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Let ai, bi, i = 0, 1, 2, . . . be drawn uniformly and independently from the unit interval, and let t be
a fixed real number. Let a site (i, j) ∈ N

2 be open if ai + bj � t, and closed otherwise. We obtain
a simple, exact expression for the probability Θ(t) that there is an infinite path (oriented or not) of
open sites, containing the origin. Θ(t) is continuous and has continuous first derivative except at
the critical point (t = 1), near which it has critical exponent (3 −

√
5)/2.

1. Introduction

Independent percolation, in which vertices (‘sites’) or edges (‘bonds’) of a graph are destroyed
randomly and independently, was introduced in the 1950s by Broadbent and Hammersley [4] as a
model of porous material. Since then, it has been the object of much study (see, e.g., the books by
Grimmett [9] and by Bollobás and Riordan [2]). Many important questions remain open, among
them the following: What is the probability that there is an open path to infinity from the origin,
when sites of the plane grid are open independently with probability p? In particular, how does
this quantity behave when it first becomes positive?

In coordinate percolation, a newer and less studied variation, the life or death of a site (or
bond) is determined by independent events associated with the site’s coordinates. Typically,
coordinate percolation arises from scheduling problems, in contrast to the physical motivation
for independent percolation.

In the ‘collision’ form of coordinate percolation, a uniform, independent random integer
between 1 and k is assigned to each integer point on the x- and y-axes, and sites are closed
if they inherit the same value from both coordinates. The resulting configuration looks quite
different from what one would get from independent closures; this fact was used by Diaconis and
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Freedman [6] in providing a counter-example to the ‘Julesz Conjecture’, which asked whether the
human eye can distinguish random textures that agree in their first- and second-order statistics.

This form arose again in a conjecture of Winkler reported in [5], to the effect that with positive
probability one can ‘schedule’ two random walks on the alphabet {1, . . . , k} in such a way that
they never collide. Independent work in [1] and [12] established that unoriented percolation takes
place with positive probability if and only if k � 4; in [7] Peter Gács showed that proving the
same for oriented percolation, which is what the conjecture called for, is in a sense fundamentally
difficult.

Various types of coordinate bond percolation were studied by Gács [8] and very recently by
Gábor Pete [11], the latter in the form of ‘corner percolation’.

In the form of coordinate percolation considered here, random reals ai, bi, i = 0, 1, 2, . . . ,
independently drawn from some continuous distribution, are assigned to integer points on the
x- and y-axes, in the non-negative quadrant of the plane grid. A threshold t ∈ R is chosen, and
a site (i, j) ∈ N

2 is declared to be open if ai + bj � t. We wish to determine the probability Θ(t)

that there is an infinite open path containing the origin.
The problem of finding an open path can again be viewed as a scheduling issue. The two

sequences {ai}, {bi} may be thought of as the rate at which some resource is used at successive
stages of two processes; the processes must then be scheduled in parallel so that at no time do they
use this resource at a greater-than-permissible rate. Suppose, for example, that two sequences
of programs must be set up to run in parallel on a computer. Each program has some random
(but known) RAM requirement; the program sequences must be scheduled so that at no time
does the sum of the RAM requirements for two simultaneous programs exceed the computer’s
capacity.

A more pressing motivation, and indeed the primary one for the authors, was to capture a
Θ-function and so get a precise look at a phase transition. One reason for believing that the
above form of percolation might be more tractable than independent percolation stems from the
property that in the former, the oriented and unoriented cases are indistinguishable – that is, if
there is an infinite open path from the origin then there is one that moves only north and east.
This follows from a much more general theorem of Brightwell and Winkler [3], but is also an
easy consequence of the correctness of the ‘percolation algorithm’ presented below.

Moreover, the particular choice of distribution from which the ai and bi will be drawn permits
a combinatorial analysis, and indeed it is this which ultimately results in an exact expression for
Θ. This result and more can be found also in the first author’s PhD thesis [10].

2. An asymmetric percolation algorithm

Finding an open path from the origin to infinity – that is, ‘percolating’ in a given configuration –
is in some sense (not made precise here) algorithmically much easier in our setting than in the
independent case. Essentially, it is a matter of finding ‘good’ lines, that is, columns x = i with
low ai or rows y = j with low bj , then looking along these lines for even lower values.

The process is begun by checking that the origin is open, then setting i = i′ = j = 0. Suppose
at some stage a token has found its way along an open, oriented path to a site (i, j) with the
following properties.
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(1) Values a0, . . . , ai′ have been inspected, where i′ is some index with i′ � i, and ai is the least of
these values.

(2) Values b0, . . . , bj have been inspected, and bj is the least of those.

In general, we say in this situation that we are ‘in state A’ and we proceed as follows. Values
ai′+1, ai′+2, etc. are inspected until some ai′′ is found that is either less than ai or greater than
t − bj . In the former case, we move the token to (i′′, j) and repeat, with i and i′ both replaced
by i′′.

In the latter case the site (i′′, j) is closed so we must repeatedly increment j, inspecting
successive values of bj with the idea of finding a row which will enable us to get past the bad
column x = i′′. We call this procedure ‘state C’. If a value bj ′ � t − ai′′ , is found, we move the
token to (i, j ′), replace i′ by i′′ and return to state A (with j now set to j ′).

If we first hit a closed site, i.e., a value bj ′ > t − ai, we move to state D (for ‘dead’) and
terminate the algorithm. In that case we cannot percolate, since all the sites on the north and east
borders of the rectangle with corners at (0, 0), (i′′, 0), (i′′, j ′), (0, j ′) are closed. We thus have the
following result.

Lemma 2.1. Either there is an infinite, open, oriented path from the origin or the above al-
gorithm terminates in state D, in which case there is no infinite open path, oriented or otherwise,
containing the origin.

The algorithm is diagrammed in Figure 1. Its inherent asymmetry with respect to the axes,
which makes it tend to spend more time in state A than in state C and terminate only from the
latter, may at first seem mysterious. Why not just go from state A to a state B which mimics A in
the y-direction? The difficulty is that we have already inspected some columns to the east, and
for purposes of later analysis we want always to be looking at fresh, independent ai and bj .

The percolation model and algorithm both generalize naturally to higher dimension.

3. Basics of the [0,1] case

Henceforth we shall concentrate on the case where the distribution from which the ai and bi are
drawn is uniform on the unit interval. This provides some attractive additional features, the most
important of which is that it enables a combinatorial analysis of the percolation algorithm. The
combinatorial analysis in turn stems from a connection to the ‘worm order’ on sequences, which
was introduced in [3] and will be defined later.

The main result is as follows.

Theorem 3.1. Let ai, bi, i = 0, 1, 2, . . . be drawn uniformly and independently from the unit
interval, with (i, j) ∈ N

2 declared open if and only if ai + bj � t. Then the probability Θ(t) that
there is an infinite open path containing the origin is given by

Θ(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < 1,
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√
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) 3−
√
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√
5−5
10

(
t − 1

) 3+
√

5
2 if 1 � t � 2,

1 if t > 2.
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Figure 1. A percolation algorithm.

Corollary 3.2. The critical exponent

β := lim
t↓1

log Θ(t)

log(t − 1)

is given by

β =
3 −

√
5

2
.

Proof of theorem. Let us begin with some elementary observations. If the threshold t exceeds
1, then there are entire open lines where ai � t − 1 or bj � t − 1; since the x- or y-axis may be
among these it is clear that we percolate with positive probability.

On the other hand, if t < 1 there are closed lines where ai > 1 − t or bj > 1 − t, and one from
each will box off the origin, so Θ(t) = 0 for t < 1. Thus the critical point is at t = 1.
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In running our percolation algorithm in the t > 1 case, our objective is to survive until we hit an
open line, which will occur when we inspect our (n + 1)st value for some random geometrically
distributed n. At the moment when we do find an ai or bj below t − 1, the corresponding line has
been reached and percolation achieved. Thus,

Θ(t) =

∞∑
n=0

(2 − t)n(t − 1)Qn(t),

where Qn(t) is the probability that the algorithm escapes death for n steps, given that all the
values it inspects lie between t − 1 and 1. Note that for all t, Q0(t) = 1 (vacuously), Q1(t) = 1,
and Q2(t) = 1

2
, reflecting the 1

2
probability that the origin is open given that neither the line x = 0

nor the line y = 0 is completely open. In fact, we will see that Qn(t) never depends on t.
First we must convert the openness criterion to one involving order, instead of summation. Fix

t > 0, and for each j � 0, let

cj =

{
t − bj if bj > t − 1, and

bj otherwise.

Then the cj are independent and uniform in [0, 1], just as the bj were, and the site (i, j) is open
exactly when either cj � t − 1, or ai � cj .

Suppose a0, . . . , ai and c0, . . . , cj are all greater than t − 1. Then all are independent and uni-
form in (t − 1, 1] and the configuration of open and closed sites in {0, 1, . . . , i} × {0, 1, . . . , j} is
determined only by the order in which these i + j + 2 values fall as real numbers. Since this
order is (with probability 1) strict and uniformly random, Qn = Qn(t) is a combinatorial quantity
(indeed, an integer multiple of 1/n!) which does not depend on t.

Our objective now is to calculate Qn, using a combinatorial version of the algorithm of Fig-
ure 1, and ultimately obtain an expression for Θ(t). In determining Qn we can and will assume
that t = 1, so that (i, j) is open if and only if ai � cj .

If the site (i, j) is reachable by oriented open path from the origin, the sequence a0, . . . , ai is
said to precede c0, . . . , cj in the ‘worm order’, which is easily seen to be transitive and reflexive.
If two sequences are defined to be equivalent when each precedes the other in this pre-order, then
each equivalence class will contain a unique shortest word, called a ‘worm’; see [3, 10] for more
information about worms.

The computation of Qn amounts to determining the probability that one random sequence
precedes another in the worm order. For the infinite random sequences under consideration here,
the worm is an alternating subsequence of new ‘records’, and it is these which our percolation
algorithm compares. However, we will run the algorithm without observing any actual values of
the ai and cj , but only their order as real numbers.

Thus, the algorithm now proceeds as follows. We begin with an order consisting only of the
single point a0. At the kth step we examine the kth new value; thus it is in the first two steps that
we verify that a0 < c0 and conclude that the origin is open. In any state, prior to the kth step the
information on hand consists only of indices i′ and j (with i′ + j + 2 = k − 1) and an ordering
σ = (σ1 < σ2 < · · · < σk−1) of the k − 1 values {a0, . . . , ai′ } ∪ {c0, . . . , cj}. In states A and C,
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Figure 2. A discrete percolation algorithm.

this ordering must have ai = σ1 for some index i � i′ and cj = σk−1, representing the fact that
x = i is the best (lowest-valued) column and y = j the best (highest-valued) row seen so far.

In state A, the next value to be considered, namely ai+1, is now equally likely to be found in
any of the k slots in the order. Successive a’s are inserted into σ until we hit an ai′′ at the top of
the order. When this value is found, we move to state C.

In state C, we insert cj+1, cj+2, . . . into the order σ, looking for a cj ′ to appear on the bottom
or top. The former puts us in state D, the latter back into state A. See Figure 2 for a flowchart of
this now-discrete algorithm.

The discrete algorithm spawns a simple time-dependent Markov chain. At time k > 2, the
transition probabilities among the states A, C, and D (taken in that order) are given by the matrix

Mk =

⎡
⎣1 − 1/k 1/k 0

1/k 1 − 2/k 1/k

0 0 1

⎤
⎦.
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Let �pk be the state probability distribution after stage k, so that �pk = �pk−1Mk. We may consider
that the process begins at time k = 1 in state A, that is, �p0 = (1, 0, 0). Then �p1 = �p0M1 = (0, 1, 0)

and �p2 = �p1M2 = ( 1
2
, 0, 1

2
), reflecting the 1

2
probability that the origin is open (so Q2 = 1

2
).

The eigenvalues for Mk are λk = 1 + 1
k
(ϕ − 2), λ̄k = 1 + 1

k
(ϕ̄ − 2), and 1, where ϕ = 1+

√
5

2

is the golden ratio and ϕ̄ = 1 − ϕ. Conveniently, the corresponding eigenvectors do not depend
on k; they are, respectively,�u = (ϕ, 1, 1

ϕ−2
),�v = (ϕ̄, 1, 1

ϕ̄−2
), and �w = (0, 0, 1).

Define

Λn =

n∏
k=1

λk = (−1)n
(
ϕ̄

n

)
,

Λ̄n =

n∏
k=1

λ̄i = (−1)n
(
ϕ

n

)
,

where
(
r
n

)
=

∏n
k=1

r−k+1
k

is the generalized binomial coefficient. Noting that

�p0 =
1√
5
�u − 1√

5
�v + �w,

we see that

�pn =
1√
5
Λn�u − 1√

5
Λ̄n�v + �w

for all n, including n = 0.
The probability Qn that we are not in state D at time n, and thus in state A or C, is the sum of

the first two coordinates of the vector�pk. Therefore

Qn = (ϕ + 1)
1√
5
Λk − (ϕ̄ + 1)

1√
5
Λ̄k

=
(−1)n√

5

(
ϕ̄

n

)
(ϕ + 1) − (−1)n√

5

(
ϕ

n

)
(ϕ̄ + 1)

for all n � 0.
Recalling our formula for the probability of percolation, we have

Θ(t) =

∞∑
n=0

(2 − t)n(t − 1)Qn(t)

=
t − 1√

5

(
(ϕ + 1)

∞∑
n=0

(−1)n
(
ϕ̄

n

)
(2 − t)n − (ϕ̄ + 1)
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n=0

(−1)n
(
ϕ

n

)
(2 − t)n

)

=
t − 1√

5

(
(ϕ + 1)

∞∑
n=0

(
ϕ̄

n

)
(t − 2)n1ϕ̄−n − (ϕ̄ + 1)

∞∑
n=0

(
ϕ

n

)
(t − 2)n1ϕ−n

)

=
t − 1√

5

(
(ϕ + 1)((t − 2) + 1)ϕ̄ − (ϕ̄ + 1)((t − 2) + 1)ϕ

)
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Figure 3. Probability of coordinate percolation for thresholds t between 0 and 3.

(via the generalized binomial theorem)

=
ϕ + 1√

5
(t − 1)1+ϕ̄ − ϕ̄ + 1√

5
(t − 1)1+ϕ

=
5 + 3

√
5

10

(
t − 1

) 3−
√

5
2 − 3

√
5 − 5

10

(
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) 3+
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5
2 ,

as claimed. Notice that this expression does take the value 0 at the critical point t = 1, rising
there with the claimed critical exponent (3 −

√
5)/2 ∼ 0.381966011. At t = 2, the expression is

equal to 1 with (left) derivative 0; of course Θ(t) = 1 for all t � 2 since, in that case, all grid
points are open. Thus Θ is continuous, has continuous first derivative except at t = 1, and is
analytic except at t = 1 and t = 2. A plot of Θ, compliments of MathematicaTM, is shown in
Figure 3.

4. Concluding comments

The general shape, continuity, and first-derivative behaviour of Θ(t) is consistent with what
is known and suspected about the function Θip(p), describing the probability of independent
percolation (oriented or not) on the plane grid – except that in the latter case, the critical exponent
is believed to be rational. There is of course no reason to draw any inferences regarding Θip(p)

from the results above; coordinate percolation is simply not the same process as independent
percolation.

Coordinate percolation does have some independent interest, however, and we hope that the
results here will inspire others to study other, and more general, versions. The analytic ‘percol-
ation algorithm’ described above generalizes to higher dimensions, but its combinatorial cousin
does not (as far as we know). Versions on other lattices even on the plane, such as the triangular
lattice (in which sites will live or die based on values given to the three lines crossing there), may
behave quite differently.

Acknowledgements

The authors have greatly benefited from conversations with Graham Brightwell (London School
of Economics) and Dartmouth colleague Peter Doyle.



On a Form of Coordinate Percolation 845

References

[1] Balister, P. N., Bollobás, B. and Stacey, A. M. (2000) Dependent percolation in two dimensions.
Probab. Theory Rel. Fields 117 495–513.

[2] Bollobás, B. and Riordan, O. (2006) Percolation, Cambridge University Press.
[3] Brightwell, G. R. and Winkler, P. (2007) Submodular percolation. Preprint.
[4] Broadbent, S. R. and Hammersley, J. M. (1957) Percolation processes I: Crystals and mazes. Proc.

Cambridge Philos. Soc. 53 629–641.
[5] Coppersmith, D., Tetali, P. and Winkler, P. (1993) Collisions among random walks on a graph. SIAM

J. Discrete Math. 6 363–374.
[6] Diaconis, P. and Freedman, D. (1981) On the statistics of vision: The Julesz conjecture. J. Math. Psych.

24 112–138.
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