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What is a Trace Diagram?

What is a Trace Diagram? (informally)

Graph marked by group elements
(usually, matrix group);

May be disconnected;

May have several endpoints;

May be closed (no endpoints);

Subject to topological rules;

Satisfies special relations;

Generalizable to n-valent graphs;

Each diagram corresponds to a
function between tensor powers of
a module/vector space;

Closed diagrams are trace maps.

A B

C

Ā
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What is a Trace Diagram?

What is a Trace Diagram? (informally)

Graph marked by group elements
(usually, matrix group);

May be disconnected;

May have several endpoints;

May be closed (no endpoints);

Subject to topological rules;

Satisfies special relations;

Generalizable to n-valent graphs;

Each diagram corresponds to a
function between tensor powers of
a module/vector space;

Closed diagrams are trace maps.

A : V → V via v 7→ A · v .
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Graph marked by group elements
(usually, matrix group);

May be disconnected;

May have several endpoints;

May be closed (no endpoints);

Subject to topological rules;
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Generalizable to n-valent graphs;
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What is a Trace Diagram?

What is a Trace Diagram? (slightly more formally)

Definition

A trace diagram is a marked graph drawn on the plane relative to some
“up” direction which provides a well-defined description of a multilinear
map depending on the matrix markings.

The domain and range of the corresponding multilinear map are
determined by the “input” strands, by convention along the bottom
edge, and “output” strands, by convention along the top edge.

Example

A B

C

Ā : V⊗3 → V⊗5
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What is a Trace Diagram?

Why the Diagrammatic Approach?

Diagrams are good for:

exhibiting mathematical structure

duality corresponds to turning diagrams upside-down

relations are often simply expressed: = −
connecting algebra with geometry

when placed on surfaces, trace diagrams describe the moduli space of
representations of a surface group

discovering similarities among mathematical structures

= − is both a 2× 2 trace identity and the defining relation of
the Poisson bracket on the coordinate ring of the character variety

computational algorithms

relations used to generate recurrence equations;
illustrative method for generating trace identities.
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What is a Trace Diagram?

Mathematical Ancestors and Siblings

Ancestors:

Euler: graph theory

Frege: Begriffsschrift c. 1890

Feynman: Feynman diagrams

Penrose: spin networks

Early sources:

Stedman: group theory

Cvitanovic: ‘bird tracks’

Siblings:

Kauffman: Kauffman bracket

IHX, STU Relations

Kuperberg Spiders/Webs
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Interpreting Trace Diagrams
The Fundamental Binor Identity
Generalizations

Interpreting Trace Diagrams

How can the map of a diagram be constructed?

tensor algebra (rigorous)

topological relations (intuitive)
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Interpreting Trace Diagrams
The Fundamental Binor Identity
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The Tensor Algebra Approach

The algebraic construction is:

Definition

If e1, e2 are the standard basis elements of C2, then

: V ⊗ V → C takes e1 ⊗ e2 7→ 1, e2 ⊗ e1 7→ −1 and ei ⊗ ei 7→ 0

and : C → V ⊗ V takes 1 7→ e1 ⊗ e2 − e2 ⊗ e1.
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Interpreting Trace Diagrams
The Fundamental Binor Identity
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Basic Multiplication

Diagram Rule (Multiplication)

For A ∈ Mn×n, A represents a map A : Cn → Cn, and I = the identity
map I : Cn → Cn. The product of matrices AB is represented by

composition of such maps:
B

A
= AB .

We now restrict to 2× 2 matrices, although the diagrams can be easily
generalized. Additionally, the diagrams are considered to be contained in a
C-algebra, allowing finite linear combinations of diagrams.
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Interpreting Trace Diagrams
The Fundamental Binor Identity
Generalizations

Arc Diagrams I: Maxima and Minima

Diagram Rule (Critical Points)

Matrices pass through critical points via

A A = det(A) and A A = det(A) .

Corollary

For A ∈ GL(2, C) and denoting the inverse of A by Ā = A−1,

A = A ĀA = det(A) Ā and Ā =
1

det(A)
A .

Remark. When A ∈ SL(2, C), this rule simplifies further: moving a matrix

through a max/min corresponds to inversion, and A A = .
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Interpreting Trace Diagrams
The Fundamental Binor Identity
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Arc Diagrams II: Wraps and Kinks

Diagram Rule (Loops and Kinks)

Arcs may be wrapped around as follows:

= and
A

=
A

= A

Kinks introduce a sign as follows:

= − .

Example

A
B = − A B = −

A

B
= − BA .
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Loop Diagrams: Trace and Determinant

A closed diagram (loop) with matrices is a linear map C → C and
interpreted as a complex number or a trace polynomial.

Diagram Rule (Trace)

A = A = tr(A).

Corollary

= I = tr(I ) = 2 and A A = 2det(A).

Example

A B + B̄ B̄ A2B = det(B) AB̄ +
2tr(A2B)

det(B)
= det(B)tr(AB̄)+

2tr(A2B)

det(B)
.
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Interpreting Trace Diagrams
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Summary of Diagram Rules

Diagram Rule (Summary)

B

A
= AB

A A = det(A) and A A = det(A) and A = det(A) Ā

= and
A

= A and = −

A = A = tr(A) and = 2 and A A = 2det(A)
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The algebraic construction is:

Definition
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The Fundamental Binor Identity

Proposition (Fundamental Binor Identity)

The rules above imply the relation = − .

Algebraic Proof.

1 represents the map a⊗ b 7→ b ⊗ a

2 want to show that : a⊗ b 7→ a⊗ b − b ⊗ a

3 verify each element of the basis for C2 ⊗ C2, e.g.

e2 ⊗ e1
∩7→ −1

∪7→ −(e1 ⊗ e2 − e2 ⊗ e1) = e2 ⊗ e1 − e1 ⊗ e2 X

4 remaining basis elements work similarly

Remark. The binor identity provides a means of eliminating all crossings
in a trace diagram!
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The Chacteristic Equation

The characteristic polynomial of a 2× 2 matrix is

λ2 − tr(A)λ + det(A) = 0.

Proposition

The binor identity implies the characteristic equation

A2 − tr(A)A + det(A)I = 0.

Proof.

By the binor identity,

AA = A A − AA

This last expression is A2 = A ∗ tr(A)− det(A)I , the characteristic
equation.

Elisha Peterson Trace Diagrams, Surfaces, and Character Varieties



Introduction
Working with Trace Diagrams

Applications
Concluding Remarks

Interpreting Trace Diagrams
The Fundamental Binor Identity
Generalizations

Using the Binor Identity I: Trace Relations

Example

Use the binor identity to reduce tr(A2B) = A2B .

Solution 1. Draw the diagram with crossings and apply the binor identity:

A A B =

This corresponds to

tr(A2B) = tr(A)2tr(B)− 2 det(A)tr(B)− tr(A)tr(AB̄) det(B) + det(A)tr(B).

tr(A2B) = tr(A)2tr(B)− det(A)tr(B)− det(B)tr(A)tr(AB̄).
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Example
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Interpreting Trace Diagrams
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Using the Binor Identity II: Kinks and Signs

Example

Use the binor identity to evaluate .

Solution. Move the crossing away from the extremum:

= = − = + .

Remark: using = would have provided the same answer.
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The Determinant

Proposition

The tensor algebra definition of and imply A A = det(A) .

Proof.

The definition det A = a11a22 − a12a21 becomes the diagram

det(A) =
e1 e2

A A

e1 e2

−
e1 e2

A A

e1 e2

=
e1 e2

A A

e1 e2

=
A A

e1 e2

.
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Interpreting Trace Diagrams
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Generalizations: Symmetrizers and Anti-Symmetrizers

Definition

The anti-symmetrizer generalizes as follows:

2 =
1

2
=

1

2

(
−

)
3 =

1

6

(
+ + − − −

)
The symmetrizer is

2 =
1

2

(
+

)
.

3 =
1

6

(
+ + + + +

)
.
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Interpreting Trace Diagrams
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Generalizations: Higher Dimensions

To generalize to n × n matrices, generalize :

Example

Trace diagrams for 3× 3 matrices are trivalent graphs, with
antisymmetrizer

= 6 3 = + + − − − .

The local maxima and minima are defined via

: C → V ⊗ V ⊗ V ;

1 7→ e1 ⊗ e2 ⊗ e3 + · · · − e1 ⊗ e3 ⊗ e2.
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Linear Algebra
Surfaces and Character Varieties

A Not-So-Characteristic Equation

Proposition

Diagrammatically, the characteristic equation for an n × n matrix is:

det(A) ∗ I =
A A A A

n = n! ∗ A A A A
n

Example

det(A) ∗ I = 2 A A
2

= A A − AA = A ∗ tr(A)− A2.
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Surfaces and Character Varieties

Trace Relations: the Commutator

Proposition

tr(ABĀB̄) = tr(A)2 + tr(B)2 + tr(AB)2 − tr(A)tr(B)tr(AB)− 2.

Proof.

Represent the trace diagrammatically as
B

A

A

B

= − A A B B .

= +

= +
(

−
)

= +
(

+
)
−

(
+

)
.

Re-insert matrix and keep track of signs:

tr(ABĀB̄) = tr(B)2 − tr(A)tr(B)tr(AB̄) + tr(A)2 + tr(AB̄)2 − 2.

Use tr(AB̄) = tr(A)tr(B)− tr(AB) to obtain the desired relation.
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Surface Group Representations

Suppose we are given a representation π1 → G for some matrix group G .
What happens when a closed trace diagram is drawn on a surface?

Assign ‘surface cuts’ to
elements of the
fundamental group.

Mark loops at the cuts
using the representation
π1 → G .

Assigns a trace polynomial
to each surface loop [here,
tr(ĀBBC )].
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The Character Variety

The ring of trace polynomials may be used to construct the following:

Definition

The G-character variety is the algebraic variety whose coordinate ring is
the trace ring generated by representations.

Example

For surfaces with free group of rank two, the coordinate ring of the
SL(2, C)-character variety is a polynomial ring in three undeterminants.

This can be proved by
recognizing that (via the binor
identity) all trace loops on the
three-holed sphere can be
reduced to three basic loops.

A BA B
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Basis for the Trace Ring I

Diagrams can be used to construct a basis for the trace ring.

A BA B

Expand symmetrizers and remove crossings to
obtain a trace polynomial

χ7,6
5 (tr(A), tr(B), tr(AB̄))

Theorem

The polynomials χa,b
c

comprise a basis for the
coordinate ring of the
SL(2, C)-character
variety of the
three-holed sphere.

Proof uses the
unitary trick and
the Peter-Weyl
Theorem.
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Basis for the Trace Ring II

Shorthand:
AA BA BA BA BA BA B

7 6
5

↔
7

A

6

B5

Remarks:

The basis exhibits considerable symmetry.

The basis depends only on fundamental group of the surface.

To generalize for other surfaces, add more loops:
A B C

For most surfaces, the trace ring is not free.

Edges are labeled by representations.
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Poisson Structure

To capture the boundary structure of a surface, one can introduce a
locally-defined Poisson structure on this ring:

Definition

The Goldman bracket {f , g} of two loops on a surface is the sum over all
essential intersections of the following:

f g
→ −

This bracket satisfies the Jacobi and Leibniz identities, and so gives
the ring a Poisson structure.

The bracket is simply the application of the binor identity = −
to the essential crossings in a diagram.
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