [24] and [19]. More formal models of the methodology
appear in [28] and [6].

10

4.1 Broadcasts in series-parallel graphs

Given a broadcast function f : V → {0, 1, 2, ..., r}, we say that dominance
condition (domL, domR) exists if the following holds.

• f dominates Gi except for vertices within distance −domk of tk(Gi)
for k ∈ {L, R} whenever domk < 0 and

• f would dominate hypothetical paths of length domk joined to tk(Gi)
whenever domk ≥ 0.

If domk < 0 we say tk(Gi) is underdominated and if domk ≥ 0 we say tk(Gi)
is overdominated. The definition of a dominance condition allows portions
of Gi to be undominated at the current node in the decomposition tree
only when there is a requirement indicated (the negative domk value) that
“demands” that this underdominance be corrected at some point closer to
the root of the decomposition tree.

Now we can define PGi(domL, domR) to be the lowest cost of a broadcast
function on Gi given that dominance condition (domL, domR) exists in
Gi. P will be either N , L, R, or B to represent neither, left, right, or
both terminals having a non-zero broadcast originating there. For example,
LG3(1,−2) represents the lowest cost of a broadcast function in G3 that
provides an overdominance of 1 at the left terminal, has an underdominance
of −2 at the right terminal, has a broadcast originating at tL(G3), and has
no broadcast originating at tR(G3).

The following properties of optimal broadcast dominations will be useful
in establishing the correctness of our series-parallel algorithm.

Lemma 4.1 Let f be an optimal broadcast domination of a series-parallel
graph G and consider a graph Gi = (Vi, {tL(Gi), tR(Gi)}, Ei) in the decom-
position of G. Let dGi(tL, tR) be the distance in Gi between tL(Gi) and
tR(Gi).

• If f applied to Gi is such that domL = f(tL(Gi)) > 0 and
domR < 0 = f(tR(Gi)), then
−(domR + dGi(tL, tR) + 1) < f(tL(Gi)).

• If f applied to Gi is such that domR = f(tR(Gi)) > 0 and
domL < 0 = f(tL(Gi)), then
−(domL + dGi(tR, tL) + 1) < f(tR(Gi)).

Proof. We prove only the first bullet, since the proof of the second bullet
is analogous. Suppose the first bullet is false for some Gi. Then −(domR +
d(tL(Gi), tR(Gi)) + 1) ≥ f(tL(Gi)), and the underdominance at tR(Gi)
demands dominance that will dominate every vertex in G that is dominated
by the broadcast originating at tL(Gi). But then f(tL(Gi)) can be set to

11

0 while maintaining broadcast domination in G, contrary to the optimality
of f .

Lemma 4.2 In any optimal broadcast domination f of a graph G = (V, E),
if there are two neighbors v, w ∈ V such that f(v) > 0 and f(w) > 0, then
f(v) = f(w).

Proof. Suppose otherwise. Without loss of generality, assume f(v) >
f(w) > 0 where f is an optimal dominating broadcast of G with (v, w) ∈
E(G). Then every vertex dominated by the broadcast originating at w
is also dominated by the broadcast originating at v. But then f(w) can
be set to 0 while maintaining broadcast domination in G, contrary to the
optimality of f .

Given a series-parallel graph G, the algorithm computes the values of
NGi , LGi , RGi , and BGi for each graph Gi in a decomposition tree of G,
in a bottom-up fashion. Since an optimal broadcast function will have
f(v) ≤ r for all v ∈ V , we restrict the dominance conditions to ranges from
−r to r. The next subsection describes how to compute the N , L, R, and
B arrays for leaves. Subsections 4.3 and 4.4 present recursive relationships
that allow the computation of PGi(domL, domR) for P ∈ {N, L, R, B} for
every non-leaf graph Gi in the decomposition tree. The equations described
in the three subsections are summarized in Tables 1, 2, and 3.

4.2 Initialization

Recall that each leaf in the decomposition tree of a series-parallel graph
corresponds to a K2. The following discussion of how to initialize the four
cost arrays NK2 , LK2 , RK2 and BK2 is summarized with the equations in
Table 1.

For the case of NK2 (i.e., f(tL(K2)) = f(tR(K2)) = 0), no broadcast
originates from within the K2. Clearly, then, to lead to a valid broadcast
domination of the series-parallel graph, the dominance condition of the
K2 must indicate a demand that will eventually dominate the K2. The
dominance conditions indicating such demand are identified in the following
observation.

Observation 4.3 Let f be a broadcast domination of a series-parallel graph
G and consider an edge K2 = (VK2 , {tL(K2), tR(K2)}, EK2) correspond-
ing to a leaf in the decomposition of G. If f applied to K2 is such that
f(tL(K2)) = f(tR(K2)) = 0, then domL + domR ≤ −2.

We use the value ∞ to represent invalid dominance conditions. All other
cases are set to 0, representing zero cost when no broadcast originates from
the K2.

12

Table 1: Initializations for Algorithm SPBD.

NK2(domL, domR) =

{
0 if domL + domR ≤ −2
∞ if domL + domR > −2

LK2(domL, domR) =





∞ if domR ≥ domL

∞ if domR ≤ −(domL + 2)
domL otherwise

RK2(domL, domR) =





∞ if domL ≥ domR

∞ if domL ≤ −(domR + 2)
domR otherwise

BK2(domL, domR) =

{
domL + domR if (domL = domR > 0)
∞ otherwise

Recall that LK2 represents f(tL(K2)) > 0 and f(tR(K2)) = 0, in which
case the cost due to the K2 is simply f(tL(K2)). Thus, we must enter
f(tL(K2)) for all dominance conditions where domL = f(tL(K2)) and domR

together with domL lead to a valid broadcast domination of the final graph
G.

Observation 4.4 Let f be a broadcast domination of a series-parallel graph
G and consider an edge K2 = (VK2 , {tL(K2), tR(K2)}, EK2) correspond-
ing to a leaf in the decomposition of G. If f applied to K2 is such that
f(tL(K2)) > 0 and f(tR(K2)) = 0, then domR < domL.

This observation gives us the first line in the equation for LK2 ; the second
line is a result of Lemma 4.1. Initialization of RK2 is analogous.

Intuitively, we must set BK2(domL, domR) = ∞ whenever the domi-
nance condition renders one of the values of domL and domR superfluous.
The conditions when this occurs were formalized in Lemma 4.2.

13

4.3 The series operation

Consider a node G in the decomposition tree that is formed by G =
s(G1, G2), and consider the computation of LG. Note that allowable config-
urations with an originating broadcast at tL(G) and no originating broad-
cast at tR(G) must either come from BG1 and LG2 or from LG1 and NG2 .
Other pairs either fail to have the specified originating broadcast, or are
incompatible in the sense that tR(G1) cannot be associated with tL(G2)
because one has an originating broadcast and the other does not.

For the case of BG1 and LG2 , tR(G1) and tL(G2) have an identical
originating broadcast i. The formula simply compares these options for
all of the relevant i values, and uses a cheapest one as a candidate value
for LG(domL, domR). Note that the cost of the originating broadcast at
tR(G1) = tL(G2) is subtracted since its cost is represented in both the cost
of dominating G1 and the cost of dominating G2, but it only belongs once
in the cost of dominating G.

For the case of LG1 and NG2 , no subtraction is needed since tR(G1) and
tL(G2) have no originating broadcast. Now either G1 provides overdomi-
nation that must at least cover any underdomination in G2, or vice-versa,
as represented by the last two lines in the formula for LG(domL, domR).
When all of these cases are considered, LG(domL, domR) is assigned lowest
cost of a broadcast function in G with dominance condition (domL, domR)
that has a broadcast originating at tL(G) but has no broadcast originating
at tR(G).

Similar arguments justify the recursions for NG, RG, and BG. The
recursions for the series operation are summarized in Table 2.

4.4 The parallel operation

Consider the computation of LG(domL, domR) when G = p(G1, G2). When
domL ≥ 0, we need to compare configurations in G1 and G2 where both
graphs have the appropriate originating broadcast at tL and where one
graph provides domR at tR. The other graph can then provide anything
between −(domR + 1) and domR at tR, thereby guaranteeing that the
resulting graph will provide domR at tR. The other half of LG(domL, domR)
(i.e., when domL < 0) is computed analogously.

Similar arguments justify the recursions for NG, RG, and BG. The
recursions for the parallel operation are summarized in Table 3.

14

Table 2: Equations for the G = s(G1, G2) Operation.

NG(domL , domR) = min


min

1≤i≤r
RG1 (domL , i) + LG2 (i, domR) − i

min
0≤i≤j≤r−1

NG1 (domL, j) + NG2 (−i − 1, domR)

min
0≤i≤j≤r−1

NG1 (domL,−i − 1) + NG2 (j, domR)

LG(domL , domR) = min


min

1≤i≤r
BG1 (domL , i) + LG2 (i, domR) − i

min
0≤i≤j≤r−1

LG1 (domL, j) + NG2 (−i − 1, domR)

min
0≤i≤j≤r−1

LG1 (domL,−i − 1) + NG2 (j, domR)

RG(domL , domR) = min


min

1≤i≤r
RG1 (domL , i) + BG2 (i, domR) − i

min
0≤i≤r−1

NG1 (domL , j) + RG2 (−i − 1, domR)

min
0≤i≤r−1

NG1 (domL ,−i − 1) + RG2 (j, domR)

BG(domL , domR) = min


min

1≤i≤r
BG1 (domL , i) + BG2 (i, domR) − i

min
0≤i≤j≤r−1

LG1 (domL, j) + RG2 (−i − 1, domR)

min
0≤i≤j≤r−1

LG1 (domL,−i − 1) + RG2 (j, domR)

4.5 The algorithm

We have defined initializations for leaves in a decomposition tree for a
series-parallel graph, and recursive equations for computing the cost of an
optimal broadcast domination for the series and parallel operations. The
formulas for jackknife operations are a straight-forward adaption of those
for the series operation. In the interest of space, they are omitted from
this paper. An algorithm to compute the cost of an optimal solution for
an entire graph G would simply find the lowest cost for which there is no
underdominance in the {N, L, R, B} arrays at the root of the decomposition
tree. The details of this algorithm, which we call SPBD, are given below.
It is straightforward, then, to work back down the tree to find the actual
broadcast domination function f that corresponds to that optimal cost.

15

Table 3: Equations for the G = p(G1, G2) Operation.
BG(domL, domR) = BG1 (domL , domR) + BG2 (domL , domR) − domL − domR

LG(domL , domR) =



if domR ≥ 0:

min
−domR−1≤i

i≤domR

{
LG1 (domL , domR) + LG2 (domL , i) − domL

LG1 (domL , i) + LG2 (domL, domR) − domL

if domR < 0:

min
domR≤i

i≤−domR−1

{
LG1 (domL , domR) + LG2 (domL , i) − domL

LG1 (domL , i) + LG2 (domL, domR) − domL

RG(domL , domR) =



if domL ≥ 0:

min
−domL−1≤i

i≤domL

{
RG1 (domL , domR) + RG2 (i, domR) − domR

RG1 (i, domR) + RG2 (domL , domR) − domR

if domL < 0:

min
domL≤i

i≤−domL−1

{
RG1 (domL , domR) + RG2 (i, domR) − domR

RG1 (i, domR) + RG2 (domL , domR) − domR

NG(domL , domR) =



if domL, domR ≥ 0:

min
−domL−1≤i≤domL
−domR−1≤j≤domR


NG1 (domL , domR) + NG2 (i, j)

NG1 (domL , j) + NG2 (i, domR)

NG1 (i, domR) + NG2 (domL , j)

NG1 (i, j) + NG2 (domL , domR)

if domL ≥ 0 and domR < 0:

min
−domL−1≤i≤domL
domR≤j≤−domR−1


NG1 (domL , domR) + NG2 (i, j)

NG1 (domL , j) + NG2 (i, domR)

NG1 (i, domR) + NG2 (domL , j)

NG1 (i, j) + NG2 (domL , domR)

if domL < 0 and domR ≥ 0:

min
domL≤i≤−domL−1
−domR−1≤j≤domR


NG1 (domL , domR) + NG2 (i, j)

NG1 (domL , j) + NG2 (i, domR)

NG1 (i, domR) + NG2 (domL , j)

NG1 (i, j) + NG2 (domL , domR)

if domL, domR < 0:

min
domL≤i≤−domL−1
domR≤j≤−domR−1


NG1 (domL , domR) + NG2 (i, j)

NG1 (domL , j) + NG2 (i, domR)

NG1 (i, domR) + NG2 (domL , j)

NG1 (i, j) + NG2 (domL , domR)

16

Algorithm Series-Parallel Broadcast Domination (SPBD)
Input: A series-parallel graph G and a decomposition tree Td for G.
Output: γb(G).
r = rad(G);
for each leaf Gi in Td do

Use the formulas in Table 1 to compute NGi , LGi , RGi , and BGi ;
repeat

Gi = an unprocessed node in Td whose children have been processed;
if Gi = s(G1, G2) then

Use the formulas in Table 2 to compute NGi , LGi , RGi , and BGi ;
else if Gi = p(G1, G2) then

Use the formulas in Table 3 to compute NGi , LGi , RGi , and BGi ;
until the root of Td has been processed;
BestCost = ∞;
for i = 0 to r do

for j = 0 to r do
BestCost = min{BestCost, NG(i, j), LG(i, j), RG(i, j), BG(i, j)};

γb(G) = BestCost;

The following results verify that Algorithm SPBD is correct and give
an upper bound on the running time of the algorithm.

Lemma 4.5 Every possible minimal broadcast function on a series-parallel
graph G is considered during execution of Algorithm SPBD.

Proof. By Observation 4.4, Observation 4.3, Lemma 4.1, and Lemma 4.2,
the only possible broadcast functions on the leaves that are not included
in the initialization are ones that cannot lead to an optimal solution G.
Thus, at the initial stage of the algorithm every possible minimal broad-
cast function is represented. At each non-leaf node of the decomposition
tree, every combined configuration of G1 and G2 is considered for retention.
A combined configuration is eliminated only when another combined config-
uration with no worse cost is represented in the same cell PG(domL, domR)
for P ∈ {N, L, R, B}.

Theorem 4.6 Given a series-parallel graph G, Algorithm SPBD com-
putes an optimal broadcast domination function of G in O(nr4) time.

Proof. The correctness follows from Lemma 4.5. For the time complexity,
note that there are no more than n nodes in the decomposition tree of
a series-parallel graph. For each node we fill in four (2r + 1) × (2r + 1)
arrays. Filling in the NG arrays for a parallel operation takes the most
time, requiring a minimization over O(r2) values. Thus, the time required
by SP is O(nr4).

17

5 Trees

In this section we describe and prove correct an O(nh) time algorithm for
computing an optimal efficient broadcast function of a rooted tree T of
height h. In order to make h small, the root of T can be chosen to be a
vertex that has the smallest eccentricity, also called a center vertex of T .
This results in a total time of O(nr) for the presented algorithm, where
r = rad(T).

Let T be a tree with root vr. We denote the subtree rooted at vertex
v by Tv, and hence T = Tvr . For a subtree Tv and efficient broadcast
domination f of T , we have the following three possibilities for Tv’s root
v: 1) f(v) > 0, which will cover v and vertices both in Tv and in other
parts of T through v’s parent edge; 2) f(v) = 0 and v hears some broadcast
originating in Tv; and 3) f(v) = 0 and v hears some broadcast originating
outside of Tv through v’s parent edge.

Recall from Section 4.1 the notions of underdomination (domk < 0) and
overdomination (domk ≥ 0). In this section, we use the same descriptions,
except we partition overdomination into proper overdomination (domk > 0)
and exact domination (domk = 0). Let costv be an array associated with
vertex v and indexed from −h to h. The value of costv[i] will be the
minimum cost for an efficient broadcast domination of Tv with domination
condition i. The algorithm will compute the costv values in a bottom-
up fashion. Analogous to the case of series-parallel graphs, elements of
costvr [i] for i < 0 are not considered when reporting the solution since
these represent configurations where Tvr = T contains vertices which hear
no broadcast.

Suppose v is a leaf. Then the costv [i] = 0 for i < 0, since an efficient
broadcast domination f that covers v through v’s parent will not have a
broadcast originating at v. Note that there is no efficient broadcast function
on a single node that has an exact domination. Hence, we set costv[0] = ∞.
Finally, the only way we can achieve a proper overdomination of value i for
leaf v is to set f(v) = i. A complete formula for costv when v is a leaf is
given below:

costv [i] =





0 if i < 0
∞ if i = 0
i if i > 1

Now consider computation of the cost vector costv[i] for Tv where v has
children v1, v2, . . . , vc. When i < 0, an underdomination of i in Tv is equiva-
lent to an underdomination of i+1 in each Tvk

, 1 ≤ k ≤ c (exact domination
if i + 1 = 0). Thus, the cost incurred for Tv is the sum of costvk

[i + 1] over
all children vk of v. When i = 0, there cannot be a broadcast originating at
v, and since we require f to be efficient, exactly one child subtree of v must

18

have a proper overdomination of 1, and all other child subtrees must have
exact domination. If i > 0, either f(v) = i, or f(v) = 0 and exactly one
child subtree of v has proper overdomination i + 1. If f(v) = i, then each
of the child subtrees must have an underdomination of −i. If, on the other
hand, exactly one child subtree has proper overdomination i + 1, then all
other child subtrees must have underdomination −i. These relationships
are formalized in the equations given below when v is not a leaf.

costv [i] =





∑

1≤k≤c

costvk
[i + 1] if i < 0

min
1≤k≤c



costvk

[1] +
∑

1≤j≤c, j 6=k

costvj [0]



 if i = 0

min



(i +

∑

1≤k≤c

costvk
[−i]), BestChildv(i)



 if i > 0

BestChildv(i) = min
1≤k≤c



costvk

[i + 1] +
∑

1≤j≤c, j 6=k

costvj [−i]





To show that the time complexity of the described algorithm is O(nh),
we will argue that each costv [i] needs to be written or read a constant
number of times. Since there are 2h + 1 values in each of the n costv
arrays, the result follows. Clearly computation of the costv [i] values for
all leaves v fits within the desired time complexity. Thus, we focus on the
time required to compute all the non-leaf values. Observe that when a
non-leaf vertex v is processed, it must use the values in the cost arrays of
each of its children, say v1, v2, . . . , vc. But after the values of costv are filled
in, the child cost arrays are never accessed again. From the equation for
calculating costv for non-leaf nodes (see Table 4), it is clear that each entry
of the cost tables of the children of v is accessed only a constant number of
times, establishing the desired result.

The algorithm TBD, shown below, gives the details for an implemen-
tation of the dynamic programming approach described above. TBD com-
putes the costv array of each vertex v in T , starting from the leaves, and
processing a vertex only after the cost arrays of its children have been
computed.

19

Algorithm Tree Broadcast Domination (TBD)
Input: A tree T rooted at a center vertex vr.
Output: γb(T).
h = height of T
for every vertex v in T (traversed in post order from vr) do

for i = −h to h do
Sum(i) = 0;
InfinityCount(i) = 0;
for each child vk of v do

if costvk
[i] = ∞ then

InfinityCount(i) = InfinityCount(i) + 1;
else

Sum(i) = Sum(i) + costvk
[i];

for i = −h to −1 do
if InfinityCount(i− 1) ≤ 0 then

costv [i] = Sum(i + 1)
else

costv [i] = ∞;
costv [0] = ∞;
if InfinityCount(0) ≤ 1 then

for each child vk of v do
if costvk

[0] = ∞ then
costv[0] = min {costv [0], costvk

[1] + Sum(0)};
else if InfinityCount(0) = 0 then

costv[0] = min {costv [0], costvk
[1] + Sum(0) − costvk

[0]};
for i = 1 to h − 1 do

BestChild(i) = ∞;
if InfinityCount(−i) ≤ 1 then

for each child vk of v do
if costvk

[−i] = ∞ then
BestChild(i) = min {BestChild(i),

costvk
[i + 1] + Sum(−i)};

else if InfinityCount(−i) = 0 then
BestChild(i) = min {BestChild(i),

costvk
[i + 1] + Sum(−i) − costvk

[−i]};
if InfinityCount(−i) > 0 then

costv[i] = BestChild(i)
else

costv[i] = min {(i + Sum(−i)), BestChild(i)};
costv [h] = h + Sum(−h);

γb(G) = min0≤i≤h{costvk
[i]};

20

6 Summary

The primary results in this paper are dynamic programming algorithms for
finding optimal broadcast domination functions in classes of graphs that
require non-trivial broadcast functions for optimality. These include:

• An O(n3) time algorithm that finds γb(G) for any interval graph G.
This algorithm can easily be adapted to provide an efficient optimal
broadcast domination function f of G.

• An O(nr4) time algorithm that finds γb(G) for any series-parallel
graph G. This algorithm can easily be adapted to provide an optimal
broadcast domination function even under the restriction of bounded
maximum broadcast power, i.e., when f(v) ≤ k for all v ∈ V for some
fixed constant 1 ≤ k ≤ rad(G).

• An O(nr) time algorithm that finds γb(T) for any tree T . This algo-
rithm can easily be adapted to provide an efficient optimal broadcast
domination function f of T .

It is worth noting that the series-parallel algorithm is not “anticipated”
in the same sense that other fast algorithms are for problems restricted to
recursively constructible instances. That is, it is not evident that the prob-
lem of computing γb is expressible in any of the formal contexts that have
been developed for graph problems on recursive structures [5]. Among
these is the predicate calculus developed in [6] where if a given problem
is shown to be expressible in the calculus, then a polynomial-time algo-
rithm for its solution is guaranteed for the problem on any recursive graph.
Thus, if a legal expression for the given problem can be formed, it is gen-
erally straightforward to create a practical algorithm. On the other hand,
the more interesting outcome is to find a polynomial time algorithm for a
problem whose formal expressibility status is, if not explicitly known to be
impossible, at least ambiguous. This is the case with the computation of
γb, thus lending interest to the creation of the series-parallel algorithm.

References

[1] J. Bar-Ilan, G. Kortsarz, and D. Peleg, How to allocate network
centers, J. Algorithms, 15 (1993), pp. 385–415.

[2] C. Berge, Theory of Graphs and its Applications, no. 2 in Collection
Universitaire de Mathematiques, Dunod, Paris, 1958.

[3] K. S. Booth and J. H. Johnson, Dominating sets in chordal graphs,
SIAM J. Comput., 11 (1982), pp. 191–199.

21

[4] K. S. Booth and G. S. Lueker, Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algo-
rithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[5] R. B. Borie. personal communication, 2002.

[6] R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic gen-
eration of linear-time algorithms from predicate calculus descriptions
of problems on recursively constructed graph families, Algorithmica, 7
(1992), pp. 555–581.

[7] A. K. Dewdney, Fast Turing reductions between problems in NP,
Tech. Rep. 71, Dept. of Computer Science, University of West Ontario,
1981.

[8] J. E. Dunbar, D. J. Erwin, T. W. Haynes, S. M. Hedetniemi,
and S. T. Hedetniemi, Broadcasts in graphs, (2002). Submitted.

[9] D. J. Erwin, Dominating broadcasts in graphs, (2002). Submitted.

[10] M. Farber, Domination, independent domination, and duality in
strongly chordal graphs, Disc. Appl. Math., 7 (1984), pp. 115–130.

[11] M. Farber and J. M. Keil, Domination in permutation graphs, J.
Algorithms, 6 (1985), pp. 309–321.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability,
W. H. Freeman and Co., 1978.

[13] P. C. Gilmore and A. J. Hoffman, A characterization of compara-
bility graphs and of interval graphs, Canadian Journal of Mathematics,
16 (1964), pp. 539–548.

[14] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,
Academic Press, 1980.

[15] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination
in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.

[16] , Fundamentals of Domination in Graphs, Marcel Dekker, New
York, 1998.

[17] M. A. Henning, Distance domination in graphs, in Domination in
Graphs: Advanced Topics, T. W. Haynes, S. T. Hedetniemi, and P. J.
Slater, eds., Marcel Dekker, New York, 1998, pp. 321–349.

[18] C. W. Ho and R. C. T. Lee, Counting clique trees and computing
perfect elimination schemes in parallel, Information Processing Letters,
31 (1989), pp. 61–68.

22

[19] S. B. Horton, The Optimal Linear Arrangement Problem: Algo-
rithms and Approximation, PhD thesis, School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology, Atlanta, 1997.

[20] S. B. Horton, R. G. Parker, and R. B. Borie, On minimum cuts
and the linear arrangement problem, Disc. Appl. Math., 103 (2000),
pp. 127–139.

[21] D. Kratsch, Domination and total domination in asteroidal triple-
free graphs, Tech. Rep. Math/Inf/96/25, F.-Schiller-Universität, Jena,
1996.

[22] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill,
New York, 1968.

[23] O. Ore, Theory of Graphs, no. 38 in American Mathematical Society
Publications, AMS, Providence, 1962.

[24] M. Richey and R. Parker, On finding spanning eulerian subgraphs,
Naval Research Logistics Quarterly, 32 (1985), pp. 443–455.

[25] F. S. Roberts, Indifference graphs, in Proof Techniques in Graph
Theory, F. Harary, ed., Academic Press, 1969, pp. 139 – 146.

[26] P. J. Slater, R-domination in graphs, J. Assoc. Comput. Mach., 23
(1976), pp. 446–450.

[27] J. Valdes, R. E. Tarjan, and E. L. Lawler, The recognition of
series parallel digraphs, SIAM J. Comput., 11 (1982), pp. 298–313.

[28] T. Wimer and S. Hedetniemi, K-terminal recursive families of
graphs, in Proceedings of the 250th Anniversary Conference on Graph
Theory, Fort Wayne, IN, 1986.

23

