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Summary

The Question:

How can we understand the structure of the
coordinate ring of the character variety?
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Summary

The Question:

How can we understand the structure of the
coordinate ring of the character variety?

The Solution:

Find an additive basis for the coordinate ring.

Use diagrams to get the structure.
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What’s Next?

The Idea of Trace Diagrams

A trace diagram is a graph which is identified with a
map between tensor powers of G-representations.
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What’s Next?

The Idea of Trace Diagrams

A trace diagram is a graph which is identified with a
map between tensor powers of G-representations.

EXAMPLE: In the permutation algebra CΣ3,

(1 2 3) ↔ .
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What’s Next?

The Idea of Trace Diagrams

A trace diagram is a graph which is identified with a
map between tensor powers of G-representations.

EXAMPLE: In the permutation algebra CΣ3,

(1 2 3) ↔ .

If V is a G-representation, than an element of CΣd

acts on V ⊗d in the natural way:
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What’s Next?

The Idea of Trace Diagrams

A trace diagram is a graph which is identified with a
map between tensor powers of G-representations.

EXAMPLE: In the permutation algebra CΣ3,

(1 2 3) ↔ .

If V is a G-representation, than an element of CΣd

acts on V ⊗d in the natural way:

: v1 ⊗ v2 ⊗ v3 7→ v2 ⊗ v3 ⊗ v1.
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What’s Next?

The Idea of Trace Diagrams

A trace diagram is a graph which is identified with a
map between tensor powers of G-representations.

EXAMPLE: In the permutation algebra CΣ3,

(1 2 3) ↔ .

If V is a G-representation, than an element of CΣd

acts on V ⊗d in the natural way:

: v1 ⊗ v2 ⊗ v3 7→ v2 ⊗ v3 ⊗ v1.

CΣ3 is spanned by
{

, , , , ,
}

.
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What’s Next?

The Idea of Trace Diagrams

A trace diagram is a graph which is identified with a
map between tensor powers of G-representations.

EXAMPLE: In the permutation algebra CΣ3,

(1 2 3) ↔ .

If V is a G-representation, than an element of CΣd

acts on V ⊗d in the natural way:

: v1 ⊗ v2 ⊗ v3 7→ v2 ⊗ v3 ⊗ v1.

CΣ3 is spanned by
{

, , , , ,
}

.

Group operation becomes stacking: = .
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What’s Next?

Trace Diagrams

DEFINITION: A G-trace diagram is a directed graph
with vertices of degree ≤ 3, edges labelled by
finite-dimensional irreducible representations of G,
and the following additional structure:

vertices are sources or sinks and are ciliated
(incident edges are ordered);

leaves are partitioned into inputs and outputs;

both edges at a 2-vertex have the same label;

3-vertices are labelled by intertwiners between
representations of the adjacent edges;

edges may be marked by G-indeterminates.

Trace Diagrams, Representations, and Low-Dimensional Topology PhD Final Oral Examination April 25, 2006 – p. 6/46



Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Trace Diagrams and Functions

A functor {G-trace diagrams} −→ {functions} is
constructed by:

decomposing a trace diagram into its “smallest
pieces,” called component maps;
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Trace Diagrams and Functions

A functor {G-trace diagrams} −→ {functions} is
constructed by:

decomposing a trace diagram into its “smallest
pieces,” called component maps;

defining a function for each component map;
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What’s Next?

Trace Diagrams and Functions

A functor {G-trace diagrams} −→ {functions} is
constructed by:

decomposing a trace diagram into its “smallest
pieces,” called component maps;

defining a function for each component map;

showing the construction is well-defined.
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What’s Next?

Trace Diagrams and Functions

A functor {G-trace diagrams} −→ {functions} is
constructed by:

decomposing a trace diagram into its “smallest
pieces,” called component maps;

defining a function for each component map;

showing the construction is well-defined.

NOTE: Depending on V , there may be relations
among the functions corresponding to these
diagrams.
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The Basic Picture

inputs{

outputs{ α
β

γ δ

ε

ζ

δ

η
θ

κ ξ π ρ

λ

µ

ν

ι1

ι2

ι3

ι4

ι5

ι6

ι7
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What’s Next?

The Basic Picture

inputs{

outputs{ α
β

γ δ

ε

ζ

δ

η
θ

κ ξ π ρ

λ

µ

ν

ι1

ι2

ι3

ι4

ι5

ι6

ι7

This diagram represents a map

(G×G×G) −→ Fun(Vκ⊗Vε⊗Vπ⊗Vρ → Vα⊗V ∗
γ ⊗V ∗

δ ).
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What’s Next?

Standard Trace Diagrams

We frequently use the subset of trace diagrams
where

all strands are labelled by the standard
representation V , so labels are unnecessary;

vertices of degree > 3 are allowed as maps
between tensor copies of V and V ∗.
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What’s Next?

Standard Trace Diagrams

We frequently use the subset of trace diagrams
where

all strands are labelled by the standard
representation V , so labels are unnecessary;

vertices of degree > 3 are allowed as maps
between tensor copies of V and V ∗.

: V̆ ⊗7 → V̆ ⊗7
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What’s Next?

Standard Trace Diagrams

We frequently use the subset of trace diagrams
where

all strands are labelled by the standard
representation V , so labels are unnecessary;

vertices of degree > 3 are allowed as maps
between tensor copies of V and V ∗.

: V̆ ⊗7 → V̆ ⊗7

One passes between these categories by relating
G-representations and intertwiners to maps of the
form V̆ ⊗d1 → V̆ ⊗d2.
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What’s Next?

Invariance Properties

If the component maps are G-invariant then

trace diagrams without G-markings (often
called spin networks) are G-invariant maps;

Trace Diagrams, Representations, and Low-Dimensional Topology PhD Final Oral Examination April 25, 2006 – p. 10/46



Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)
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Invariance Properties

If the component maps are G-invariant then

trace diagrams without G-markings (often
called spin networks) are G-invariant maps;

trace diagrams with G-markings are
conjugation invariant with respect to the
markings;
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What’s Next?

Invariance Properties

If the component maps are G-invariant then

trace diagrams without G-markings (often
called spin networks) are G-invariant maps;

trace diagrams with G-markings are
conjugation invariant with respect to the
markings;

closed trace diagrams are linear functions
G × G × · · · × G → C which are invariant under
simultaneous conjugation.
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What’s Next?

Invariance Properties

If the component maps are G-invariant then

trace diagrams without G-markings (often
called spin networks) are G-invariant maps;

trace diagrams with G-markings are
conjugation invariant with respect to the
markings;

closed trace diagrams are linear functions
G × G × · · · × G → C which are invariant under
simultaneous conjugation.

for matrix groups, closed diagrams can be
expressed as sums of trace words.
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What’s Next?

Example: SL(2, C) Trace Diagrams

The component maps are:

: V → V with v 7→ v;

: V ⊗ V → C with v ⊗ w 7→ det[v w];

: C → V ⊗ V with 1 7→ e1 ⊗ e2 − e2 ⊗ e1.

: V → V with v 7→ xv;
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What’s Next?

Example: SL(2, C) Trace Diagrams

The component maps are:

: V → V with v 7→ v;

: V ⊗ V → C with v ⊗ w 7→ det[v w];

: C → V ⊗ V with 1 7→ e1 ⊗ e2 − e2 ⊗ e1.

: V → V with v 7→ xv;

EXAMPLE:
(v) = ◦ (v)

= (v ⊗ e1 ⊗ e2 − v ⊗ e2 ⊗ e1)

= det[v e1]e2 − det[v e2]e1

= −v2e2 − v1e1 = −v = − (v) = −v.
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What’s Next?

Example: SL(2, C) Trace Diagrams

The relations are:

Kink Value: = − ;

Matrix Canceling: = det(x) ;

Loop Values: = 2, = tr(x);

Binor Identity: = − .
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What’s Next?

Example: SL(2, C) Trace Diagrams

The relations are:

Kink Value: = − ;

Matrix Canceling: = det(x) ;

Loop Values: = 2, = tr(x);

Binor Identity: = − .

PROOF: (trace property)

(1) = ◦ (x ⊗ I) ◦ (1)

= ◦ (x ⊗ I)(e1 ⊗ e2 − e2 ⊗ e1)

= (x1 ⊗ e2 − x2 ⊗ e1)

= det[x1 e2] − det[x2 e1]

= x11 − (−x22) = tr(x).
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What’s Next?

Component Maps for Matrix Groups

For a matrix group, let V be the standard
representation. The component maps are:

: V → V where v 7→ v, the identity;

: V → V where v 7→ xv;

: V ⊗ V ∗ → C where v ⊗ f 7→ f(v);

: V ⊗ V → C where v ⊗ w 7→ 〈v, w〉;

: V ⊗ · · · ⊗ V → C where
v1 ⊗ v2 ⊗ · · · ⊗ vn 7→ det[v1 · · · vn];

Diagrams with opposite orientations are also
necessary.
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What’s Next?

Aside: the Characteristic Polynomial

The characteristic polynomial is easily expressed
in terms of trace diagrams:

Rank Two: = − implies

= −

=⇒ det(x)I = x · tr(x) − x
2.

Rank Three:

= + + - - - .
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What’s Next?

Diagrams for Symmetrizers

Define the symmetrizer to be

d =
∑

σ∈Σd

σ ∈ CΣd.
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What’s Next?

Diagrams for Symmetrizers

Define the symmetrizer to be

d =
∑

σ∈Σd

σ ∈ CΣd.

Define the anti-symmetrizer to be

d =
∑

σ∈Σd

sign(σ) · σ ∈ CΣd.
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What’s Next?

Diagrams for Symmetrizers

Define the symmetrizer to be

d =
∑

σ∈Σd

σ ∈ CΣd.

Define the anti-symmetrizer to be

d =
∑

σ∈Σd

sign(σ) · σ ∈ CΣd.

EXAMPLE:

= + + + + +

= − − − + + .
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What’s Next?

Young Projectors

The Young symmetrizer of a λ partition with a strict
numbering (rows and columns in increasing order)
is the element of the permutation algebra which
symmetrizes the rows and anti-symmetrizes the
columns.
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What’s Next?

Young Projectors

The Young symmetrizer of a λ partition with a strict
numbering (rows and columns in increasing order)
is the element of the permutation algebra which
symmetrizes the rows and anti-symmetrizes the
columns.

EXAMPLE:

1 2
3

↔ ; 1 3
2

↔ .
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What’s Next?

Young Projectors

The Young symmetrizer of a λ partition with a strict
numbering (rows and columns in increasing order)
is the element of the permutation algebra which
symmetrizes the rows and anti-symmetrizes the
columns.

EXAMPLE:

1 2
3

↔ ; 1 3
2

↔ .

The Young projector for λ is the sum of such terms
for a given partition.
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What’s Next?

An Example

EXAMPLE: For the partition (2, 1) of 3:

P(2,1) = +

=
(

+ − −
)

+
(

+ − −
)

= 2 −
(

+
)
.
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What’s Next?

An Example

EXAMPLE: For the partition (2, 1) of 3:

P(2,1) = +

=
(

+ − −
)

+
(

+ − −
)

= 2 −
(

+
)
.

Alternately, use the character table of Σ3:

(1) (12) (123)

(3) 1 1 1

(2,1) 2 0 -1

(1,1,1) 1 -1 1
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What’s Next?

SU(n)-Representations

The (finite-dimensional) irreducible representations
of SU(n) are the images of such projectors on
tensor products of the standard representation.
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What’s Next?

SU(n)-Representations

The (finite-dimensional) irreducible representations
of SU(n) are the images of such projectors on
tensor products of the standard representation.

EXAMPLE: For SU(2), representations are indexed
by trivial partitions (just one row), so they are
symmetric powers of the standard representation.

The representation Vn ≡ SymnV is identified with
the image of the symmetrizer d in the tensor
power V ⊗d.
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What’s Next?

Diagrams of SU(3)-Representations

Partitions have two rows, so the projectors are
Pa,b ≡ P(a+b,b). They are sums of elements written
as the composition of two symmetrizers with
several anti-symmetrizers:

a+b b ◦ σ ◦ · · · · · · .
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What’s Next?

Diagrams of SU(3)-Representations

Partitions have two rows, so the projectors are
Pa,b ≡ P(a+b,b). They are sums of elements written
as the composition of two symmetrizers with
several anti-symmetrizers:

a+b b ◦ σ ◦ · · · · · · .

The anti-symmetrizers may also be written as

,

a visual depiction of the G-isomorphism V ∗
1,0

∼= V0,1.

Trace Diagrams, Representations, and Low-Dimensional Topology PhD Final Oral Examination April 25, 2006 – p. 19/46



Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

The Littlewood-Richardson Rule

FACT: given partitions λ and µ, there is an injection

Vν ↪→ Vλ ⊗ Vµ for each strict µ-expansion of λ.

A strict µ-expansion of λ is a diagram formed by adding

the Young diagram for µ, with boxes labelled by row

numbers, to the Young diagram for λ in such a way that:

the resulting diagram has ≤ n rows;

column numbers are strictly increasing;

the complete sequence of numbers in reverse

lexicographical order never has more i boxes than j

boxes if i > j.

Then, the partition ν formed by removing the columns

with n boxes gives rise to an injection Vν ↪→ Vλ ⊗ Vµ.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SU(2) Intertwiners and Admissibility

Partitions with 1 row are the trivial partitions, so the
projectors are P(a) ↔ a.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SU(2) Intertwiners and Admissibility

Partitions with 1 row are the trivial partitions, so the
projectors are P(a) ↔ a.

Three column types occur in a typical strict

expansion:
1

, , and 1 .

1 1 1
1 1
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SU(2) Intertwiners and Admissibility

Partitions with 1 row are the trivial partitions, so the
projectors are P(a) ↔ a.

Three column types occur in a typical strict

expansion:
1

, , and 1 .

1 1 1
1 1

Columns correspond to the strands in
a b

c

,

so an injection Vc ↪→ Va ⊗ Vb exists when there are
nonnegative numbers of each strand type:

α= 1
2
(−a+b+c), β= 1

2
(a−b+c), γ= 1

2
(a+b−c) ∈ N .
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Part II.
Problem and Results
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Surfaces with Free Fundamental Group

Let Σ be a closed oriented surface with boundary
and fundamental group π. This is a free group,
since the surface retracts onto a 1-complex. The
free group of rank r will be denoted Fr.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Surfaces with Free Fundamental Group

Let Σ be a closed oriented surface with boundary
and fundamental group π. This is a free group,
since the surface retracts onto a 1-complex. The
free group of rank r will be denoted Fr.

EXAMPLE:

x0
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Surfaces with Free Fundamental Group

Let Σ be a closed oriented surface with boundary
and fundamental group π. This is a free group,
since the surface retracts onto a 1-complex. The
free group of rank r will be denoted Fr.

EXAMPLE:

a1

x0

a2

a3
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

The Ring Hom(π, G)

Let G be a connected reductive linear algebraic
group. Denote the space of linear homomorphisms
from π to G by Hom(π,G).
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

The Ring Hom(π, G)

Let G be a connected reductive linear algebraic
group. Denote the space of linear homomorphisms
from π to G by Hom(π,G).

When π ∼= Fr, there is an isomorphism

Hom(π,G) ∼= Hom(Fr, G) ∼= Gr .

since f ∈ Hom(π,G) is determined by its values on
the generators of Fr.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

The Ring of Invariants

The group G acts by simultaneous conjugation on
the tensor components Gr ∼= Hom(π,G):

g · (x1, . . . ,xr) ≡ (gx1g
−1, . . . , gxrg

−1) .

Hence, we may discuss conjugacy classes of
representations.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

The Ring of Invariants

The group G acts by simultaneous conjugation on
the tensor components Gr ∼= Hom(π,G):

g · (x1, . . . ,xr) ≡ (gx1g
−1, . . . , gxrg

−1) .

Hence, we may discuss conjugacy classes of
representations.

The ring of invariants C[Hom(π,G)]G ∼= C[Gr]G will
be denoted C[X].

Our goal is to understand the structure of this ring!
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[G]

Complete reducibility gives a decomposition of the
coordinate ring:

⊕

λ∈Λ

V ∗
λ ⊗ Vλ

∼= C[G] .

Here Λ is the set of irreducible representations of
the maximal compact subgroup U ⊂ G and the
map is constructed from maps of the form

v∗ ⊗ w 7→ v∗(x · w).
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

We can decompose the coordinate ring:

C[X] = C[Hom(π,G)]G ∼= C[Gr]G ∼= (C[G]⊗r)G.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

We can decompose the coordinate ring:

C[X] = C[Hom(π,G)]G ∼= C[Gr]G ∼= (C[G]⊗r)G.

Apply the isomorphism C[G] ∼=
⊕

λ∈Λ V ∗
λ ⊗ Vλ:

C[X] ∼=

(
⊕

λi∈Λ

⊗

i=1,...,r

V ∗
λi
⊗ Vλi

)G

.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

We can decompose the coordinate ring:

C[X] = C[Hom(π,G)]G ∼= C[Gr]G ∼= (C[G]⊗r)G.

Apply the isomorphism C[G] ∼=
⊕

λ∈Λ V ∗
λ ⊗ Vλ:

C[X] ∼=

(
⊕

λi∈Λ

⊗

i=1,...,r

V ∗
λi
⊗ Vλi

)G

.

NOTE: G-invariance passes through the direct sum.
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Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

We can decompose the coordinate ring:

C[X] = C[Hom(π,G)]G ∼= C[Gr]G ∼= (C[G]⊗r)G.

Apply the isomorphism C[G] ∼=
⊕

λ∈Λ V ∗
λ ⊗ Vλ:

C[X] ∼=
⊕

λi∈Λ

(
⊗

i=1,...,r

V ∗
λi
⊗ Vλi

)G

.

NOTE: G-invariance passes through the direct sum.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

Denote the r-tuple of representation parameters by
λ ≡ (λ1, . . . , λr).
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

Denote the r-tuple of representation parameters by
λ ≡ (λ1, . . . , λr).

Every injection V λ
α ↪→

⊗

i Vλi
has a corresponding

dual injection V ∗λ
α ↪→

⊗

i V
∗
λi

.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

Denote the r-tuple of representation parameters by
λ ≡ (λ1, . . . , λr).

Every injection V λ
α ↪→

⊗

i Vλi
has a corresponding

dual injection V ∗λ
α ↪→

⊗

i V
∗
λi

.

Then
⊗

i V
∗
λi
⊗ Vλi

∼=
⊕

α,β V
∗λ
β ⊗ V λ

α so

C[X] ∼=
⊕

λ,α,β

(
V

∗λ
β ⊗ V λ

α

)G ∼=
⊕

λ,α

Cχλ
α .
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Decomposition of C[X]

Denote the r-tuple of representation parameters by
λ ≡ (λ1, . . . , λr).

Every injection V λ
α ↪→

⊗

i Vλi
has a corresponding

dual injection V ∗λ
α ↪→

⊗

i V
∗
λi

.

Then
⊗

i V
∗
λi
⊗ Vλi

∼=
⊕

α,β V
∗λ
β ⊗ V λ

α so

C[X] ∼=
⊕

λ,α,β

(
V

∗λ
β ⊗ V λ

α

)G ∼=
⊕

λ,α

Cχλ
α .

NOTE: this decomposition depends on the
particular choice of injection.
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Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Central Functions

DEFINITION: The functions χλ
α generating the vector

space Cχλ
α will be called central functions.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Central Functions

DEFINITION: The functions χλ
α generating the vector

space Cχλ
α will be called central functions.

NOTE: In the rank one case, they are simply the
characters of the representation.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SL(2, C)-Central Functions

The remainder of this talk concerns the central
functions of G = SL(2, C).
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Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SL(2, C)-Central Functions

The remainder of this talk concerns the central
functions of G = SL(2, C).

Representations are indexed by N.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SL(2, C)-Central Functions

The remainder of this talk concerns the central
functions of G = SL(2, C).

Representations are indexed by N.

Rank 1: χn(x) ≡ n.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SL(2, C)-Central Functions

The remainder of this talk concerns the central
functions of G = SL(2, C).

Representations are indexed by N.

Rank 1: χn(x) ≡ n.

Rank 2: χa,b,c(x1,x2) ≡
ba

c

or

(or one of many other possibilities).
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SL(2, C)-Central Functions

The remainder of this talk concerns the central
functions of G = SL(2, C).

Rank n:

χa ≡

(depends on 3n − 3 parameters).
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

SL(2, C)-Central Functions

The remainder of this talk concerns the central
functions of G = SL(2, C).

Rank n:

χa ≡

(depends on 3n − 3 parameters).

Use 6j-symbols to change between any two
SL(2, C)-central function bases:

b
a c

d
e =

∑

f∈da,bc∩dc,dc

[
a b f
c d e

]
·

b
a c

d
f .
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Rank One Central Functions

Defined via the isomorphism

C[X] ∼= C[G]G ∼=
⊕

n≥0

(V ∗
n ⊗ Vn)G ∼=

⊕

n≥0

Cχn.
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Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Rank One Central Functions

Defined via the isomorphism

C[X] ∼= C[G]G ∼=
⊕

n≥0

(V ∗
n ⊗ Vn)G ∼=

⊕

n≥0

Cχn.

Note that χa = is the character of the

representation Va.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Rank One Central Functions

Defined via the isomorphism

C[X] ∼= C[G]G ∼=
⊕

n≥0

(V ∗
n ⊗ Vn)G ∼=

⊕

n≥0

Cχn.

Note that χa = is the character of the

representation Va.

PROPOSITION:

χaχb =
∑

c∈da,bc

χc.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Rank One Central Functions

Defined via the isomorphism

C[X] ∼= C[G]G ∼=
⊕

n≥0

(V ∗
n ⊗ Vn)G ∼=

⊕

n≥0

Cχn.

Note that χa = is the character of the

representation Va.

PROPOSITION:

χaχb =
∑

c∈da,bc

χc.

PROOF: χaχb = χ
(Va⊗Vb) = χ

⊕cVc
=
∑

c∈da,bc
χc.

Trace Diagrams, Representations, and Low-Dimensional Topology PhD Final Oral Examination April 25, 2006 – p. 32/46



Diagrams as

Functions

Diagrams of

Representations

Diagrams of
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Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Some Spin Network Relations

Define Θ(a, b, c) =
ca b

and ∆(c) = c.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Some Spin Network Relations

Define Θ(a, b, c) =
ca b

and ∆(c) = c.

PROPOSITION:
c

d

a
b =
(

Θ(a,b,c)
∆(c)

c
)

δcd and

a b
=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

) a

a

b

b

c .
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Some Spin Network Relations

Define Θ(a, b, c) =
ca b

and ∆(c) = c.

PROPOSITION:
c

d

a
b =
(

Θ(a,b,c)
∆(c)

c
)

δcd and

a b
=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

) a

a

b

b

c .

PROOF: Use Schur’s Lemma.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Some Spin Network Relations

Define Θ(a, b, c) =
ca b

and ∆(c) = c.

PROPOSITION:
c

d

a
b =
(

Θ(a,b,c)
∆(c)

c
)

δcd and

a b
=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

) a

a

b

b

c .

PROOF: Use Schur’s Lemma.
c

c

a
b = C

c
=⇒

ca b
= C

c

.
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Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Some Spin Network Relations

Define Θ(a, b, c) =
ca b

and ∆(c) = c.

PROPOSITION:
c

d

a
b =
(

Θ(a,b,c)
∆(c)

c
)

δcd and

a b
=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

) a

a

b

b

c .

PROOF: Use Schur’s Lemma.

a b
=
∑

c∈da,bc

C(c)
a

a

b

b

c

=⇒
a b

◦
a b

d
=
∑

c∈da,bc

C(c)
a

a

b

b

c ◦
a b

d

=⇒
a b

d
= C(d)

a b

c
◦

c

d

a
b δcd.
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Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Proof of Rank One Product Formula

Combine the identities in the previous slide:

χaχb =
a b =

∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

)
a

c
b

=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

)
a

c
b

=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

)

c

b a

=
∑

c∈da,bc

(
∆(c)Θ(a,b,c)
Θ(a,b,c)∆(c)

) c

=
∑

c∈da,bc

c

=
∑

c∈da,bc

χc.
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Diagrams of
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Hom(π, G)
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Results for

SL(2, C)

What’s Next?

Rank Two Terminology

We use the definition χa,b,c(x1,x2) ≡
ba

c

.
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Diagrams as

Functions

Diagrams of

Representations

Diagrams of

Intertwiners

Hom(π, G)

The Central

Function Basis

Results for

SL(2, C)

What’s Next?

Rank Two Terminology

We use the definition χa,b,c(x1,x2) ≡
ba

c

.

Each such function may be expressed as a
polynomial in the trace variables

x ≡ tr(x1), y ≡ tr(x2), z ≡ tr(x1x
−1
2 ).
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What’s Next?

Rank Two Terminology

We use the definition χa,b,c(x1,x2) ≡
ba

c

.

Each such function may be expressed as a
polynomial in the trace variables

x ≡ tr(x1), y ≡ tr(x2), z ≡ tr(x1x
−1
2 ).

Define as before

α ≡
1

2
(−a+b+c), β ≡

1

2
(a−b+c), γ ≡

1

2
(a+b−c)

The rank of χa,b,c is defined to be δ ≡ 1
2
(a + b + c).
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What’s Next?

Symmetry of Rank Two Basis

THEOREM 1: If χa,b,c(y, x, z) is exactly the central
function χa,b,c(x1,x2) in terms of trace variables,
then χσ(a,b,c)(y, x, z) = χa,b,c(σ−1(y, x, z)).
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What’s Next?

Symmetry of Rank Two Basis

THEOREM 1: If χa,b,c(y, x, z) is exactly the central
function χa,b,c(x1,x2) in terms of trace variables,
then χσ(a,b,c)(y, x, z) = χa,b,c(σ−1(y, x, z)).

PROOF: Expanding a central function gives

ba
c

=

a−b+c
2
︷︸︸︷

a+b−c
2
︷︸︸︷

−a+b+c
2
︷︸︸︷

=

β
︷︸︸︷

γ
︷︸︸︷

α
︷︸︸︷

.
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Function Basis
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What’s Next?

Properties of Rank Two Basis

THEOREM 2:

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c

− (−a+b+c)2

4c(c−1)
χa,b,c−2 − (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.
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What’s Next?

Properties of Rank Two Basis

THEOREM 2:

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c

− (−a+b+c)2

4c(c−1)
χa,b,c−2 − (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.

PROOF: Multiply x · χa,b,c and rearrange:

=
∑

=
∑

=
∑

.
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What’s Next?

Properties of Rank Two Basis

THEOREM 2:

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c

− (−a+b+c)2

4c(c−1)
χa,b,c−2 − (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.

COROLLARY:

χa,b,c is monic with leading term xαyβzγ .

There is a grading on these functions.
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What’s Next?

Properties of Rank Two Basis

THEOREM 2:

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c

− (−a+b+c)2

4c(c−1)
χa,b,c−2 − (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.

COROLLARY:

χa,b,c is monic with leading term xαyβzγ .

There is a grading on these functions.

PROOF:

χ
α,β,γ = χ

0,1,0
χ

α,β−1,γ −
γ2

a(a−1)
χ

α+1,β−1,γ−1

− α2

c(c−1)
χ

α−1,β−1,γ+1 −
δ2(β−2)2

a(a−1)c(c−1)
χ

α,β−2,γ.
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Function Basis

Results for

SL(2, C)

What’s Next?

Rank Two Product Formula

THEOREM 3:

χa,b,cχa′,b′,c′ =
∑

j1,j2,k,l,m

Cj1klmCj2klm

Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m)
χk,l,m,
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The Central

Function Basis

Results for
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What’s Next?

Rank Two Product Formula

THEOREM 3:

χa,b,cχa′,b′,c′ =
∑

j1,j2,k,l,m

Cj1klmCj2klm

Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m)
χk,l,m,

where the sum is taken over admissible triples

{a, a′, k}, {b, b′, l}, {c, c′,m}, {a′, b, ji}, {c, ji, k},
{c′, ji, l}, {b, ji, l}, {k, l,m}

and the coefficients are

Cjiklm = ∆(ji)
Θ(a′,b,ji)

[
a a′ k
ji c b

][
b′ b l
ji c′ a′

][
k l m
c′ c ji

]
.
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What’s Next?

Rank Two Product Formula

THEOREM 3:

χa,b,cχa′,b′,c′ =
∑

j1,j2,k,l,m

Cj1klmCj2klm

Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m)
χk,l,m,

where the sum is taken over admissible triples

{a, a′, k}, {b, b′, l}, {c, c′,m}, {a′, b, ji}, {c, ji, k},
{c′, ji, l}, {b, ji, l}, {k, l,m}

and the coefficients are

Cjiklm = ∆(ji)
Θ(a′,b,ji)

[
a a′ k
ji c b

][
b′ b l
ji c′ a′

][
k l m
c′ c ji

]
.

PROOF:

=
∑

=
∑

.
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What’s Next?

Change-of-Basis Formula for Rank Two

RECALL: for rank two, C{χa,b,c} = C{x, y, z}.
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What’s Next?

Change-of-Basis Formula for Rank Two

RECALL: for rank two, C{χa,b,c} = C{x, y, z}.

THEOREM 4:

xAyBzC =

bA
2
c,bB

2
c,bC

2
c

∑

r,s,t=0
k,l,m

((
A
r

))((
B
s

))((
C
t

))
·
[

A−2r C−2t k
l m B−2s

]2

· ∆(l)∆(m)Θ(A−2r,C−2t,k)
∆(k)Θ(A−2r,B−2s,m)Θ(B−2s,C−2t,l)

· χk,l,m,

where
((

A
r

))
≡
(

A

r

)
−
(

A

r−1

)
.
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What’s Next?

What’s Next?

Diagrams for Other Groups;

Computation of Central Functions;

Application to Invariant Theory;

Application to Geometry.
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The Central

Function Basis

Results for
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What’s Next?

An Example

EXAMPLE: SU(3)-Representations:

Consider λ = and µ = 1 1
2

.
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What’s Next?

An Example

EXAMPLE: SU(3)-Representations:

Consider λ = and µ = 1 1
2

.

Possible strict sequences are 112 and 121.
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What’s Next?

An Example

EXAMPLE: SU(3)-Representations:

Consider λ = and µ = 1 1
2

.

Possible strict sequences are 112 and 121.

1 1
2

1 1

2

1
1 2

1
1

2

1
2

1
1

1 2

.
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What’s Next?

An Example

EXAMPLE: SU(3)-Representations:

Consider λ = and µ = 1 1
2

.

Possible strict sequences are 112 and 121.

1 1
2

1 1

2

1
1 2

1
1

2

1
2

1
1

1 2

.

NOTE: this gives the tensor decomposition

V(2,1)⊗V(2,1) = V(4,2)⊕V(3)⊕V(3,3)⊕V(2,1)⊕V(2,1)⊕V(0).
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What’s Next?

SU(3) Intertwiners

THEOREM 5: (a) Injections Vb1,a1 ↪→ Va2,b2 ⊗ Va3,b3

are given by diagrams of the form

or

where the pairs {ai, bi} represent the number of up
and down arrows at the three “ends” of the
diagram.

(b) All multiplicities arise from interchanging
‘cycles’ of the form and .
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What’s Next?

Proof using LR Rule

Write down the correspondence between columns
arising from strict µ-expansions and diagrams:

↔ ↔ ; ↔ ↔ ;

1 ↔ ↔ ; 1
2

↔ ↔ ;

1
2

↔ ↔ ;
1

↔ ↔ ;

1
↔ ↔ ;

1

2

↔ ↔ .
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What’s Next?

Proof using LR Rule

Write down the correspondence between columns
arising from strict µ-expansions and diagrams:

↔ ↔ ; ↔ ↔ ;

1 ↔ ↔ ; 1
2

↔ ↔ ;

1
2

↔ ↔ ;
1

↔ ↔ ;

1
↔ ↔ ;

1

2

↔ ↔ .

NOTE: to guarantee uniqueness, both and

cannot occur in the same diagram.
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What’s Next?

An Example

Consider a generic strict expansion:

1 1 1
1 1 2

2

.

This decomposes into

1
2

+ 1
2

+ 1 + 1 +
1

+ + .

So the diagram for this expansion is

.
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What’s Next?

SU(3) Admissibility

THEOREM 6: The multiplicity of the injection
Vb1,a1 ↪→ Va2,b2 ⊗ Va3,b3 is

M = 1 + min{a′
i, b

′
i, γi}

3
i=1,

where N =
∑

ai −
∑

bi, a′
i = ai −

1
6
(|N | + N),

b′i = bi −
1
6
(|N | − N), and γi = a′

i+1 + a′
i+2 − a′

i, with
the indices in the last equation considered mod 3.
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