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Fundamental Group Representations and the Coordinate Ring

Motivation I

Every representation ρ ∈ Hom(π, G )
where G = SL(2, C) induces a map
π → C given by taking the trace of
ρ(x). These elements are
conjugation-invariant and reside in
both C[G×r ]G and the coordinate ring

of the character variety.

π C [G×r ]
G

= C[χ]
x tr(ρ(x))

??

?

For this reason, the study of the structure of
the character variety and its coordinate ring
often boils down to examining trace relations
[described in detail in Lawton’s first talk].
This talk will describe a more geometric way to
discuss trace relations.
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Motivation II

We will develop an algebra which reflects both the structure arising from
the fundamental group and that arising from its representation.
We call the requisite algebra the Trace Diagram Algebra T2, whose
elements are a special class of graphs marked by elements of SL(2, C).

π C [G×r ]
G

x tr(ρ(x)) = G(t)

T2

t = F(x)

F G

The purpose of this talk is to describe F and G, hence providing an
alternate category for studying the coordinate ring of the character variety.
This alternate category simplifies many calculations, and provides greater
intuition for both trace polynomials and their connection with the
character variety.
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Definition of Trace Diagrams

Definition

A 2-trace diagram t ∈ T2 is a graph drawn in a box whose edges are
marked by matrices in M2×2. All vertices have degree one and occur at
the bottom of the box (inputs), or at the top of the box (outputs). The
diagrams are in general position relative to a certain “up” direction.

A B

C

Ā

Note. Ā = A−1.

We use general position to mean the following:

Each strand is an embedding;

Crossings and matrix markings are disjoint from
local extrema;

Diagrams are equivalent if isotopic, provided the
previous condition remains true and local extrema
are neither added nor removed.

Diagrams with compatible inputs/outputs may be composed by placing
one atop another. This corresponds to composition of functions.
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The Trace Diagram Functor

First we will construct, for V = C
2 the standard representation of

SL(2, C),

T2
G

−→ Fun(V ⊗ · · · ⊗ V
︸ ︷︷ ︸

i

→ V ⊗ · · · ⊗ V
︸ ︷︷ ︸

o

),

where i is the number inputs and o the number of outputs.

Example

G








A B

C

Ā








: V⊗3 → V⊗5
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Component Decomposition of Trace Diagrams

The functor G(t) for a given trace diagram t will be defined by piecing
together the action of G on smaller components.

Proposition

Every strand of a trace diagram may be uniquely decomposed into the

components , , A , , and .

A B

C

Ā

Uniqueness comes from our restriction on “general position.”
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Trace Diagram Component Maps

Definition

Given v , w ∈ C
2, A ∈ M2×2, and the standard basis {e1, e2} of C

2,

Identity G
()

: V → V takes v 7→ v

Group Action G
(

A

)

: V → V takes v 7→ Av

Permutations G
( )

: V ⊗ V → V ⊗ V takes v ⊗ w 7→ w ⊗ v

“Cap” G
( )

: V ⊗ V → C takes







e1 ⊗ e1 7→ 0

e1 ⊗ e2 7→ +1

e2 ⊗ e1 7→ −1

e2 ⊗ e2 7→ 0

or a ⊗ b 7→ det[a b]

“Cup” G
( )

: C → V ⊗ V takes 1 7→ e1 ⊗ e2 − e2 ⊗ e1
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Group Invariance

Theorem

The image of G lies in the set of multilinear functions V⊗i → V⊗j which

are invariant with respect to simultaneous conjugation of all matrix

elements by any X ∈ SL(2, C). In other words, for all X ∈ SL(2, C)

X · G(t(A1, . . . ,Ar )) · X̄ = G(t(XA1X̄ , . . . ,XAr X̄ )).

Here, · represents the action X · (v ⊗ w) = Xv ⊗ Xw.

X · A B

C

Ā · X̄ = XAX̄ XBX̄

XCX̄

XĀX̄

Remark. As a corollary, closed trace diagrams are invariant under

simultaneous conjugation in the matrix variables!
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Group Invariance: Proof

Proof.

It suffices to verify this property for the component maps. If

X =

(
x11 x12

x21 x22

)

, then

X · G( ) · X̄ = X · G( ) takes

1 7→ X · (e1 ⊗ e2 − e2 ⊗ e1)

= (x11e1 + x21e2) ⊗ (x12e1 + x22e2)

− (x12e1 + x22e2) ⊗ (x11e1 + x21e2)

= (x11x22 − x12x21)(e1 ⊗ e2 − e2 ⊗ e1)

= e1 ⊗ e2 − e2 ⊗ e1 = G( ).

The proof for the cap is similar, while the calculations for the remaining
component maps are trivial.
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Trace Diagram Relations

Several diagrammatic relations arise from the component definitions, and
it is easy to find two diagrams for which G(t1) = G(t2). For example:

Proposition

G

( )

= G

(

−

)

Proof.

Let v = v1e1 + v2e2 ∈ C
2. Then

G

( )

(v) =
(

⊗
)

◦
(

⊗
)

(v)

=
(

⊗
)

(v ⊗ e1 ⊗ e2 − v ⊗ e2 ⊗ e1)

= (−v2)e2 − (v1)e1 = −v .
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Several diagrammatic relations arise from the component definitions, and
it is easy to find two diagrams for which G(t1) = G(t2). For example:

Proposition

G

( )

= G

(

−

)

Proof.

Let v = v1e1 + v2e2 ∈ C
2. Then

G

( )

(v) =
(

⊗
)

◦
(

⊗
)

(v)

=
(

⊗
)

(v ⊗ e1 ⊗ e2 − v ⊗ e2 ⊗ e1)

= (−v2)e2 − (v1)e1 = −v .
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The Fundamental Binor Identity

Proposition (Fundamental Binor Identity)

= −

Proof.

1 represents the map a ⊗ b 7→ b ⊗ a

2 want to show that : a ⊗ b 7→ a ⊗ b − b ⊗ a

3 verify each element in the basis for C
2 ⊗ C

2, e.g.

e2 ⊗ e1
∩
7→ −1

∪
7→ −(e1 ⊗ e2 − e2 ⊗ e1) = e2 ⊗ e1 − e1 ⊗ e2 X

4 remaining basis elements work similarly

Remark. The binor identity provides a means of eliminating all crossings
in an SL(2, C) trace diagram!
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Matrices at Critical Points

Proposition (Critical Points)

Matrices pass through critical points via

A A = det(A) and A A = det(A) .

Proof.

The definition detA = a11a22 − a12a21 becomes the diagram

det(A) =
e1 e2

A A

e1 e2

−
e1 e2

A A

e1 e2

=
e1 e2

A A

e1 e2

=
A A

e1 e2

.

Corollary

A = A ĀA = det(A) Ā and Ā =
1

det(A)
A .
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1

det(A)
A .

Elisha Peterson Trace Diagrams, Spin Networks, and Spaces of Graphs



Introduction
Trace Diagrams and Their Properties

Structure of the Coordinate Ring
Central Functions

Defining the Functor G

Trace Diagram Relations
Computing Trace Identities

Matrices at Critical Points

Proposition (Critical Points)

Matrices pass through critical points via

A A = det(A) and A A = det(A) .

Proof.

The definition detA = a11a22 − a12a21 becomes the diagram

det(A) =
e1 e2

A A

e1 e2

−
e1 e2

A A

e1 e2

=
e1 e2

A A

e1 e2

=
A A

e1 e2

.

Corollary
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Crossings at Local Extrema

Proposition

Show that the diagram may be well-defined.

Proof.

Move the crossing away from the extremum:

= = − = + .

Using = would have provided the same answer.

Remark: This makes the condition that crossings are disjoint from local
extrema unnecessary.
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Looping Relation

Proposition (Looping Relation)

Arcs may be wrapped around as follows:

= and consequently
A

=
A

= A

Proof.

Apply the algebraic definition or the binor identity in each case.
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Closed Diagrams: Trace Polynomials

Closed diagrams with matrices can be thought of as

Functions G×r → C invariant under simultaneous conjugation;
Trace polynomials.

Proposition (Trace)

A = A = tr(A) = a11 + a22.

Corollary

= I = tr(I ) = 2 and A A = 2 det(A).
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Closed Diagrams: Trace Polynomials

Closed diagrams with matrices can be thought of as

Functions G×r → C invariant under simultaneous conjugation;
Trace polynomials.

Proposition (Trace)

A = A = tr(A) = a11 + a22.

Proof.

A = ◦ A ⊗ I ◦ : 1 7→ Ae1 ⊗ e2 − Ae2 ⊗ e1

= (a11e1 + a21e2) ⊗ e2 − (a12e1 + a22e2) ⊗ e1

7→ a11 + a22.

Corollary

= I = tr(I ) = 2 and A A = 2 det(A).
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Summary of Diagram Rules

Diagram Rule (Summary)

B

A
= AB = − = +

= − =
A

= A

A = det(A) Ā A A = det(A) A A = det(A)

A = A = tr(A) = 2 A A = 2 det(A)
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Example I

Example

Use the binor identity to reduce tr(A2B) = [A2B] = A2B .

Solution 1. Draw the diagram with crossings and apply the binor identity:

A A B =

This corresponds to

[A2B] = [A]2[B] − 2 det(A)[B] − det(B)[A][AB̄] + det(A)[B]

= [A]2[B] − det(A)[B] − det(B)[A][AB̄].
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Example II: The Commutator Relation

Proposition

tr(ABĀB̄) = [ABĀB̄] = [A]2 + [B]2 + [AB]2 − [A][B][AB] − 2.

Proof.

Represent the trace diagrammatically as
B

A

A

B

= − A A B B .

= +

= +
(

−
)

= +
(

+
)

−
(

+
)

.

Re-insert matrices and keep track of signs:

[ABĀB̄] = [B]2 − [A][B][AB̄] + [A]2 + [AB̄]2 − 2.

Use [AB̄] = [A][B] − [AB] to obtain the desired relation.
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Example III: The 2 × 2 Characteristic Equation

The characteristic equation arises by replacing the eigenvalues in the
characteristic polynomial λ2 − tr(A)λ + det(A) = 0 with the matrix.

Proposition

The binor identity implies the characteristic equation

A2 − tr(A)A + det(A)I = 0.

Proof.

By the binor identity,

AA = A A − AA

This last expression is A2 = A ∗ tr(A) − det(A)I , the characteristic
equation.
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The Category Morphism

The next task is to construct F in the figure below.

π C [G×r ]
G

x tr(ρ(x)) = G(t)

T2

t = F(x)

F G

We will use this construction to examine the structure of the coordinate
ring C[χ].
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Surface Group Representations

We now define the function F : π1 → T2 which assigns a trace diagram to
each element of the fundamental group.

Assign ‘surface cuts’ to
elements of the
fundamental group.

Mark loops at the cuts
using the representation
π1 → G .

Ensure drawing is
compatible with an “up”
direction.

The additional action of G takes this element to tr(CBBĀ).
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We now define the function F : π1 → T2 which assigns a trace diagram to
each element of the fundamental group.

Assign ‘surface cuts’ to
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using the representation
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The additional action of G takes this element to tr(CBBĀ).
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The Character Variety

The ring of trace polynomials may be used to construct the following:

The G-character variety X is the algebraic variety whose coordinate
ring is the trace ring generated by representations.

In other words, the space of trace diagrams on a surface can be thought
of as precisely C[X].
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Rank Two

Proposition

For surfaces with free group of rank two, the coordinate ring C[χ] is a

polynomial ring in three indeterminates.

Proof.

Given the binor identity

= − , all trace loops on
the three-holed sphere can be
reduced to three basic loop
types.

A BA B
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??

Problem. There are an infinite number of diagams without crossings!

Definition

A 2-trace diagram in a surface is simple if it has no self-crossings and
passes through each cut set (or contains each matrix variable) at most
once.
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Reduction of Diagrams I

Proposition

Trace diagram relations can reduce any surface loop to simple diagrams.

Proof.

Use the binor identity to remove crossings. For duplicates:

= = −

= − −

= − + − .
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Reduction of Diagrams II

Remark. Algebraically, the ability to reducec is simply the statement that
SL(2, C) trace relations can be used to reduce the polynomials for
tr(A · · ·A · · · ) and tr(A · · · Ā · · · ).
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4-Element Trace Relations

Proposition

2[ABCD] = [A][B][C ][D] + [AB][CD] + [BC ][AD] − [AC ][BD]

− [A][B][CD] − [B][C ][AD] − [C ][D][AB] − [A][D][BC ]

+ [A][BCD] + [B][CDA] + [C ][DAC ] + [D][ABC ].

Proof.

Reduce the crossings in the following diagram:

A

B

C

D

= +

A

B

C

D

−

A

B

C

D

−

A

B

C

D

−

A

B

C

D

−

A

B

C

D

+

A

B

C

D

+

A

B

C

D

+

A

B

C

D

+

A

B

C

D

+

A

B

C

D

+

A

B

C

D

+

A

B

C

D

−

A

B

C

D

−

A

B

C

D

−

A

B

C

D

−

A

B

C

D

+

A

B

C

D

Now take the trace of all elements. The figure at left is [AC ][BD]. The
first five terms on the right contribute to the 2[ABCD] term. The
remaining 11 terms are the rest of the relation.
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Diagrammatic Generators

We have now proven:

Theorem

The set of simple trace diagrams with no more than three elements

generates the space of all closed trace diagrams on a surface.

But there are more diagrammatic relations...
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Three Element Trace Relations I

Proposition

[ABC ] + [CBA] = [A][BC ] + [B][AC ] + [C ][AB] − [A][B][C ]

Proof.

The anti-symmetrizer 3 sends any a ⊗ b ⊗ c ∈ C
2 ⊗ C

2 ⊗ C
2 to zero.

Given that 3 = 1
6

(

+ + − − −
)

, this implies

the relations
+ = − + + + ;

A B C + A B C = − A B C + A B C + A B C + A B C . This

is precisely the identity above.
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Three Element Trace Relations II

Proposition

[ABC ][CBA] = [A]2 + [B]2 + [C ]2 + [AB]2 + [BC ]2 + [AC ]2

− [A][B][AB] − [B][C ][BC ] − [A][C ][AC ] + [AB][BC ][AC ] − 4.

Proof.

The crux of the argument comes in reducing the crossings of the following
diagram, which when closed gives the product [ABC ][CBA]:

A A B̄ B̄ C C

The result will be a diagam with sixteen terms including loops for
elements such as [AB̄] or [AB]. Applying the relation
[AB̄] = [A][B] − [AB] reduces the result to the above form.
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Some Invariant Theory Results

Theorem

A minimal generating set of C[χ] consists of {tr(Xi )}, {tr(XiXj)} for

i < j , and {tr(XiXjXk)} for i < j < k.

Theorem

A maximal independent set of generators consists of {tr(Xi )} and

{tr(XiXj)} for j = i + 1 or j = i + 2.

We have diagrammatically proven these theorems, except for
demonstrating certain two-element trace relations.
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Why the Diagrammatic Approach?

Diagrams are good for:

exhibiting mathematical structure

duality corresponds to turning diagrams upside-down

relations are often simply expressed: = −

connecting algebra with geometry

when placed on surfaces, trace diagrams describe the moduli space of
representations of a surface group

discovering similarities among mathematical structures

= − is both a 2 × 2 trace identity and the defining relation of
the Poisson bracket on the coordinate ring of the character variety

computational algorithms

relations used to generate recurrence equations;
illustrative method for generating trace identities.
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Basis for the Coordinate Ring I

Diagrams can be used to construct a basis for the trace ring.

AA BA BA BA BA BA B

7
6

5

Expand symmetrizers and remove crossings to
obtain a trace polynomial

χ
7,6
5 (tr(A), tr(B), tr(AB̄))

Theorem

The polynomials χ
a,b
c

comprise a basis for the

coordinate ring of the

SL(2, C)-character

variety of the

three-holed sphere.

Proof uses the
unitary trick and
the Peter-Weyl
Theorem.
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Basis for the Coordinate Ring II

Shorthand:
AA BA BA BA BA BA B

7 6

5
↔

7

A

6

B5

Remarks:

Edges are labeled by representations.

The basis exhibits considerable symmetry.

The basis depends only on fundamental group of the surface.

To generalize for other surfaces, add more loops:
A B C
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