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Basis for the Coordinate Ring I

Diagrams can be used to construct a basis for the trace ring.

AA BA BA BA BA BA B

7
6

5

Expand symmetrizers and remove crossings to
obtain a trace polynomial

χ
7,6
5 (tr(A), tr(B), tr(AB̄))

Theorem

The polynomials χa,b
c

comprise a basis for the
coordinate ring of the
SL(2,C)-character
variety of the
three-holed sphere.

Proof uses the
unitary trick and
the Peter-Weyl
Theorem.
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The Peter-Weyl Theorem

The Peter-Weyl Theorem provides a means to describe a basis of
functions for a coordinate ring.

Theorem (Corollary of Peter-Weyl)

The coordinate ring C[G ] for a reductive linear algebraic group G
decomposes:

⊕

λ∈Λ

V ∗
λ ⊗ Vλ ∼= C[G ],

where Λ is the set of irreducible representations (of the maximal compact
subgroup U ⊂ G), and the isomorphism is given by

v∗ ⊗ w 7→ (x 7→ v∗(x · w)) .
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Central Functions of the Character Variety

Theorem (Central Function Decomposition)

The coordinate ring of the character variety may be decomposed

C[Xr ] ∼=
⊕

~λ∈Λr

⊕

ψ=φ∈⌈~λ⌋

Cχ
ψ,φ
~λ
,

where ψ = φ ∈ ⌈~λ⌋ indicates that Vψ,Vφ →֒ Vλ1 ⊗ · · · ⊗ Vλr
, but may

possibly be different injections.

Definition (Central Functions)

The Central Functions of the G -character variety χr are the functions
χ
ψ,φ
~λ

in the above decomposition.
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Proof of the Central Function Decomposition

Proof.

When a surface Σ has fundamental group free of rank r , the isomorphism
C[Hom(π,G )] ∼= C[G×r ] ∼= C[G ]⊗r and the previous result give:

C[X] ∼=
(

C[G ]⊗r
)G ∼=

(

⊗

r

⊕

λ∈Λ

V ∗
λ ⊗ Vλ

)G

∼=
⊕

(λ1,...,λr )∈Λr

((

V ∗
λ1
⊗ · · · ⊗ V ∗

λr

)

⊗ (Vλ1 ⊗ · · · ⊗ Vλr
)
)G
.

Schur’s Lemma and G -invariance permit a reduction to the desired form:

C[Xr ] ∼=
⊕

~λ∈Λr

⊕

ψ=φ∈⌈~λ⌋

Cχ
ψ,φ
~λ
.
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.
2 Represent the injections Vψ,Vφ →֒ Vλ1 ⊗ · · · ⊗ Vλr

diagrammatically.
3 Combine the injections, the G×r -action, and the trace property.
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.

The isomorphism V ∗
λ ⊗ Vλ ∼= Cχλ is defined for a basis {vi} of

Vλ by

v∗ ⊗ w 7→ tr(x 7→ v∗(x · w)) =
∑

i

v∗
i (x · vi ).

The corresponding diagram is Cχλ = x

λ

.

2 Represent the injections Vψ,Vφ →֒ Vλ1 ⊗ · · · ⊗ Vλr
diagrammatically.

3 Combine the injections, the G×r -action, and the trace property.
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.
2 Represent the injections Vψ,Vφ →֒ Vλ1 ⊗ · · · ⊗ Vλr

diagrammatically.

Each such injection corresponds to a term in the decomposition
of this tensor product into irreducible elements.

Vλ1 Vλ2 Vλ3 Vλ4

Vψ

Vα

Vβ

In this diagram, each node represents an injection Vα →֒
Vβ ⊗ Vγ , and the tree gives a well-defined way to perform this
decomposition.

3 Combine the injections, the G×r -action, and the trace property.Elisha Peterson Diagrammatic Central Functions
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.
2 Represent the injections Vψ,Vφ →֒ Vλ1 ⊗ · · · ⊗ Vλr

diagrammatically.
3 Combine the injections, the G×r -action, and the trace property.

Vλ1 Vλ2 Vλ3 Vλ4

Vψ

Vα

Vβ −→
A B C D
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Cut Triangulations

A cut set as defined in the previous talk
permits “opening” up a surface onto the plane.

Definition

A cut triangulation is an extension of a cut set
which divides the surface into a set of triangles
(with neighborhoods of vertices removed).

Cut triangulations provide canonical
decompositions of

((

V ∗
λ1
⊗ · · · ⊗ V ∗

λr

)

⊗ (Vλ1 ⊗ · · · ⊗ Vλr
)
)G
.
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The Diagrammatic Basis Theorem

Theorem

Let Σ be a compact surface with boundary. Given a cut triangulation
extending a specified cut set, every G-admissible labelling of its dual
1-skeleton induces a trace diagram which is identified with a G-invariant
function Hom(π,G )→ C. Moreover, for every cut triangulation, the set
of such diagrams is a basis for C[X].
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Example: the 1-Holed Torus

−→ −→
BA

Question. What is the diagrammatic algebra corresponding to these
trivalent G -trace diagrams??
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Representation Theory

Trick to working with trace diagrams marked by representations:

1 Use injections Vλ →֒ V ⊗ · · · ⊗ V to access a “copy” of the
representation lying inside tensor algebra (Young Projectors);

2 Use the n-Trace Diagram Calculus to manipulate the diagrams.

For many Lie groups, all irreducible representations can be understood in
this way:

SL(2,C): 2 , 3 , etc.

SL(3,C): 3 , 3 ,
2

2
+

2

2 , etc.
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Symmetrizers and Anti-Symmetrizers

Definition

The symmetrizer map n : V⊗n → V⊗n is the normalized sum of all
permutations. For example:

2 =
1

2

(

+
)

, 3 =
1

6

(

+ + + + +
)

.

The anti-symmetrizer map n : V⊗n → V⊗n is the normalized sum of
even permutations minus odd permutations. For example:

2 =
1

2

(

−
)

, 3 =
1

6

(

+ + − − −
)

.

The symmetrizer n can be thought of as a map Symn(V ) →֒ V⊗n,
hence picks out a copy of the irreducible representation Vn inside the
tensor product.
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SL(2, C) Representation Diagrams

When G = SL(2,C), the following are true:

n ←→ Vn = Symn(V );

2 =
1

2

(

−
)

=
1

2
;

n = 0 for n > 2.

The symmetrizers can be rewritten as follows:

2 =
1

2

(

+
)

= − 1

2
;

3 = − 1

3

(

+ +
)

= − 2

3

(

+
)

− 1

3

(

+
)

;

4 = + · · · .

This is the practical approach to the computation of central functions.
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Rank One: Sample Computation

Example

Compute χ3(A) = A

3

.

Solution. Expand the symmetrizer as follows:

3 = − 1

3

(

+ +
)

.

Apply the matrix and close off the terms to get:

χ3(A) = [A]3 − 1

3
(3[A][AĀ]) = [A]3 − 1

3
(6[A]) = [A]3 − 2[A].
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Trivalent Trace Properties I

Define Θ(a, b, c) = b
a

c

and ∆(c) =
c
. Then:

Proposition (Bubble, Fusion Relations)

b
d

a
c

=

(

Θ(a, b, c)

∆(c)

c

)

δcd ;

a b =
∑

c∈⌈a,b⌋

(

∆(c)

Θ(a, b, c)

)

a

a
c

b

b
;

Proposition (Recoupling)

cb

e
a

d

= C
a b

f
c

d

for some coefficient C depending on a,. . . ,f called a 6j -Symbol.
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Rank One

Definition

The rank one central functions (corresponding to an annulus) are

χa(A) = A

a

.
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Rank One: Ring Structure

Proposition (Rank One Product Formula)

χa · χb =
∑

c∈⌈a,b⌋

χc .

Proof.

The relation a b =
∑

c∈⌈a,b⌋

(

∆(c)
Θ(a,b,c)

)

a

a
c

b

b
implies

A

a

A

b

=
∑

c∈⌈a,b⌋

(

∆(c)

Θ(a, b, c)

)

A A

a b c

.

Pull the matrix through the node and apply the bubble identity:

χaχb =
∑

c∈⌈a,b⌋

(

∆(c)

Θ(a, b, c)

)(

Θ(a, b, c)

∆(c)

)

A

c

.
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Proposition (Rank One Product Formula)

χa · χb =
∑

c∈⌈a,b⌋

χc .

Proof.

The relation a b =
∑

c∈⌈a,b⌋

(

∆(c)
Θ(a,b,c)

)

a

a
c

b

b
implies

A

a

A

b

=
∑

c∈⌈a,b⌋

(

∆(c)

Θ(a, b, c)

)

A A

a b c

.

Pull the matrix through the node and apply the bubble identity:

χaχb =
∑

c∈⌈a,b⌋

(

∆(c)

Θ(a, b, c)

)(

Θ(a, b, c)

∆(c)

)

A

c

.
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Rank One: Table

As a special case of the previous result,

x · χa−1 = χ1 · χa−1 = χa−2 + χa.

Hence, the central functions satisfy the Chebyshev or Fibonacci
recurrence χa = x · χa−1 − χa−2 and are easily computed:

χ0(A) = 1

χ1(A) = x

χ2(A) = x2 − 1

χ3(A) = x3 − 2x

χ4(A) = x4 − 3x + 1.
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Rank One: Other Properties

Some other results for rank one central functions:

xn =
∑⌊ n

2
⌋

r=0

(

(

n
r

)

−
(

n
r−1

)

)

χn−2r , where
(

n
r

)

= 0 for r ≤ 0;

χn =
∑⌊ n

2
⌋

r=0(−1)r
(

n−r
r

)

xn−2r ;

If λ is an eigenvalue of A, then χn = [n + 1]λ, the quantized integer
with q = λ;

If tr(A) = i =
√
−1, then χn = inFn, where Fn is the nth Fibonacci

number.
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Rank Two

Definition

The rank two central functions for C[X2] are: χa,b
c (A,B) = A B

a b c

,

where {a, b, c} is any admissible triple.

Alternate Parameters: Define χα,β,γ ≡ χa,b
c ,

where α ≡ 1
2(−a + b + c), β ≡ 1

2(a− b + c), and
γ ≡ 1

2(a + b − c). These are the number of each
type of loop occurring when the symmetrizers are
expanded. The admissibility condition is then
α, β, γ ≥ 0.

AAA BBA BA BA BA B
7 6

5

We typically write χa,b
c in terms of x = tr(A), y = tr(B), z = tr(AB̄).
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Rank Two: Sample Computation

Example

Compute χ1,2
3 (A,B) = A B

1 2 3

.

Solution. Expand the symmetrizer as follows:

3 = − 1

3

(

+ +
)

.

Apply the matrix and close off the terms to get:

χ
1,2
3 (A,B) = [A][B]2 − 1

3
([AB̄][B] + [AB̄][B] + 2[A])

= [A][B]2 − 2

3
([AB̄][B] + [A]).
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Rank Two: Symmetry Property

Theorem

If σ is any permutation on three letters, then

χσ(α,β,γ)(σ(y , x , z)) = χα,β,γ(y , x , z).

Proof.

AAA BBA BA BA BA B
7

6

5
←→
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Rank Two: Recursion Property

Define χ̂α,β,γ ≡ a!b!c!χα,β,γ and δ ≡ α+ β + γ (called the rank).
Define α ≡ α+ 1 and α ≡ α− 1.

Theorem (Rank Two Recursion)

χ̂α,β,γ = x · acχ̂α,β,γ − γ2χ̂α,β,γ − α2χ̂α,β,γ − δ2(β − 2)2χ̂α,β,γ .

Proof Idea. Use the fusion identity to join the terms x = tr(A) and
χα,β,γ , and the bubble identity to reduce the result back to the standard
form of central functions.

Notes.

As a corollary, the leading term of χα,β,γ is xβyαzγ .

Together with the symmetry property, this provides an efficient
technique for computing central functions.
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Rank Two: Table

γ

β

α

x3 − 2xy3 − 2y

z3 − 2z

x2y − 2
3(y + xz)xy2 − 2

3(x + yz)

x2z + ...

xz2 + ...

y2z + ...

yz2 + ...

xyz − 1
2(x2 + y2 + z2) + 1

x2 − 1y2 − 1

z2 − 1

xy − 2z

xz − 2yyz − 2x

xy

z

1 δ = 0

δ = 1

δ = 2

δ = 3
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Rank Two: Ring Structure

Theorem (Rank Two Product)

χa,b
c χ

a′,b′

c ′ =
∑

j1,j2,k,l ,m

Cj1,k,l ,mCj2,k,l ,m
Θ(a,a′,k)Θ(b,b′,l)Θ(c,c ′,m)

∆(k)∆(l)∆(m) χ
l ,m
k ,

where the sum is over eight admissible triples {a, a′, k}, . . . , {k , l ,m} and

Cji ,k,l ,m = ∆(ji )
Θ(a′,b,ji )

[

a a′ k
ji c b

] [

b b′ l
ji c ′ a′

] [

k l m
c ′ c ji

]

.

Here, [· · · ] are recoupling coefficients known as 6j Symbols.

Idea of Proof.

A B

a b
c

A B

a
′ b ′ c ′ −→

A BA B

a ba
′ b ′ −→

A BA B
−→ A B

k l m
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Rank Three

Definition

The rank three central functions for C[X3] are:

χ
a,b,c
d ,e,f (A,B,C ) =

A B C

e

a b
d c f

,

where the triples {a, b, d}, {a, b, e}, {c , d , f }, and {c , e, f } are all
admissible.

Remark. There are many choices of diagram for rank three central
functions, and the polynomials obtained will be very different depending
on how they are drawn.
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Rank Three: Sample Computation

Example

Compute χ1,1,1
0,2,1 =

A B C

2

1 1
0

1 1
.
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Rank Three: Partial Table

The interesting cases are when a, b, c 6= 0; otherwise, the functions reduce
to rank two central functions. Also, either d 6= 0 or e 6= 0; otherwise, the
diagram is disconnected.

Let x = tr(A), y = tr(B), z = tr(C ), X = tr(BC̄ ), Y = tr(AC̄ ), and
Z = tr(AB̄).
Case a = b = c = 1:

χ
1,1,1
0,2,1 = 1

2zZ − X

χ
1,1,1
2,0,1 = 1

2zZ − [ACB̄]

χ
1,1,1
2,2,1 = xX − 1

2(X + [ACB̄]) + 1
4zZ

χ
1,1,1
2,2,3 = xyz − 2

3(zZ + xX ) + 1
3(X + [ACB̄]).

Case a = b = c = 2:

χ
2,2,2
2,2,2 = xXzZ − 1

2(xyZ + xYz + Xyz + XYZ + XzZ ) + 1
4(x2 + X 2 +

y2 + Y 2) + 1
2(z2 + Z 2) + 1

4z2Z 2 − 1
2zZ [ACB̄]− 1
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Central Functions for Rank Three and Beyond

There are a number of challenges to overcome before the general theory
of central functions can be full developed. For a systematic approach to
work, central functions should be defined in a standard, symmetric way for
all ranks. There are many ways to do this, for example:

A

B

C

and

C

B

A

The advantage in either case is that the functions are built up from
several identical components. This should provide a standard technique
for developing recursion and product formulas, as well as computational
algorithms.
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Central Functions and Surface Structure

Question. How can trace diagrams take into account the structure of the
surface as well as its fundamental group?

Partial Answer. Use the Poisson structure!

Definition

The Goldman bracket {f , g} of two loops on a surface is the sum over all
essential intersections of the following:

f g
→ −

This bracket satisfies the Jacobi and Leibniz identities, and so gives
the ring a Poisson structure.

The bracket is simply the application of the binor identity = −
to the essential crossings in a diagram.
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Generalizations: Higher Dimensions

To generalize to n × n matrices, generalize :

Example

Trace diagrams for 3× 3 matrices are trivalent graphs, with
antisymmetrizer

= 6 3 = + + − − − .

The local maxima and minima are defined via

: C→ V ⊗ V ⊗ V ;

1 7→ e1 ⊗ e2 ⊗ e3 + · · · − e1 ⊗ e3 ⊗ e2.

Predrag Cvitanovic (a physicist) has generalized the SL(2,C) diagrams,
known to physicists as “spin networks” to all classical Lie groups.
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Central Functions and Lie Algebras

Question. Can the theory of central functions be developed using Lie
algebras rather than Lie groups?

Answer. Yes... I think! One interesting fact is that there is a nice
diagram for transforming a matrix X ∈ SL(2,C) into a matrix
x ∈ sl(2,C), since the result necessarily has trace 0. This is the mapping

X 7→ X 1
2tr(X )I . Such diagrams are the primary “building blocks” of one

type of central function:

A

B

C
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Central Functions and Quantum Groups

Question. How does this all relate to knot theory and quantum groups?
Answer.

Central functions are very closely related to the theory obtained from
“quantizing” crossings. The correspondence is exact in rank one.

Is there a quantum version of central functions?

The quantization of the trace diagram algebra is the Kauffman
Bracket Skein Module of a surface.
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