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1. Introduction

Probability theory has frequently been used to deepen our understanding of computer algorithms and com-
binatorial objects. In the analysis of deterministic computer algorithms, one may assume that the algorithm
receives input that is, in some sense, random, and then consider the likely behavior of the algorithm. With
combinatorial objects, one can sometimes turn problems involving enumeration into probabilistic questions, bor-
rowing techniques from probability theory to solve these problems. For non-deterministic computer algorithms,
such as randomized algorithms and genetic or evolutionary algorithms, randomness is inherent in the nature of
the algorithm, and most analysis will be of a probabilistic nature.

The author’s research has largely been in the veins described above. In joint work with Boris Pittel, the
author has applied probability to the examination of the stable marriage problem. In his own research, the author
conducted an analysis into the effectiveness of the Prüfer code as a tree representation in genetic algorithms.
These efforts, and possible extensions of them, are described in the two sections below, with the first section
addressing the stable marriage problem and the second section describing the Prüfer code research.

2. The Stable Marriage problem

Background

An instance of a size n stable marriage problem involves n men and n women, each ranking all members
of the opposite sex in order of individual preference as a marriage partner. A complete matching (a set of n
marriages) is called stable if no unmatched man and woman prefer each other to their actual partners in the
matching. For a given set of marriage partner preferences, let Sn denote the total number of stable matchings.
In 1962, Gale and Shapely [GS], who introduced the problem, showed that at least one stable matching always
exists, i.e. Sn ≥ 1, by developing a “proposal” algorithm which always finds a stable matching.

In 1976, Knuth [K1] produced a problem instance with 2n/2 stable matchings, and many years later, Irving
and Leather [IL] demonstrated that, for n a power of 2, there exist problem instances with at least 2n−1 stable
matchings. They also found a sequence of problem instances for n = 2k, k ≥ 1, and an associated recurrence
for the number of solutions that seemed to indicate that this number grew faster than 2n. Knuth [Pi1] was able
to show rigorously that, indeed, the number of solutions in Irving-Leather’s problem instance is on the order of
2.28n at least. As the number of stable matchings can vary widely, it is natural to ask what the likely number
of stable matchings is.

In 1976, Knuth [K1] discovered a 2n-dimensional integral formula for E[Sn], the expected value of the random
number Sn of stable matchings. He conjectured that this formula could be used to find an asymptotic estimate
for E[Sn]. Confirming Knuth’s conjecture, Pittel [Pi2] used the integral formula to show that

E[Sn] = (1 + o(1))e−1n lnn, n→∞. (1)

This formula suggests, but does not prove, that a likely value of Sn is of order n lnn as well.
Meanwhile, in 1971-1972, McVitie and Wilson [MW] found a sequential version of Gale-Shapley’s proposal

algorithm, and Wilson [Wi] studied its expected running time for problem instances chosen uniformly at random
from among all (n!)2n instances. In [KMP], Knuth, Motwani, and Pittel found an extension of the McVitie-
Wilson algorithm that delivered all the stable husbands for any given woman, and used it to show that with
high probability, the number of those stable husbands is between (1/2− ε) lnn and (1/2 + ε) lnn. Thus a likely
number of stable matchings must grow as lnn at least. Later, Pittel [Pi5] proved that with high probability Sn
is much larger, namely n1/2−o(1), but a lower bound cn lnn appeared out of reach.
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Our results

In [LPi], we prove that
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n2 ln2 n. (2)

The proof builds on techniques developed in [Pi2] and [Pi3]. Preference lists are determined by the values of
matrices of uniform random variables. Then the condition of stability can be described as an intersection of
events involving the values of these variables. This allows us to express the probability that two matchings are
simultaneously stable as an integral, which can then be asymptotically estimated. Summing over all pairs of
distinct matchings gives us the second factorial moment, which is asymptotically equal to (2).

Combined with Cantelli’s inequality, relations (1) and (2) imply that

P (Sn ≥ εE[Sn]) ≥ (1− ε)2

(1− ε)2 + (2e)−1
> .84

for ε sufficiently small. Hence the fraction of problem instances with roughly cn lnn solutions is 0.84, at least.

Future research

The fact that lim E2[Sn]/E[Sn] < 1 is a strong indication (though not a proof) that the distribution of Sn is
not sharply concentrated around E[Sn]. Still, Sn may well be of order n lnn in probability; formally if εn ↓ 0,
however slowly, then

P (Sn ≥ εnE[Sn])→ 1, n→∞. (3)

Alternatively, in light of [Pi5], there may exist a function ω(n) >> n1/2, but ω(n) = o(n lnn), such that

lim
n→∞

P (Sn ≤ ω(n)) > 0.

By our result this limit (if it exists) is 0.16 at most. The question of which (if either) of these results hold remains
open.

We believe that there are two possible avenues for a better estimate of the likely number of stable marriages,
but explaining them requires a brief discussion of r-regular graphs and the random k-SAT problem. A random
r-regular graph is a graph chosen uniformly at random from the set of all graphs in which every vertex has degree
r. We will denote such a randomly chosen graph (on n vertices) by Gr,n. We will let H(G) be the number of
hamilton cycles in the graph G. In [RW3] Robinson and Wormald sharply estimated the average and variance
of H(G3,n), and found that the variance was a constant multiple of the square of the first moment, as is true in
our estimates. Thus they could not use Chebyshev’s inequality to show that

lim
n→∞

P (H(G3,n) > 0) = 1.

Much later, in [RW1], they found a way to prove the above statement by conditioning on the number of small
cycles in the G3,n, and then using Chebyshev’s inequality on the variable E[G3,n | # small cycles]. Finally, in
[RW2] they extended this result, showing that with high probability all r-regular graphs (r ≥ 3) have a hamilton
cycle.

Robinson and Wormald were able to prove their result because much of the variance in the number of hamilton
cycles (and of matchings) in r-regular graphs is between groups of graphs with different numbers of small cycles.
Within each group, the variance is smaller. It may be that in the stable marriage problem we could condition on
some property P of the preference lists, and that the variance of E[Sn | P] will be asymptotically negligible by
comparison with n2 ln2 n. One candidate for this property would be the number of stable sub-matchings. Define
a sub-matching of size k to be a matching of two size k subsets of men and women. A sub-matching of men
i1, . . . , ik and women j1, . . . , jk is stable if it is not blocked by any pair (mit , wjs) (t, s ∈ [k]). We could condition
on sk :=the maximum number of sub-matchings, and we might find that

VAR[ E[Sn | sk] ] ≤ f(k)E[Sn]2, f(k) ↓ 0, k →∞.

At the present, however, it is not clear how we might estimate the variance of E[Sn | sk].
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Another approach is based on techniques of Achlioptas, Moore and Peres, see [AM] and [AP]. This approach
would involve giving different weights to different matchings. With IA denoting the indicator of the event A, we
have

Sn :=
∑
M

I{M is stable},

where the above sum is over all distinct matchings. Perhaps we could assign to each matching a weight w(M) ≤ 1.
Then we could consider

Wn :=
∑
M

w(M)I{M is stable} ≤ Sn.

It may be possible to find a function εn that goes to zero slowly such that

E [Wn] ∼ εnn lnn, E
[
W2
n

]
∼ E [Wn]2 .

Then with high probability Wn would be on the order of εnn lnn, and Sn ≥ Wn would be of at least that order
(with high probability). The challenge is choosing an appropriate weighting scheme, and at the present it is not
clear what that scheme might be. Thus a better estimate of the likely value of Sn, possibly using the methods
discussed above, remains an open problem.

3. Locality Results for the Prüfer code

Background

A genetic algorithm typically requires: 1) a mathematical structure which constitutes a possible solution
to the problem we are attempting to solve (a genotype), 2) a “fitness function” which evaluates how well the
genotype solves the problem, 3) a method for selecting an initial population of genotypes, and 4) a method of
generating new genotypes from the current population.

A tree is an object frequently represented, with a tree on n labeled vertices having as its genotype a length
n− 2 string on the letters [n] := {1, 2, . . . , n} . Such a representation is advantageous because it is then easy to
choose members of an initial population uniformly at random from among all trees. One widely known method
for encoding a tree is the Prüfer code. Let us describe the process of encoding a tree as a string of the type
described above (we will henceforth refer to such strings as “P -strings”).

If we are given a tree T , we encode T as a P -string as follows: at step i (1 ≤ i ≤ n − 2) of the encoding
process, the lowest number leaf is removed, and it’s neighbor is recorded as pi, the ith element of the P -string

P = (p1, . . . , pn−2), pi ∈ [n], (1 ≤ i ≤ n− 2).

Avoiding a discussion of fitness functions (which are problem specific), we turn to methods for generating new
populations. A typical genetic algorithm will involve some method of “mating” two highly fit genotypes (called
recombination), and a method for making small changes in the genotype (called mutation). Ideally, the mutation
operation will help a fit genotype move toward a local optimum, while the recombination operation will ensure
that all local optima are explored, resulting in the discovery of a globally optimal solution. We want mutation
to be a small change in the genotype which results in a small change in the possible solution [Ro].

A genotype representation is said to have high locality if small changes in the representation correspond to
small changes in the represented object. For example, we might hope that changing one entry of a P -string
results in a change of one edge of the represented tree (at least most of the time). To be more precise, let us
introduce notation for the number of edges in one tree which are not in the other:

∆ = ∆(n) = ∆(n)(T, T ∗) := n− 1− |E(T ) ∩ E(T ∗)|,

where E(T ) is the edge set of tree T .
As a mutation in a P -string is the change of exactly one element of the P -string, we denote the set of all

ordered pairs of P-strings differing in exactly one coordinate (the mutation space) by M, and by Mµ we mean
the subset of the mutation space in which the P-strings differ in the µ th coordinate:

M =
n−2⋃
1=µ

Mµ, Mµ :=
{

(P, P ∗) : pi = p∗i for i 6= µ, and pµ 6= p∗µ
}
,
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where
P = (p1, . . . , pn−2), P ∗ = (p∗1, . . . , p

∗
n−2).

We choose a pair (P, P ∗) ∈M uniformly at random, and the random variable ∆ measures the distance between
the trees corresponding to (P, P ∗). In order to say that the Prüfer code has high locality, we might require that

lim
n→∞

P
(

∆(n) = 1
)

= 1,

so that for large enough trees, it is highly likely that a mutation in the P -string results in a change of exactly
one edge of the represented tree. Unfortunately, the experience of programmers suggested that the Prüfer code
did not have high locality [GJRR].

Using P ({event}|◦) to denote conditional probability, we will represent the event (P, P ∗) ∈Mµ by µ, as in

P ({event} |µ) := P ({event} | (P, P ∗) ∈Mµ) .

Computer assisted experiments conducted by Thompson (see [Th1] page 195-196) for trees with a vertex size as
large as n = 100 led him to conjecture that:

lim
n→∞

P
(

∆(n) = 1
)

=
1
3
, (4)

and that if µ/n→ α, then
lim
n→∞

P
(

∆(n) = 1
∣∣µ) = (1− α)2. (5)

In a recent paper [PaS1], Paulden and Smith used combinatorial and numerical methods to develop conjectures
about the exact value of P (∆ = ` |µ) for ` = 1, 2, and about the generic form that P (∆ = ` |µ) would take for
` > 2. These conjectures imply (4)-(5), but so far they have not been proved.

Results

In [Le], the author shows via a probabilistic method that (4)-(5) are indeed correct – in particular that

P
(

∆(n) = 1
∣∣µ) = (1− µ/n)2 +O

(
n−1/3 ln2 n

)
, (6)

and that
P
(

∆(n) = `
∣∣µ) = O

(
n−1/3 ln2 n

)
, (` > 1). (7)

Of course (6) implies (4), because
∫ 1

0
(1− α)2 dα = 1/3.

The proof makes use of a decoding algorithm that reads the P -string from back to front, constructing a
nested sequence of subtrees of the tree represented by the P -string. Applying the principle of deferred decisions,
we find an event E occurring at step µ which implies the event ∆ = 1. We then show the the event ∆ = 1 is the
union of E and several unlikely events, and estimate the probability of E to obtain (6)-(7).

Future research

The results above suggest that the Prüfer code is indeed a poor tree representation for genetic algorithms.
There are, however, several other representations whose locality is currently being studied, and which seem more
promising [PaS2], [PaS3]. Looking beyond tree representations, genetic and evolutionary algorithms seem like
a fruitful area for probabilistic research. In the case of string representations, we found it easy to choose an
initial population uniformly at random. But for other genotypes, a simple algorithm may not exist for uniformly
random selection. Further, a uniformly random selection may not always be the best choice, for such a choice
may lead the algorithm toward a solution that is locally, but not globally, optimal. Of course this depends on the
problem in question. Additionally, questions of locality will arise with most genotypes, and probability theory
will likely play a role in answering them. Thus for the present, the field of genetic and evolutionary algorithms
presents an excellent area for those interested in combinatorial probability.
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[CKSS] M. Cho, Kim, S. Seo, and H Shin, “Colored Prüfer codes for k-edge colored trees,” The Electronic
Journal of Combinatorics, vol. 10, 2004.

[GS] D. Gale, L. S. Shapley, College Admissions and the Stability of Marriage, American Mathematical Monthly
69 (1962) pp. 9–15.

[GJRR] J. Gottlieb, B. Julstrom, G. Raidl, F. Rothlauf. “Prüfer numbers and genetic algorithms: A lesson how
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