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ABSTRACT 

The Army’s myriad social networks connect not only 

humans and soldiers, but also machines, computers, and robots. 

And most of the social/biological/physical/informational 

connections in these networks are in the form of cooperation – 

entities working together to achieve a common goal. So how 

does this complex web of relationships, collaborations, and 

communities of diverse entities work? This paper introduces a 

new framework in which measures of cooperation can be 

precisely defined. We demonstrate how the framework can be 

applied to social networks, and examine the dynamic networks 

arising in the case of pursuit and evasion games. Finally, we 

relate the concepts of competitive and altruistic cooperation to 

trust and the nature of communication within a team. 

1. INTRODUCTION 

The Army’s myriad social networks connect 

operational battlespace entities (not only humans and 

soldiers, but also machines, computers, and robots). And 

many of the social/biological/physical/informational 

connections in these networks are in the form of 

cooperation – entities working together to achieve a 

common mission or goal.  A major component of this net-

centric warfare is to “interact and collaborate in the 

virtual (informational) domain” (Alberts et. al., 1999). At 

a basic level, such cooperation can be traced to a 

fundamental synchronization of entities, which is also 

being studied mathematically (Strogatz, 2003). At the 

highest levels of application, businesses are embracing 

net-centric and collaboration concepts with the hope of 

inventing “organizations for the twenty-first century that 

will not only be more economically productive but also 

more humanly desirable”  (Malone et al., 2003; Tapscott 

and Williams, 2006). 

How does this complex web of connections, 

relationships, collaborations, and communities of diverse 

entities work? What are the most useful and appropriate 

metrics for a cooperative network and its social and 

informational value? What is the essence of cooperation 

and what makes a cooperative system, a collaborative 

network, or a flat organization effective? What forms of 

communication and operations within a network enhance 

cooperation? How do we measure trust and selflessness? 

Can our network structures, processes, tools, connections, 

communications, and languages enhance cooperation, 

achieve synergy, and optimize our networks? 

This paper reveals the role of mathematics as a 

valuable tool to study these questions about networks and 

cooperative systems and provides the first steps in a 

theoretical formulation of the fundamental principles, 

relationships, and metrics of these phenomena. The 

unifying concept throughout the paper is a subset team 

game, a framework that assumes the existence of a 

function describing how each subset of players within a 

team value the possible outcomes of a simulation. This 

concept is a slight generalization of ideas in classical 

cooperative game theory, and can be used to measure an 

altruistic contribution and a competitive contribution for 

each subset of players. 

We demonstrate several examples in which this 

framework can be applied to draw conclusions regarding 

the nature of cooperation within a scenario, focusing 

primarily on network science and pursuit and evasion 

games. In particular, we discuss how one can decide 

which behaviors or algorithms are the most altruistic, how 

to tell whether a teammate is trustworthy, and how one 

can determine whether a “cooperative system” (or 

network or organization) is truly cooperative in a 

mathematical sense. 
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2. A FRAMEWORK FOR COOPERATION 

Currently, cooperation is not well-understood from a 

mathematical point-of-view. The most classical 

mathematical construct in this area is found in John von 

Neumann’s “cooperative game theory”, introduced in the 

early 20
th

 century (Neumann, 1928). However, this 

concept applies primarily to a group of entities working 

together for selfish reasons. In contrast, most forms of 

cooperation in social and military networks involve a 

team working together for a common good. In reality, von 

Neumann’s theory only applies to a kind of cooperation 

that is mostly economic in nature. 

In this section, we describe a framework that unifies 

von Neumann’s form of cooperation, which we call 

selfish or competitive cooperation, with a more team-

oriented or altruistic cooperation. This framework uses 

the notion of a subset team game, meaning a situation or 

scenario in which the value of a given outcome, as 

perceived by a certain team, can be measured. Moreover, 

each subset of players on the team may have a different 

perception of the value of an outcome. 

Within this broadly applicable framework, there exist 

clearly defined metrics for both selfish cooperation and 

altruistic cooperation. In later sections, we will exhibit 

several sample applications of this cooperation 

framework, and discuss how it aids an understanding of 

communications, trust, and altruism within social 

networks.  

2.1. Brief History of Mathematical Cooperation 

Our framework is an extension of von Neumann’s 

cooperative game theory, which analyzes what we call 

competitive cooperation. The oligopoly is one real-life 

example. If a market is dominated by a small number of 

firms, they may, without directly communicating, take 

actions which improve their own earnings. They may also 

directly cooperate, colluding to fix high prices for 

example. In such a situation, no firm actually acts 

altruistically, but rather cooperates solely to advance its 

own agenda. Cooperative game theory was developed to 

understand and analyze the economics of such situations, 

providing a means to compensate players based on their 

marginal contributions to a larger group. 

A cooperative game with transferable utility consists 

of a situation involving (i) a set of players T called the 

coalition, and (ii) a payoff function (or utility function)  

Rv T2:  associating a particular value or utility to 

each subset of the coalition (Burger, 1963; Osborne, 

2003). Note that 
T2  is the collection of all subsets of T. 

In these games, the marginal contribution of a player 

A to the coalition T is defined to be 

 )\()()( ASvSvSmA . (1) 

This is interpreted as the additional value of the outcome, 

through the utility function, when the players in A 

participate. The term “transferable” indicates that all 

players enjoy the same payoff. In this classical theory, the 

marginal contribution can be used to determine 

appropriate compensations to each player in such a 

coalition. 

A related notion is the cooperative game with non-

transferable utility, which involves (i) a coalition of 

players T, (ii) a set X of possible outcomes, (iii) a 

consequence function XV T2:  mapping each subset 

TS  to an outcome, and (iv) a payoff function 

RXuA :  defined for each player TA  associating 

a value to each possible outcome (Burger, 1963; Osborne, 

2003). 

2.2. The Framework: Subset Team Games 

Unfortunately, this previous theory has limits and 

cannot explain many forms of cooperation. The growth of 

the user-written encyclopedia Wikipedia provides one 

example of unexplained cooperation. Thousands of 

contributors made this the largest encyclopedia in the 

world within just a few years, despite little recognition for 

their work and no monetary gain. In addition, human 

subjects often cooperate in situations where it is not 

rational to do so, and there is little reason to work with 

another player. In the game of Prisoner’s Dilemma, two 

players are pitted against each other in a situation where 

the rational choice, in the sense of Nash equilibrium, is to 

turn on the other player. However, when the game is 

simulated in real life most human beings do not follow the 

rules of economics. Rather, they frequently choose to 

cooperate (Axelrod, 1984, 1999) and often people are 

legitimately concerned with both the organization’s 

effectiveness and other people’s payoffs.  (Taylor, 1987) 

Additionally, many social networks are driven more 

by altruistic cooperation than by competitive cooperation. 

Within sports teams, the best players often subject their 

own interests to that of the team. The same definitely can 

be said of Army organizations. In short, cooperative game 

theory cannot adequately explain many instances of 

cooperation. 

We can, however, extend the existing theory to 

capture both altruistic and competitive cooperation. The 

idea is to generalize the notion of cooperative games so 



3 

 

that the value of an outcome can be assessed not just for 

teams or individual players, but also for any subset of a 

team. The precise definition follows. 

Definition. A subset team game consists of a 

situation involving (i) a coalition of players T, (ii) a set X 

of possible outcomes, (iii) a consequence function 

XV T2:  mapping each subset TS  to an 

outcome, and (iv) a payoff or utility function 

RXuS :  for each subset TS  taking an outcome 

to a real number representing the value. 

Note that, for a given subset TS , the term  

)(SV  is interpreted as the outcome produced when only 

the players in S participate in the game. 

Given subsets TBA , define the subset payoff 

function ))(()( BVuBu AA . This represents the 

payoff due to the players in A, which we call the assessing 

subset, in the outcome produced when only the players in 

B, called the coalition participate. Fig. 1. Illustrates the 

roles of sets A, B, and B
c
 in this scenario. 

 

Figure 1. The subset payoff function )(BuA
 

represents the value perceived by the players in A 

when the players in B participate.  

We would generally like to limit our discussion to 

situations where more players leads to a more 

“successful” outcome. In other words, (i) adding more 

players to the game should never reduce the value of the 

outcome, and (ii) the value of an outcome perceived by a 

group of players should not be smaller than the value as 

perceived by a subset of that group. This idea is illustrated 

in Fig. 2, and motivates the following definitions: 

Definition. A subset team game is fully-cooperative 

if )()( DuCu AA  whenever TDCA . A 

subset team game is cohesive if )()( CuCu BA   

whenever TCBA . 

 

Figure 2. The fully-cooperative and cohesive 

conditions describe situations in which the value of 

an outcome increases when either more players 

participate or more players assess (respectively).  

2.3. Metrics of Cooperation 

We can define metrics of competitive and altruistic 

cooperation within this framework, provided a game is 

both cohesive and fully-cooperative. The metrics 

demonstrate how the classical marginal contribution can 

be subdivided into a “competitive contribution” and an 

“altruistic contribution”. 

Definition. Given a payoff function )(Bu A
 in a 

subset team game, the total marginal contribution of a 

subset A to the team T is 

 )()()( C

AT AuTuAm C . (2) 

If the game is both cohesive and fully-cooperative, then 

the competitive contribution of A is 

 )()()( TuTuAc CAT  (3) 

and the altruistic contribution of A is 

 )()()( C

AA
AuTuAa CC . (4) 

These metrics are the centerpiece of the framework, 

since they permit an analysis of the types of contribution 

made by any subset of players. Note that the altruistic 

term disregards the perception of value by any player in 

A. Note also that the total marginal contribution 

decomposes as 

 )()()( AaAcAm . (5) 

Fig. 3 illustrates this breakdown. 

)(Cu A
 

)(CuB
 

)(DuA
 fully-cooperative 

cohesive 

more players 

assess 

more players 

participate 

 

A 
(participate & 

assess) 

B 
(participate 

only) 

B
c
 

(do not 

participate) 
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Figure 3. The altruistic, competitive, and total 

marginal contributions of a subset.  

3. USING THE FRAMEWORK 

In the onslaught of equations in the previous section, 

it is possible to lose sight of the general applicability and 

adaptability of this new framework. In this section, we 

demonstrate how the framework can be used in practice. 

3.1. Setting up and Utilizing the Framework 

The steps required to set up and analyze a scenario or 

simulation within this framework are: 

1. Assume we have a game with a particular set of 

players T. 

2. Determine how “value” should be interpreted within 

the scenario. Choose something that makes sense for 

individuals as well as subsets of players. 

3. Construct the corresponding payoff function )(Bu A
, 

which describes how each subset of players A 

assesses the value of an outcome in which only the 

players in B participate. 

4. Given a particular player or subset of players A to be 

analyzed, use the payoff function to compute 

)( c

A
Au c , )(Tu cA

, and )(TuT . 

5. Use these values to compute the competitive 

contribution (eq. 3) and altruistic contribution (eq. 4) 

of a particular player or subset of interest. 

6. Adjust the behavior of players based on these metrics. 

One must be careful in choosing the payoff function. 

The assignment of value as perceived by a subset of a 

team can be a somewhat arbitrary process. If not all 

outcomes are known, it may be a considerable challenge 

or may not even be possible. Moreover, the cohesive and 

fully-cooperative conditions are often not met in practice. 

As is always the case, the mathematics is not a perfect 

model for reality, yet nevertheless offers substantial 

insights. The true power of this framework lies in the 

ability to conduct analysis relating the competitive and 

altruistic measures back to the issues of trust and 

communication. 

3.2. Example: Wikipedia 

Our first example is a qualitative analysis of a user’s 

contribution to Wikipedia. The value of this website to 

mankind is immense, yet it depends fundamentally upon 

the selfless actions of tens of thousands of contributors. 

First, let the “value” represent the average value of 

the information on Wikipedia to an assessing subset. 

Consider a single individual A that contributes to the 

website. Then )( c

A
Au c  represents the value of the 

encyclopedia without the contributions of A. The term 

)(Tu cA
 represents the value (to everyone except for A) 

of the encyclopedia with the contributions of A. Finally, 

the term )(TuT  represents the value of the encyclopedia 

with the contributions of A, as perceived by everyone. 

While all three terms should have high values, note 

that the competitive contribution )()( TuTu cAT  is 

highest when the contributions of A contain information 

valuable to A but few others, while the altruistic 

contribution )()( c

AA
AuTu cc  is highest when the 

contribution contains information valuable to nearly 

everyone. Thus, our common-sense interpretation of 

selflessness matches the mathematical notion of altruistic 

cooperation. 

3.3. Example: Basketball 

Our second example involves a basketball team. We 

define the “value” of a completed game to a subset of 

players to be the total points per game (ppg) scored by 

those players. Suppose that a team involves seven players 

whose scoring is as shown in Table 1. 

Table 1. Hypothetical basketball statistics. 

Player Player’s PPG 
Points scored when 

the player is absent 

A 25 84 

B 20 90 

C 20 80 

D 15 70 

E 10 70 

F 10 99 

G 10 90 

Total 110  

)(Tu cA
: all participate, 

only Ac assesses 

altruistic 

contribution )( c

A
Au c

: only 

Ac participates, 

only Ac assesses 

competitive 

contribution 

)(TuT
: all participate, 

all assess 

total 

marginal 

contribution 
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Note that the average score of the team is 110, which 

is the sum of each player’s PPG. Player A’s selfish 

contribution is simply his/her PPG, or 25. Player A’s 

altruistic contribution is 184)25110( , which is 

the difference between the number of points scored by the 

other players when A does and does not participate. Thus, 

player A could be said to be a very “selfish” player. 

Player E, on the other hand, makes a selfish 

contribution of 10 and an altruistic contribution of 30. So 

this player is a highly altruistic player. If all the players 

are compared, players D and E both make the highest 

total contribution to the team’s success, since without 

them the team scored on average 40 points less.  

Availability of new sports statistics (e.g., plus/minus 

statistics in hockey and basketball) are making the 

thorough analysis of player’s contributions and their 

cooperative nature more transparent to coaches and fans. 

3.4.  Limitations 

In practice, it can be difficult to find situations in 

which the cohesive and fully-cooperative conditions are 

met. However, even in such situations the metrics as 

defined above provide useful information about behaviors 

and algorithms. The pursuit and evasion games discussed 

later provide a more interesting and concrete example of 

this. 

Another difficulty arises in assessing the value of 

multiple outcomes. Frequently, it is difficult to determine 

the value of all possible outcomes of a scenario or 

simulation. A lot of data is required to assess the various 

metrics of cooperation within our framework. For 

example, the basketball scenario above requires data for 

games that a particular player does not participate. In 

many cases, there are not enough of these games to make 

the results statistically significant. Thus, while the metrics 

from these data may indicate that players may be 

somewhat “selfish” or “altruistic”, the results may be far 

from conclusive. 

4. COOPERATION IN SOCIAL NETWORKS 

One can argue that the essence of social networks is 

cooperation, as even the links between agents in such 

networks usually indicate cooperation of one form or 

another. Networks of all kinds are especially well-suited 

to our framework. Indeed, in this context the 

mathematical language of graph theory becomes an 

abundant source of payoff functions for such networks. 

Note that the vertices of a social network are 

themselves a subset of players, offering the first step in 

constructing the subset team game framework. Moreover, 

many graph invariants satisfy the conditions required to 

construct a value function that is both cohesive and fully-

cooperative. The remainder of this situation demonstrates 

how even the simplest graph invariants can be useful 

within this framework. 

Let ),( EVG  be a graph with vertex set V and 

edge set E. Since the vertices represent the “players” in 

this case, the framework requires an “outcome” when 

only a subset VB  participates. We let the outcome be 

the subgraph BG  induced by the vertices in B. Then, any 

function defined for all subsets of a graph will induce a 

“payoff function” of the form )(BfA
.  

For example, suppose that )(BfA
 represents the 

maximum size of a connected component of BG  

containing a vertex in A. This very simple and straight-

forward “connecting” function satisfies both the cohesive 

and semi-cooperative conditions, permitting us to 

measure both the “altruistic” and “competitive” 

contributions of each collection of vertices. 

Fig. 4 demonstrates this calculation for a set of four 

players }4,3,2,1{A . The complement of the set is a 

single vertex }5{ . The size of the component containing 

vertex 5 is 1 in Part (a) and 2 in Part (b) of Fig. 4, so the 

selfless contribution of the set is +1. The size of the 

largest component in the entire graph is 3, so the 

competitive contribution of the set is also +1. 

 

Figure 4. Schematic for finding the marginal 

contributions of vertices }4,3,2,1{  to the network. 

In the example shown in Fig. 5, the contribution of 

node 2 is entirely “selfless” (+3), since it increases the 

maximum component size of the complement by 3. 

 

Figure 5. Schematic for finding the marginal 

contributions of vertex 2 to the overall graph. 
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To see what the numbers above mean, suppose the 

graphs indicate a communications network within an 

organization. In the second situation (Fig. 5), agent 2 

makes a strong altruistic contribution to the organization, 

since without him/her the groups  }3,1{  and }5,4{  cannot 

communicate. Mathematically, this contribution is 

entirely altruistic. The contribution of  }4,3,2,1{A  in 

the first case (Fig. 4) is a mixture of altruistic and 

competitive cooperation since the remaining vertex }5{  is 

not as well-connected as the other vertices. Even this 

simple “connecting” function demonstrates the nature of 

cooperation and its utility. 

5. COOPERATION IN PURSUIT AND 

EVASION GAMES 

In this section, we describe how the framework 

applies to pursuit and evasion games. These seemingly 

simple games provide a “toy model” simulation for 

demonstrating that our metrics of altruistic and 

competitive cooperation can be an effective way to 

evaluate player behaviors. 

A pursuit and evasion game is a game involving a 

team of pursuers and a team of evaders. The objective of 

the pursuers is to “capture” the evaders, while the 

objective of the evaders is to avoid capture (Isaacs, 1965). 

These simple games are played out endlessly on 

battlefields, on playgrounds in the form of tag and 

capture the flag, on the floor of multimillion-dollar 

stadiums in the form of football, on the silver screen in 

the form of car chases, and in the natural world between 

predator and prey. 

There are countless variations of this game. One can 

adjust the number of players and their properties, the 

environment in which the game is played out, even the 

number of teams involved. The goals of the players also 

vary from game to game. It may be that the pursuers need 

to capture all of the opposing team, or they may just need 

to capture a single player. The evaders may be trying to 

reach a particular location or just to run away and hide. 

Mathematical solutions exist for just a few of these 

variations. In any situation with these kinds of 

complexities, no “exact” solution is known (Isaacs, 1965; 

Nahin, 2007). 

5.1. A Java Platform for Analysis of Pursuit and 

Evasion Games 

In order to analyze these games, we developed a Java 

platform capable of simulating a wide variety of pursuit 

and evasion games. The platform enables the user to 

adjust the number of players and goals on each team, as 

well as the starting location, speed, behavior, and other 

characteristics of each individual agent. The number of 

teams can also be adjusted if desired. 

The platform is highly visual and dynamic, allowing 

the user to alter starting positions or other parameters and 

immediately see the impact on the computed paths; the 

computed paths move continuously as the user drags a 

starting position along the screen. Fig. 6 shows a 

screenshot of one simulation. 

 

Figure 6. Paths of players in a two-team pursuit and 

evasion game. 

We also implemented a feature to compute arbitrary 

metrics of success, and the corresponding metrics of 

cooperation. This feature was also dynamic; a user can 

adjust the visibility distance of several players and 

immediately see the impact on the level of altruistic 

cooperation. Finally, the platform also collects statistics 

for large numbers of simulations. 

The highly visual and dynamic nature of the 

platform, coupled with the ability to create highly 

complex scenarios, enabled us to explore a wide variety 

of pursuit-evasion games and quickly gain intuition 

regarding how certain parameters impacted metrics of 

success and cooperation. 

5.2. Initial Results 

Using the Java platform, we applied the framework to 

a simple pursuit and evasion game involving players with 

spatially limited visibility and communications. Each 

player constantly passed information about the positions 

of players within their line-of-sight to other teammates 

within a certain range. Our goal was to assess the 

cooperative value of various behaviors in terms of 

altruism and competiveness. We compared several 

autonomous behaviors, in which no central entity 



7 

 

controlled behavior, with a baseline fully-controlled 

system. The first payoff function used was the average 

distance between players on the two teams. 

Our initial observations in this scenario follow: 

 Control algorithms were the most successful and, in 

the sense of our definitions, the most highly 

cooperative. This is not surprising because the system 

control dictated the cooperation of the system. 

 The most altruistic players were slow-moving, but 

could see and communicate over long distances. 

 The most selfish players were quick, and relied on 

communications from other players. 

To summarize, the numeric data underlying these 

observations matched our expectations of altruism and 

competition.  

The first step in further validating the subset team 

game framework in this context is to choose a better 

payoff function. The average distance is generally not a 

fully-cooperative function, since a subset of players may 

have a smaller average distance than the entire set of 

players. Despite this limitation, the relative values of the 

altruistic and competitive metrics still offered insight into 

the nature of the players’ behaviors. 

5.3. Networks in Pursuit and Evasion Games 

Pursuit and evasion games typically involve highly 

dynamic social networks. The players in the game 

represent the vertices, and edges may represent either two 

players that can see each other or two players that are able 

to communicate with each other.  This gives rise to a 

communications network for each team and a visibility 

graph between the two teams. As time passes, the players 

continually change positions, and so the communications 

and visibility graphs continually change as well. 

A natural question to ask is how the structure of these 

networks can be exploited to design more effective 

algorithms for pursuit and evasion. Can we develop more 

efficient communications and cooperation strategies? 

How does this dynamic network structure inform our 

knowledge of the game? 

6. COMMUNICATION, TRUST, AND 

ALTRUISM 

With the assumption that a system is completely 

autonomous, trust becomes a very important issue. In real 

life, opposing teams in a scenario are almost always made 

up of specialists, that is, players with particular skills 

(speed or maneuverability) or patterns of behavior 

(aggressive or passive). In situations with this variety of 

behaviors or algorithms, trust can play a central role in 

determining the proper way for such teams to work 

together. A high level of trust reduces the need for 

communication among players, freeing up the 

communications infrastructure or cognitive load on each 

player for other things. In this sense, one can view trust as 

a sort of “implied communication” between players. 

Our framework is directly applicable to the issue of 

trust. We assume that player A trusts player B when 

player A has a high confidence that player B will behave 

in a way that benefits the team. This is precisely the 

notion of altruistic cooperation developed earlier. Thus, if 

an appropriate payoff function can be determined, our 

framework can be used to determine which players are 

most deserving of trust. Players with high altruistic 

contributions ought to be given a high level of trust, while 

those with high competitive contributions may not 

deserve much trust. Basketball is a good example here.  A 

“ball hog” that never passes the ball and always takes the 

shot should not be trusted by teammates as much as a 

skilled team player who always passes the ball to the 

player most likely to score. A basketball team consisting 

of players who earn the trust of one another through 

altruistic cooperation often overachieves and succeeds 

despite their individual skills and thereby clearly 

demonstrate the power of this form of cooperation. 

A related notion is predictability, in which one player 

has a high confidence in the behavior of another player 

and can use this information to adjust its own behavior. 

This concept is outside the scope of the current 

cooperative framework, but also comes into play since a 

high level of predictability also reduces the need for 

communications. Further study and extensions to the 

framework may help illuminate this aspect of cooperation 

7. CONCLUSIONS 

The ideas presented in this paper are simply a 

beginning. In the many situations where the framework 

can be applied, one can define metrics of altruism and 

competitive cooperation. These metrics make it possible 

to alter behaviors or algorithms in order to increase the 

level of altruism within a team. However, many questions 

regarding this concept of altruism remain. Is a more 

altruistic team always better, or are there situations in 

which some degree of competitive cooperation is 

beneficial? Does optimizing altruism correspond to 

optimizing a team’s payoff? What additional conclusions 

can be drawn in the case of social networks? 
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We can say that the metric of altruism should provide 

a means of establishing trust within a network or team of 

players. In highly autonomous systems, this mathematical 

route to trust may prove to play a fundamental role in 

determining how agents interrelate. This higher level of 

trust may lead to a reduced communications load within 

the system, without sacrificing the systems efficacy. 

On a higher level, this may also offer some insight 

into the total level of trust within a network, by evaluating 

the altruistic cooperation metric on a global level. One 

can also evaluate whether a “cooperative system” is truly 

cooperative, or which form of cooperation that system 

possesses. A cooperative system that is primarily 

competitive in nature is very different from one that is 

primarily altruistic in nature. 

The US Army has many networks and organizations 

that operate primarily on the basis of cooperation. The 

Army’s culture is based on highly technical, cooperative 

teams (e.g., teams of teams, systems of systems). And 

many of the new emerging technologies of net-centric 

warfare involve using cooperation in the form of hybrid 

systems – specialized teams of people, machines, 

computers, and robots (Alberts, et. al., 1999). At the next 

layer of detail, the major elements of cooperation are 

found in the mix of trust and autonomy of the agents (i.e., 

lack of strict control). The American Army is known for 

its trust and autonomy in its missions and tasks, and this 

collaborative culture will continue in future doctrine.  

Therefore, understanding, designing for, and 

implementing cooperation in our new systems are critical 

elements in meeting the goals of the future highly-

networked Army. The fundamental research presented in 

this paper on the basic mathematical principles of 

cooperation, especially the new framework introduced, 

can contribute greatly to that effort and to the fulfillment 

of these important Army goals. 
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