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SPIN NETWORKS AND SL(2; C )-CHARACTERVARIETIESSEAN LAWTON, ELISHA PETERSONAbstrat. Let G = SL(2; C ); � be a free group of rank r, andlet R = Hom(�;G) be the G-representation variety of �. G atson the oordinate ring C [R℄ by simultaneous onjugation in ther matrix variables of a regular funtion f , sine R �= G�r. Thesubring C [R℄G of invariants under this ation is �nitely generated,so its geometri points X = R==G are an aÆne variety identi�edwith the reduible haraters of R. X is alled the G-haratervariety of �. We present a onstrutive proof that the oordinatering C [G℄ is isomorphi as a G-module to the invariant ring ofmatrix oeÆients, giving a natural additive basis of C [R℄G interms of lass funtions on the irreduible sub-representations of G.These lass funtions may be expliitly desribed in terms of spinnetworks, a speial type of graph useful in the study of SL(2; C )representations. We onstrutively determine the multipliativestruture of these graphs, giving a anonial \Taylor-like" seriesdesription of the regular funtions onX. This allows us to desribeX and reprove a lassial result of Frike, Klein and Vogt.Contents1. Introdution 22. Preliminaries 42.1. Algebrai Struture of X 42.2. Representation Theory of G 52.3. Spin Networks in Representation Theory 63. Deomposition of C [G℄ 193.1. Central Funtions 193.2. Proof of C [G℄ Deomposition Theorem 213.3. Ring Struture of C [G℄G 254. Struture of C [G �G℄G 274.1. Symmetry of Central Funtions 294.2. A Reurrene Relation for Central Funtions 304.3. Multipliation of Central Funtions 344.4. Appliations 35Referenes 37Date: November 10, 2005. 1



2 SEAN LAWTON, ELISHA PETERSON1. IntrodutionThe purpose of this work is to present a funtional approah to thealgebrai theory of SL(2; C ) representations of free groups. Let G =SL(2; C ), the 2�2 omplex matries of determinant 1. For a rank r freegroup � = fx1; x2; :::; xrg; where xi are free letters, the representationsHom(�;G) form an aÆne variety denoted R and alled the SL(2; C )representation variety of �. Indeed, the map � 7! (�(x1); : : : ; �(xr))taking Hom(�;G) �! G�r is a bijetion and G�r is the algebraivariety determined by the ideal(xi11xi22 � xi12xi21�1 j 1 � i � r)in the omplex polynomial ring C [xi11; xi12; xi21; xi22 j 1 � i � r℄:We denote the oordinate ring of R by C [R℄; and soC [R℄ �= C [G℄
r :Let ~x = (x1;x2; :::;xr) be the r-tuple onsisting of matrix variablesxi = �xi11 xi12xi21 xi22� : Then G ats on C [R℄ by diagonal onjugation, i.e.,for g 2 G and f(~x) 2 C [R℄,g � f(~x) = f(g�1~xg) = f(g�1x1g; :::; g�1xrg):Hene, we may onsider the subring of invariants C [R℄G : This ring isknown to be �nitely-generated as a C -algebra, sine G is redutive [Do℄.For r = 2, we deompose this ring into spei� lass funtions as-soiated with the �nite-dimensional irreduible representations of G.These funtions may be represented by a speial type of graph alleda spin network. This deomposition determines a anonial desrip-tion of the invariants C [R℄G ; and we subsequently determine, in theseterms, the multipliative struture on C [R℄G .We are motivated not only by the interesting algebrai question ofdetermining a omplete desription of the invariant ring and the sub-sequent knowledge of the harater varietyX = Spemax(C [R℄G);whih enodes many geometri objets of interest [G3, G2℄, but alsoby the promise of a methodology and point of view that will allow forgeneralizations to other Lie groups and free groups of rank greater thantwo.The remainder of this paper is organized as follows. In Setion 2, weintrodue spin networks after briey reviewing bakground from invari-ant theory and representation theory. Spin networks are speial typesof graphs ommonly used for angular momentum problems. They an



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 3be identi�ed with funtions between tensor powers of C 2, and o�er apowerful means to work with regular funtions on X sine they relateto eah other by topologial equivalenes. We give this onept a fulltreatment, as our point of view leads us to a di�erent de�nition forspin networks than is usually found in the literature.In Setion 3, we onstrutively proveTheorem 3.1. As G-modulesC [G℄ �=Xn�0 V �n 
 Vn �=Xn�0 End(Vn);where fVng are the irreduible representations of G.This in turn shows, when r = 2, thatC [X℄ �= Xa+b+22Za+b��0a+�b�0b+�a�0SpanC ��a;b � :We refer to the invariant funtions �a;b as entral funtions, and de-sribe how they are represented as spin networks. This deompositionprovides a anonial \Taylor-like" series desription of the regular fun-tions on X, with a highly nontrivial multipliative struture.In Setion 4, we �rst ompute a few simple entral funtions. Then,using spin networks, we demonstrate their surprising symmetries (The-orem 4.1), and prove our main theorem, whih gives an expliit desrip-tion of the multipliative struture on C [X℄:Theorem 4.8 (Multipliation of Central Funtions). The produt oftwo entral funtions �a;b and �a0b00 is given by�a;b �a0b00 = Xj1;j2;k;l;mCj1klmCj2klm�(a;a0;k)�(b;b0;l)�(;0 ;m)�(k)�(l)�(m) �klm;where the sum is taken over triples of integersfa; a0; kg, fb; b0; lg, f; 0; mg, fa0; b; jig, f; k; jig, fb; l; jig, fk; l;mg,orresponding to the side lengths of Eulidean triangles with even perime-ter, and the oeÆients are written in terms of 6j-symbols:Cjiklm = �(ji)�(a0;b;ji)� a a0 k ji b �� ji b l0 b0 a0 �� k l m 0 ji �:A speial ase of this, whih is proven independently, is:Corollary 4.6 (Central Funtion Reurrene). Provided a > 0 and > 0, we an write�a;b = x��a�1;b�1 � (a+b�)24a(a�1) �a�2;b � (�a+b+)24(�1) �a;b�2� (a+b+)2(a�b+�2)216a(a�1)(�1) �a�2;b�2 :



4 SEAN LAWTON, ELISHA PETERSONFinally, using this relation and the the symmetry given by Theorem4.1, we give a onstrutive proof of the following lassial theorem dueto Frike, Klein [FK℄, and Vogt [Vo℄:Theorem 4.9 (Frike-Klein-Vogt). Let G at on G�G by simultaneousonjugation. Then C [G �G℄G �= C [x; y; z℄;the omplex polynomial ring in three indeterminants. Consequently,every funtion f : SL(2; C ) � SL(2; C ) ! C whih is invariant undersimultaneous onjugation by SL(2; C ), i.e.,f(x1;x2) = f(gx1g�1; gx2g�1) for all g 2 SL(2; C );an be written as a polynomial in the three variables x = tr(x1), y =tr(x2), and z = tr(x1x�12 ).2. Preliminaries2.1. Algebrai Struture of X. G = SL(2; C ) has the struture of anirreduible aÆne variety sine it is the zero set in C 4 of the irreduiblepolynomial x11x22 � x12x21 � 1 2 C [x11; x12; x21; x22℄:Hene, the oordinate ring of G is given byC [G℄ = C [x11; x12; x21; x22℄=(x11x22 � x12x21 � 1):This implies that the representation variety R �= G�r is irreduible aswell.We use the following fats, whih may be found in [Do℄:� The set of maximal ideals (or geometri points) of the ring ofinvariants is the ategorial quotient G�r==G.� If a redutive algebrai group G ats rationally on the set ofgeometri points of a omplex algebra A without zero divisors,then the algebra of invariants AG is �nitely generated.Hene C [G�r ℄G is �nitely generated, andX = Spemax(C [R℄G) = R==Gis an irreduible aÆne variety referred to as the G-harater varietyof �. We identify the harater variety X = G�r==G with the usual(reduible) haraters of the representation variety R: This identi�a-tion is natural sine the points of X orrespond to onjugay lasses ofreduible representations. Proesi [Pr℄ has shown that C [R℄G is gener-ated by traes of produts of matrix variables.



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 52.2. Representation Theory of G. The oordinate ring C [G℄ de-omposes into a diret sum of tensor produts of the �nite-dimensionalirreduible representations of G. We will use this deomposition, givenexpliitly by Theorem 3.1, to understand C [X℄. To this end, we reviewthe representation theory of G, whih is desribed in [BtD℄, [Do℄, and[FH℄.Denote by K = SU(2), the maximal ompat subgroup of G. Thereis an equivalene of ategories between the �nite-dimensional C -linearrepresentations of G and K, given by passing through the equivaleneof ategories of the assoiated representations of the Lie algebras sl(2)and su(2). SineK is homeomorphi to the 3-sphere, it is ompat andits �nite-dimensional representations are ompletely reduible. Thesymmetri powers of the standard representation of K, and thus of Gas well, are all irreduible representations and moreover they omprisea omplete list.Let V0 = C = V �0 be the trivial representation of G and denote thestandard representation and its dual byV = V1 = C e1 � C e2 ; V � = V �1 = C e�1 � C e�2;where e1 and e2 are the basi vetors � 10 � and � 01 �; respetively. Denotethe symmetri powers of these representations byVn = Symn(V ) and V �n = Symn(V �):Sine there exists an invariant non-degenerate C -bilinear form on Vn,we have Vn �= (Vn)�.Moreover, V �n is naturally isomorphi to (Vn)�, so elements in Vn pairwith elements in V �n . Let the element v1 
 v2 
 � � � 
 vn 2 V 
n projetto v1 Æ v2 Æ � � � Æ vn 2 Vn, so that we an express the basis elements ofVn and V �n bynn�k = en�k1 ek2 = e1 Æ e1 Æ � � � Æ e1| {z }n�k Æ e2 Æ e2 Æ � � � Æ e2| {z }k andn�n�k = (e�1)n�k(e�2)k = e�1 Æ e�1 Æ � � � Æ e�1| {z }n�k Æ e�2 Æ e�2 Æ � � � Æ e�2| {z }k ;respetively, for k = 0; : : : ; n. Then, this pairing is desribed byn�n�k(v1 Æ v2 Æ � � � Æ vn) = 1n! X�2�n(nn�k)�(v�(1) 
 v�(2) 
 � � � 
 v�(n));where �n is the symmetri group of permutations on n elements. Inpartiular, n�n�k(nn�l) = (n� k)!k!n! Ækl = Ækl(nk) :



6 SEAN LAWTON, ELISHA PETERSONThe tensor produt Va 
 Vb; where a; b 2 N, is also a representationof G. Sine G is ompletely reduible, it may be deomposed intoirreduible representations byProposition 2.1 (Clebsh-Gordan formula).Va 
 Vb �= min(a;b)Mj=0 Va+b�2j :Finally, we give several versions of Shur's lemma, whih we will usefrequently.Proposition 2.2 (Shur's Lemma). Let G be a group, V and W rep-resentations of G, and f 2 HomG(V;W ) with f 6= 0.(1) If V is irreduible, then f is injetive.(2) If W is irreduible, then f is surjetive.(3) If V = W , then f is a homothety (a multiple of the identity).(4) Suppose V;W are irreduible:if V �= W , then dimC HomG(V;W ) = 1;if V 6�= W , then dimC HomG(V;W ) = 0.See [BtD℄ or [CSM℄ for proof of Propositions 2.1 and 2.2.With respet to the basis desribed above, we expliitly formulatethe G-ation on Vn. For a given g = �g11 g12g21 g22� 2 G, theng � nn�k = X0�j�n�k0�i�k �n�kj ��ki� �gn�k�j11 gk�i12 gj21gi22� nn�(i+j);and G ats on V �n in the usual way:(g � n�n�k)(v) = n�n�k(g�1 � v) for v 2 Vn:It is left to the reader to verify that these are in fat ations.2.3. Spin Networks in Representation Theory. At its heart, aspin network is a graph whih an be assigned a spei� funtion be-tween tensor powers of the standard SL(2; C ) representation V = C 2 .They were �rst introdued by Roger Penrose to aid in angular momen-tum alulations, who interpreted C 2 vetors as spinors and SL(2; C )representations as quantum angular momentum states [Pen℄.Before de�ning spin networks, we note that our haraterization ofspin networks di�ers from that in the literature [Ka, Pen, St℄. Thisis beause the standard de�nition is not well-suited to studying thealgebrai struture of the harater variety X, and in partiular trae



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 7alulations. Also, our de�nition relates diretly to the inherent stru-ture ofG and V , and therefore easily extends to arbitrary matrix groups[Pet℄.In this paper, we will fully develop our desription of spin networks,due in part to the uniqueness of our presentation and in part to theuniqueness of diagrammati methods.De�nition 2.3. A spin network S is a graph with vertex set SitSotSvonsisting of degree 1 `inputs' Si, degree 1 `outputs' So and degree 2`iliated verties' Sv. If there are ki = jSij inputs and ko = jSoj outputs,then S is identi�ed with a funtion fS : V 
ki ! V 
ko where V = C 2 .If the spin network is losed, meaning ki = 0 = ko, it is identi�ed witha omplex salar fS 2 C .A iliation is an ordering of edges inident to a vertex. When agraph is drawn in the plane, this may be represented by a mark drawnout from a vertex and labelling the edges in the order rossed whenproeeding lokwise from this mark. Thus, in the degree 2 ase, thereare two possible iliations: � 12 and �21:We normally draw spin networks in general position within a box (inthe plane) with inputs at the bottom and outputs at the top. For exam-ple, the following spin network has two iliated verties and representsa funtion from V 
5 ! V 
3: F :This is onvenient beause the funtion omposition fS0ÆfS orrespondsto the diagram omposition S 0 Æ S formed by plaing S 0 on top of S.Sine we are de�ning spin networks as iliated graphs, it does notmatter how we represent the graph in the plane. Thus, we an freelymove strands about and \slide" iliations along the strands withouthanging the underlying spin network.Let v;w 2 V and let fe1; e2g be the standard basis for C 2 . Weompute the funtion fS of a spin network S by deomposing it intothe four spin network omponent maps:� the identity � : V ! V , v 7! v;� the ap � : V 
 V ! C , v 
 w 7! vTw (inner produt);� the up � : C ! V 
 V , 1 7! e1 
 e1 + e2 
 e2;� the ap vertex � : V 
 V ! C , v 
 w 7! det[v w℄.In the most standard spin network de�nitions [CFS, Ka, Pen℄, � and� are omitted, while � is inluded with a multiplier of i = p�1.We will later see that omitting the i fator gives an advantage with



8 SEAN LAWTON, ELISHA PETERSONtrae alulations, while the � and � maps are inluded to simplifyour next proof.Theorem 2.4. Any spin network S may be deomposed into the aboveomponent maps. Any suh deomposition gives the same funtion, andso fS is well-de�ned.Proof. It suÆes to prove the statement for a onneted spin network,whih topologially must be either an ar or a irle. For eah iliatedvertex in this network, there must be a � . The only ambiguity inonneting the remainder of the diagram using ups, aps, and theidentity, omes from `kinks' of the form � . However, the observation� � Æ � � = � ; or � = � ;makes this a moot point. For alternate proofs, see [CFS℄ or [Ka℄. �When omputing a spin network's funtion, it is not onvenient tolimit ourselves to these four maps. We an make this proess a littlesmoother by identifying some additional maps.Proposition 2.5. In the spin network sense,(1) the swap, � : V 
 V ! V 
 V takes v 
 w 7! w 
 v;(2) the vertex on a straight line, � : V ! V takes v 7! � 0 �11 0 �v;(3) the vertex on a up, � : C ! V 
V takes 1 7! e1
e2�e2
e1;(4) with opposite iliations, � = � � ; � = � � ; � = � � .Proof. We have (1) sine with respet to the overlying graph struturerossings are meaningless. We an ompute (2) by reognizing that� = � � � � Æ � � � �, so � takes v = � v1v2 � to� � � � (v 
 e1 
 e1 + v 
 e2 
 e2) = det[v e1℄e1 + det[v e2℄e2= �v2e1 + v1e2 = � 0 �11 0 �v:Statement (3) is omputed similarly, using the deomposition� = � � � � � Æ ( � � ) :Finally, (4) follows from the observation � = � Æ � ; whih saysthat reversing the iliation at a vertex orresponds to swapping theinputs, hene two olumns of a determinant. �As an example of these deompositions, we have:F = � � � � � � Æ � � � � � Æ � � � � � � :This ould of ourse be further deomposed into just the four basiomponent maps.



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 9At this point, the up and ap maps de�ned above are no longerneessary, and we make the following assumption:Convention 2.6. For the remainder of this paper, we assume the setof iliated verties oinides exatly with the set of loal extrema, andwe rede�ne the ap and up funtions:� = � : 1 7! e1 
 e2 � e2 
 e1;� = � : v 
 w 7! det[v w℄:This onvention does prelude diagrams onneting verties in Si orSo without at least one vertex in between, and omes at a prie ofnon-topologial invariane. In fat, eah straightened kink � $ �introdues a fator of (�1), or more generally,� n = (�1)n � n:Thus, we have to be very areful with diagram manipulations whihstraighten suh kinks. We avoid the ommon �x (multiplying � and� by i) for the following reason if the matrix map x : V ! V forx 2M2�2 is represented diagrammatially by = , then we want� = tr( = ):This works with our de�nition of spin networks, but one gets �tr( = )for the de�nition ommonly found in the literature.2.3.1. Reetions on Spin Networks. There is a large amount of sym-metry in spin networks whih we an exploit to alulate more easily.First, sine reeting � horizontally gives � = � � , we see that:Proposition 2.7. If a spin network S orresponds to a funtion fS :V 
ki ! V 
ko , then its mirror image  !S orresponds to the funtionf !S = (�1)jSvj !f S : V 
ki ! V 
ko , where jSvj is the number of loalextrema in the diagram and  !f indiates that the ordering of inputsand outputs is reversed.There is also some vertial symmetry. The vertial ip of a diagramexhanges the inputs and outputs, and gives the dual of the originalfuntion, in the following sense:Proposition 2.8. If a spin network S orresponds to a funtion fS :V 
ki ! V 
ko , then its dual diagram Sl, obtained by vertial reetion,orresponds to the funtion f�S : V 
ko ! V 
ki withf�S(v1 
 � � � 
 vki) = Xeb2B(V
ki ) (fS(eb) � (v1 
 � � � 
 vko)) eb;



10 SEAN LAWTON, ELISHA PETERSONwhere � is the inner produt with respet to the standard basis for V 
ko ,and B(V 
ki ) is the basis for V 
ki . Alternately stated, f� and f aredual with respet to the standard inner produt on V .Proof. Given S = � and vi = � v1iv2i �, we havef�S(v1 
 v2) = � (1) � (v1 
 v2) = (e1 
 e2 � e2 
 e1) � (v1 
 v2)= v11v22 � v21v12 = det[v1 v2℄ = � (v1 
 v2):In [Pet℄, it is shown that this, together with the omputation for S =� , is suÆient to show that the proposition holds in general. �These symmetries give:Theorem 2.9 (Spin Network Reetion Theorem). A relationXm �mSm = 0among some olletion of spin networks fSmg is equivalent to the samerelation for the vertially reeted spin networks fSlmg and (up to sign)for the horizontally reeted spin networks f !S mg, i.e.,Xm �mSlm = 0 and Xm �m(�1)jSmv j !S m = 0:The proof is given in [Pet℄. This fat allows us to freely use \reetedrelations," simplifying many of the proofs in setion 4.2.3.2. Working with Spin Networks. Perhaps the most valuable assetof spin networks as a alulational tool is:Proposition 2.10. All rossings and loops may be removed from spinnetworks. In partiular,(1) � = � � � ; � S = tr(I)S = 2S:The proof is given in [Pet℄, although this is a good exerise.The �rst of these relations is alled the Fundamental Binor Identity,and represents a fundamental type of struture in mathematis; it isthe ore onept in de�ning both the Kau�man Braket Skein Modulein knot theory [Bu2℄ and the Poisson braket on the set of loops ona surfae, whih Goldman desribes in [G1℄. It an also be identi�edwith the harateristi polynomial for 2 � 2 matries.We now desribe how spin networks interat with a given matrixx 2M2�2. Any suh x ats naturally on V 
k by multipliation on eahtensor fator:(2) x � (v1 
 v2 
 � � � 
 vn) = xv1 
 � � � 
 xvn:



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 11We represent the ation v 7! x � v by inserting a polygon on a strand,and thus identify = $ x. Then, the ation of x on V 
k is representedby ? . We are primarily interested in the ase x 2 SL(2; C ), for whihspin networks are espeially onvenient.Proposition 2.11. The spin network omponent maps � ; � = � ;and � = � , and therefore all spin networks, are invariant underthe natural ation of SL(2; C ) on V desribed above.Proof. The ase for the identity � is lear, whileE (v 
 w) = det[xv xw℄ = det(x � [v w℄)= det(x) � det[v w℄ = 1 � det[v w℄ = � (v 
 w)shows that � Æ x = x Æ � .The proof for � follows by reeting this relation. �This means that matries in suh a diagram an \slide aross" avertex (loal extremum) by simply inverting the matrix, so thatif > = x�1 2 SL(2; C ); then B = C :We an work with a general matrix x 2 M2�2 almost as easily: thedeterminant frequently shows up sine D = det( = )S and so B =det( = ) C , provided x is invertible.When a matrix = is plaed somewhere within a losed spin network,we obtain a map G ! C . For multiple matries, we obtain a mapG� � � ��G! C . One of our primary motivations for this paper is thestudy of invariane properties of suh maps. For example, we have thefollowing interpretations of the simplest losed networks:Proposition 2.12. For x 2M2�2 and I= � 1 00 1 �, we have:(3) � = 2 = tr(I); � = tr(x); A = det(x) � tr(I):2.3.3. Symmetrizers and Irreduible Representations. We have one moreSL(2; C )-invariant map to introdue:De�nition 2.13. The symmetrizer �n : V 
n ! V 
n is the maptaking(4) v1 
 v2 
 � � � 
 vn 7! 1n! X�2�n v�(1) 
 v�(2) 
 � � � 
 v�(n);where vi 2 V and �n is the symmetri group of permutations on nelements.



12 SEAN LAWTON, ELISHA PETERSONIn the simplest examples, we have:(5) �2 = 12 � � + � � = � � 12 � � � ;(6)  3 = 16 � � + � + � +  + 	 + 
 �= � � 23 � Æ + � �+ 13 � � + � �Note that the rossings are removed by applying the Fundamental Bi-nor Identity.The de�ning equation (4) of �n should look familiar: its image is asubspae of V 
n isomorphi to the nth symmetri power SymnV , andthus it an be thought of as either the projetion � : V 
n ! SymnVor as the inlusion � : SymnV ! V 
n (see [FH℄, page 473).What does this mean for us? If a diagram from V 
ki to V 
ko hassymmetrizers at its top and bottom, it an be thought of as a mapbetween Vki and Vko instead. We freely interpret suh spin networks asmaps between tensor powers of these irreduible representations.Proposition 2.14 (Basi Symmetrizer Properties).Invariane: ? Æ �n = �n Æ ? ;(7) staking relation: ! kn = "n;(8) apping/upping: # = 0 and $ = 0;(9) symmetrizer sliding: ) = * ;(10)Proof. The �rst relation (7) is evident if one expands the symmetrizerin terms of permutations, sine permutations are SL(2; C )-invariant.The staking relation is the statement that symmetrizing the last kelements of a symmetri tensor has no e�et, sine they are alreadysymmetri.The apping and upping relations follow from the equations � Æ�2 = 0 and �2 Æ � = 0, and the staking relation.Two methods may be used to demonstrate (10). First, reall thatthe minimum � orresponds to the map � = B for = = g =� 0 1�1 0 � 2 SL(2; C ). Thus, this an be thought of as a speial ase ofSL(2; C )-invariane (7). Alternately, if we expand the symmetrizer,and write eah permutation as a produt of transpositions, then (10)follows from the simple relation + = , . �We now move on to some more involved relations among symmetriz-ers. Although it is easy to write down an arbitrary �n in terms ofpermutations, it is usually rather diÆult to write it down in terms of



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 13diagrams without rossings. The next two propositions give reurrenerelations whih an simplify this proess.Proposition 2.15. The symmetrizer �n satis�es the following re-urrene relation:(11)-n = .n�1 ��n� 1n � /n�1 +�n� 2n � 0n�1 + � � �+ (�1)i�n� in � 1n�1 + � � �+ (�1)n�1�1n� 2n�1:Proof. The proof begins with a basi ombinatorial formula: a permu-tation on n objets is determined uniquely by (a) the number mappingto 1; and (b) a permutation on the remaining n � 1 numbers. In dia-gram form, this statement orresponds to the equation:-n = 1n .n�1Æ�8 + 9 + : + � � �+ ; + � � �+ < � :Now, use the binor identity and the key observation that any termswhose ups are not in the `�rst position' on top will vanish, due to theapping relation, to expand an arbitrary term on the righthand side:. Æ ; = . � / + 0 + � � �+ (�1)i 1 ;where i is the number of `kinks' � in ; or 1 plus the number ofkinks in 1 . Finally, group the number of terms on the righthandside with the same number of kinks together: there will be n � i � 1terms with i kinks. �Proposition 2.16. �n also satis�es the reurrene relations:-n = i3n�1n�i + (�1)i�n � in � i4n�1n�i ;(12) 5n = 6n�1 ��n� 1n � 7n�1n�1:(13)Proof. Compose relation (11) with �i 
 �n�i. This has no e�eton the lefthand side, by the staking relation. On the righthand side,all but one of the terms with a ap on the bottom vanish, due to theapping relation, sine they will ap o� either the �i or the �n�i.The one term whih remains `aps between' these two symmetrizers.The oeÆient is (�1)i �n�in � sine in reurrene (11), i is equal to onemore than the number of kinks � in 1 .Relation (13) is learly a speial ase of the �rst. �



14 SEAN LAWTON, ELISHA PETERSONAs a �rst appliation of the above, we have the looping relation:Proposition 2.17 (Looping Relations).%n = �n+ 1n � &n�1;(14) kn'n = � n+ 1n� k + 1� &n�k;(15) (n= n + 1:(16)Proof. Close o� the left strand in (13) above. Then, 5n; 6n�1;and 7n�1n�1 beome %n, � �n�1 = 2�n�1 and �n�1, re-spetively. Now ollet terms to get (14), and proeed to (15) or (16)by applying the �rst relation k or n times. �2.3.4. Symmetrizers and Trivalent Spin Networks. Reall the Clebsh-Gordan deomposition of Proposition 2.1,Va 
 Vb �= M2da;bV; da; b = fa+ b; a+ b� 2; : : : ; ja� bjg:The ondition  2 da; b is ompletely symmetri, sine it is equivalentto the following:Convention 2.18. We write  2 da; b, or say that fa; b; g is anadmissible triple, when a; b;  are nonnegative integers satisfying:(17) a+ b+  2 2Z; a � b+ ; b � a+ ;  � a+ b:This may alternately be interpreted as the integer side lengths of aEulidean triangle with even perimeter.Two maps arise from this deomposition: an injetion ia;b : V !Va 
 Vb and a projetion P a;b : Va 
 Vb ! V. Both have extremelysimple diagrammati representations (see [CFS℄):ia;b = a�b : V ! Va 
 Vb; P a;b = a� b: Va 
 Vb ! V:Note that the symmetrizers allow us to impliitly identify the tops andbottoms of these diagrams with tensor produts of irreduible repre-sentations of SL(2; C ).We �nd it useful to introdue notation for the numbers of strands inthese diagrams:



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 15Convention 2.19. Given a; b; , denote by �, �, and  the total num-ber of strands onneting Vb to V, Va to V, and Va to Vb, respetively,and by Æ the total number of strands in the diagram. Then:� = 12(�a+b+); � = 12(a�b+);  = 12(a+b�); Æ = 12(a+b+):Note that fa; b; g is admissible if and only if �; �;  2 N.Sine ia;b and P a;b will be so important for the remainder of thispaper, we introdue a notation whih simpli�es their depition. Let nlines with a symmetrizer be represented by one thik line labelled n,so that 	n � �n.De�nition 2.20. A trivalent spin network S is a graph drawn on theplane with verties of degree � 3 and edges labelled by positive integerssuh that:� 2-verties are iliated and oinide with loal extrema;� 3-verties are drawn `up' � or `down' � ;� any two edges meeting at a 2-vertex have the same label;� the three labels adjaent to any vertex form an admissible triple.If there are m input edges with labels li for i = 1; : : : ;m and n outputedges with labels l0i for i = 1; : : : ; n, the network is identi�ed with amap between tensor produts of irreduible SL(2; C ) representations,fS : Vl1 
 � � � 
 Vlm ! Vl01 
 � � � 
 Vl0n;whih is omputed by identifying S with a regular spin network usingthe following identi�ations:	n � �n; 
n � nz }| {� � � � � � � n = � n ��a� b � a�b a� b � a� b:Note that iliations are normally hosen to be on the loal extrema,and degree-3 verties, when expanded, also have a number of iliatedverties. Thus, topologial invariane beomes a more deliate opera-tion, and the next setion treats it as suh.For the remainder of this paper, we assume that all sets of labelsinident to a ommon vertex in a diagram are admissible. Moreover,whenever we sum over a label in a diagram, the sum is taken over allpossible values of that label whih make the requisite triples in thediagram admissible.



16 SEAN LAWTON, ELISHA PETERSON2.3.5. Fun with Signs. The identity � = � � gives rise to the follow-ing ompendium of sign hanges through diagram manipulations:Proposition 2.21. The following diagrams are equivalent up to sign:n� = (�1)n 	n;(18) a� b = (�1) 12 (a+b�)a� b;(19) � ba = (�1) 12 (�a+b+)a� b;(20) d� ba e = (�1) 12 (a+b++d�2e)ad� be ;(21) (�1) 12 (a+)ad� be = (�1) 12 (b+d)ad� be ;(22) d� ba e = (�1)b+d�ead� be :(23)Proof. First, (18) is just a restatement of � n = (�1)n � n, and(19) follows diretly from the Reetion Theorem (2.22), sine a� bontains  = 12(a+ b� ) loal extrema.For (20), notie that in the simplest ase� = �� ;the negative sign omes from the strand on top of the diagram. Sim-ilarly, the general ase for transforming � ba into a� b has a signfor eah strand between b and , giving (�1)� = (�1) 12 (�a+b+). Thisidentity is used twie to give (21).Finally, (22) follows from:ad� be = (�1)ed� ba e = (�1)e+ 12 (d+e�a+b+e�)ad� be ;and (23) is given by ombining (21) and (22). �The above relations allow us to de�ne a �4 reetion on ertain typesof diagrams, whih will be important later:Proposition 2.22. If a relation onsists entirely of terms of the formad� be and ad� bf , then one may \reet about the line through a and" in the following sense:Xe �ead� be =Xf �fad� bf () Xe �eab� de =Xf �fab� df :



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 17Proof. By horizontally reeting the �rst relation, using Theorem 2.9,Xe �ead� be =Xf �f ad� bf() Xe �e(�1) 12 (a+b++d�2e)b� ade =Xf �f (�1) 12 (a+b++d�2f)b� adf() Xe �eb� ade =Xf �f b� adf ;where the signs anel due to the admissibility onditions.Now, add strands to both sides, so that the right side b� adf beomesb� daf = (�1)b+d�f ab� df :Likewise, on the left side, b� ade beomes (�1)b+d�eab� de . Oneagain, admissibility implies that e and f must have the same parity, sothese signs anel. �We give two alternate versions of this proposition as a orollary,whose proof may be found in [Pet℄.Corollary 2.23. We have the additional equivalenes:Xe �ead� be =Xf �fad� bf () Xe �eab� de =Xf �fab� dfand Xe �ead� be =Xf �fad� bf() Xe �e(�1) 12 (e�b) ba� d e =Xf �f(�1) 12 (d�f) ba� df :2.3.6. Properties of Trivalent Spin Networks. As for regular spin net-works, any losed trivalent spin network may be interpreted as a on-stant. The simplest suh diagrams are given byProposition 2.24. Let �(a; b; ) = �a b and �() = � (sym-metrizer shown for larity). Then �(a; b; ) is symmetri in fa; b; g



18 SEAN LAWTON, ELISHA PETERSONand expliitly (reall the �; �; ; Æ given in Convention 2.19):�() = + 1 = dim(V);(24) �(a; b; ) = (�a+b+2 )!(a�b+2 )!(a+b�2 )!(a+b++22 )!a!b!! = �!�!!(Æ+1)!a!b!! ;(25) �(1; a; a+ 1) = �(a+ 1) = a+ 2:(26)Proof. The �rst equation (24) is a onsequene of the Looping Relation(14). That �(1; a; a+ 1) = �(a+ 1) is a onsequene of the stakingrelation, and demonstrates (26). We refer the reader to [CFS℄ for the�(a; b; ) formula. �Ratios of � and � show up in the next two propositions, whih tellus how to \pop bubbles" and how to \fuse together" two thik edges.The �rst demonstrates the usefulness of Shur's Lemma (Proposition2.2) in diagrammati tehniques.Proposition 2.25 (Bubble Identity). �da b = ��(a;b;)�() 	� Æd, whereÆd is the Kroneker delta.Proof. Shur's Lemma requires �da b = C 	Æd for some onstant C,sine �da b is a map between irreduible representations. This equationremains true if we \lose o�" the diagrams, giving:�a b = C� =) C = �(a; b; )�() : �Proposition 2.26 (Fusion Identities).a� b = X2da;b� �()�(a; b; )� aa� bbabÆ ba = X2da;b(�1) 12 (a�b+)� �()�(a; b; )� ab� ba :Proof. Maps of the form aa� bb for  2 da; b form a basis for the spaeof SL(2; C )-invariant maps Va 
 Vb ! Va 
 Vb (see [CFS℄). Thus, wemay express the �rst diagram as a linear ombination:a� b = X2da;bC()aa� bb ;



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 19Given a spei� d 2 da; b, we may ompute the onstant C(d) byomposing this expression with a� bd , giving:a� bd = X2da;bC()a� b Æ �da b= X2da;bC()��(a; b; )�() � a� b Æ 	dÆd= C(d)��(a; b; d)�(d) � a� bd =) C(d) = �(d)�(a; b; d) :For the seond equation, we haveabÆ ba = X2da;b(�1) 12 (�a+b+) � �()�(a; b; )� b� baa = X2da;b(�1) 12 (a�b+)� �()�(a; b; )� ab� ba : �3. Deomposition of C [G℄The following theorem is a onsequene of the \unitary trik"[Do℄,the Peter-Weyl Theorem [CSM℄, and the fat that the set of matrixoeÆients of G is exatly its oordinate ring [CSM℄. We o�er a self-ontained onstrutive proof in setion 3.2, sine it gives us an expliitorrespondene between regular funtions and spin networks.Theorem 3.1. For G = SL(2; C ), we have a G-module isomorphism:C [G℄ �=Xn�0 V �n 
 Vn:3.1. Central Funtions. As a onsequene of Theorem 3.1, we de-sribe C [G�G℄G in terms of an additive basis of lass funtions, whihhave an elegant realization as spin networks.



20 SEAN LAWTON, ELISHA PETERSONIndeed, as a onsequene of Theorem 3.1 and the Clebsh-Gordandeomposition, we have the following deomposition:C [G �G℄ �= C [G℄ 
 C [G℄�=  Xa�0 V �a 
 Va!
 Xb�0 V �b 
 Vb!�= Xa�0Xb�0 V �a 
 Va 
 V �b 
 Vb�= X0�a;b<1(V �a 
 V �b )
 (Va 
 Vb)�= X0�a;b<10�min(a;b)Xi=0 V �a+b�2i1A
0�min(a;b)Xj=0 Va+b�2j1A�= X0�a;b<10�i;j�min(a;b)V �a+b�2i 
 Va+b�2j :And hene, sine all above maps are G-equivariant,(27) C [G �G℄G �= X0�a;b<10�i;j�min(a;b) �V �a+b�2i 
 Va+b�2j�G :But by Shur's lemma (2.2),dimC �V �a+b�2i 
 Va+b�2j�G = � 1 if i = j0 if i 6= j ;so C [G �G℄G �= X0�a;b<10�j�min(a;b)End(Va+b�2j)G:De�nition 3.2. Given the above isomorphism, for eah  2 da; b,there exists a lass funtion �a;b 2 C [G �G℄G whih orresponds to agenerating homothety (unique up to salar) in End(V)G. We refer tothe funtions �a;b as entral funtions.Denote by SpanC ��a;ba+b�2j� � C [G �G℄G the linear span over C of�a;ba+b�2j. Then we an rewrite (27) asC [G �G℄G �= X0�a;b<12da;b SpanC ��a;b � :



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 21In terms of the funtions �a;b we understand the additive strutureof C [G �G℄G, and so have a anonial \Taylor-like" series desriptionof the regular funtions on X. In setion 4, we will desribe the mul-tipliative struture of C [G � G℄G in terms of this additive basis ofentral funtions.This deomposition allows us to expliitly express these lass fun-tions as �a;b (x1;x2) = tr��(�i )�(x1;x2) � �(j)��ij;where � is the \Clebsh-Gordan" injetion V ,! Va 
 Vb, and fjg is abasis for V.The funtions �a;b take a natural diagrammati form. If the matrixx1 is represented diagrammatially by � , then its ation on Va an berepresented by a � � a Æ �a: If there are r di�erent matries in alosed spin network, we an interpret it as a funtion G�r ! C . Inpartiular, if x1 and x2 are depited by � and � , respetively, then�a;b (x1;x2) =  ba = a! b :As a speial ase, setting x1 = x2 = I, where I is the identity matrixin G, gives �a;b (I;I) = �(a; b; ).Before expliitly omputing the multipliative struture of C [X℄, weprove the deomposition theorem.3.2. Proof of C [G℄ Deomposition Theorem. De�ne� :Xn�0 V �n 
 Vn �! C [G℄by linear extension of the mappingn�n�k 
 nn�l 7! n�n�k(x � nn�l);where x = � x11 x12x21 x22 � is a matrix variable. We will show this is anisomorphism in the following steps:(1) Show that � is well-de�ned.(2) Construt isomorphisms(i)Ln�0(HomG(Vn; C [G℄R)
 Vn) ��! C [G℄(ii) HomG(Vn; C [G℄R) 	n�! V �n :(3) Show that � = � Æ (�	n 
 id).



22 SEAN LAWTON, ELISHA PETERSONWe �rst verify that � is a G-equivariant with the alulation:�(g � (n�n�k 
 nn�l)) = � �(g � n�n�k)
 (g � nn�l)�= (g � n�n�k)(x � (g � nn�l)) = n�n�k((g�1xg) � nn�l)= g � n�n�k(x � nn�l) = g ��(n�n�k 
 nn�l):Its image onsists of regular funtions sinen�n�k(x � nn�l) = n�n�k �(x11e1 + x21e2)n�l(x12e1 + x22e2)l�= Xi+j=k0�i�n�l0�j�l �nk��1�n�li ��lj�xn�l�i11 xl�j12 xi21xj22;whih is lear a polynomial. We have now shown � is well-de�ned.G ats on the right of C [G℄ by (f; g) 7! f � g; wheref � g(x) = f(xg):We let C [G℄R be the ring C [G℄ with this right ation, to distinguish itfrom the diagonal onjugation ation already imposed on C [G℄. Ad-ditionally, G ats on the left of HomG(Vn; C [G℄R) by (g; ) 7! g � ;where (g � )(v)(x) = v(g�1x);and v = (v) 2 C [G℄: This ation is well-de�ned sine(g � )(g0 � v)(x) = g0�v(g�1x) = v(g�1x � g0) = (g � )(v)(x � g0):Lemma 3.3. De�ne� :Mn�0 (HomG(Vn; C [G℄R)
C Vn) �! C [G℄;by linear extention of the mappings  
 v 7! (v). G ats onL (HomG(Vn; C [G℄R)
C Vn) by g � (P 
v) =P(g �)
 (g �v): Withrespet to this ation, � is an isomorphism of G-modules.Before we prove Lemma 3.3, we require some preliminary tehnialresults.Lemma 3.4. Every regular funtion is ontained in a �nite-dimensionalsub-representation of C [G℄.Proof of Lemma 3.4. Sine we are onsidering two ations of G, namelythe diagonal and rightG-ations, we onsider the followingG�G-ationwhih enompasses both by restrition. Let this ation� : G �G�G �! G



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 23be de�ned by (g1; g2;x) 7! g1xg�12 , and further let(28) �� : C [G℄ �! C [G �G �G℄ �= C [G℄
3de�ned by f 7! f Æ � be the pull-bak of regular funtions on G toregular funtions on G�3. For f 2 C [G℄, (28) implies that there existsnf 2 N and regular funtions fi; f 0i ; f 00i for 1 � i � nf suh that��(f) = nfXi=1 fi 
 f 0i 
 f 00i :Therefore ��(f)(g�11 ; g�12 ;x) = nfXi=1 fi(g�11 )f 0i(g�12 )f 00i (x):On the other hand,��(f)(g�11 ; g�12 ;x) = f(�(g�11 ; g�12 ;x)) = f(g�11 xg2) = ((g1; g2) � f)(x);whih implies(29) (g1; g2) � f = nfXi=1 fi(g�11 )f 0i(g�12 )f 00i :Let (G �G)f = f(g1; g2) � f : f 2 Gg be the G�G-orbit of f , and letVf be the linear subspae spanned over C by (G �G)f in C [G℄. Vf is�nite-dimensional by (29), and so ff 00i g is a �nite spanning set. ClearlyVf is G � G-invariant, and so invariant with respet to the diagonaland right G-ations. Thus, it is a �nite-dimensional sub-representationontaining f . �Lemma 3.5. C [G℄ is ompletely G �G-reduible.Proof of Lemma 3.5. Let I be the set of diret sums of irreduible�nite-dimensional sub-representations of C [G℄. I is partially orderedby set inlusion and is non-empty sine C [G℄ 6= f�g and any Vf is om-pletely reduible sine it is a �nite-dimensional G-module. Thus, byZorn's lemma there exists a maximal element M 2 I. If M 6= C [G℄,then onsider any f =2 M . There exists Vf , a �nite-dimensional sub-representation that ontains f , by Lemma 3.4. Reall that K = SU(2)is the maximal ompat subgroup of G. Restriting the ation of G�Gto K �K, we �nd an orthogonal omplement to Vf in M [ Vf , whihwe denote byM?. But thenM?�Vf 2 I, sineK�K representationsextend to G � G representations. Hene we ontradit the maximal-ity of M . Therefore C [G℄ is ompletely reduible with respet to the



24 SEAN LAWTON, ELISHA PETERSONG�G-ation, and so with respet to the diagonal and right G-ations.In partiular, C [G℄ �=Xj�0 jVj;where j 2 N is the multipliity of Vj in C [G℄. This deompositionholds for both C [G℄ and C [G℄R sine they both are restritions of thesame G �G-ation. �Proof of Lemma 3.3. By Lemma 3.5,� :Mn�0 (HomG(Vn; C [G℄R)
C Vn) �! C [G℄is an isomorphism if and only ifMn�0  Xj�0 jHomG(Vn; Vj)
C Vn! �!Xj�0 jVjis an isomorphism. By Shur's Lemma, this redues toMn�0 (nHomG(Vn; Vn)
C Vn) �!Xn�0 nVn;whih is in turn equivalent toMn�0 (nC 
C Vn) �!Xn�0 nVn:However, this is the map sending P� 
 v 7! P�v for � 2 C andv 2 Vn, whih is anonially an isomorphism. �We an now �nish the proof of the theorem. De�ne	n : V �n �! HomG(Vn; C [G℄R)by w� 7! Fw�, where Fw�(v)(x) = w�(x � v). 	n is well-de�ned sineFw�(g � v)(x) = w�(x � (g � v)) = w�((xg) � v)= g �w�(x � v) = g � (Fw�(v))(x);and is G-equivariant beause	n(g � w�)(v)(x) = Fg�w�(v)(x) = (g �w�)(x � v) = w�((g�1x) � v)= Fw�(v)(g�1x) = (g � Fw�)(v)(x) = g �	n(w�)(v)(x):Sine V �n is irreduible, Shur's Lemma implies 	n is injetive. Wenow show surjetivity. Consider  2 HomG(Vn; C [G℄R): For I2 G, thefuntion (v)(I) is linear in v 2 Vn. Hene there exists w� 2 V �n suh



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 25that w�(v) = (v)(I) for all v 2 Vn. We now show Fw� =  whihproves that 	n is surjetive.Fw�(v)(x) = w�(x � v) = (x � v)(I)= (x � )(v)(I) = (v)(I� x) = (v)(x):Therefore,Xn�0 V �n 
 Vn �=Mn�0 (HomG(Vn; C [G℄R)
 Vn) ;given by the map 	 = �(	n 
 id):Finally, we verify � = � Æ	:� Æ	(w� 
 v)(x) = �(Fw� 
 v)(x) = Fw�(v)(x)= w�(x � v) = �(w� 
 v)(x): �3.3. Ring Struture of C [G℄G . We have establishedC [G℄ �=Xn�0 V �n 
 Vn:Sine V �n �= (Vn)� , V �n 
Vn �= End(Vn); for all n 2 N. Hene, by Shur'sLemma, C [G℄G �=Xn�0(V �n 
 Vn)G �=Xn�0 SpanC (�n);where �n 2 End(Vn)G is a homothety.Therefore, using the isomorphism V �n 
 Vn ! End(Vn) given byn�n�k 
 nn�l 7! (nn�k)�(x)nn�l;we ompute �0 = n�0 
 n0 = 1, and �1 = n�0 
 n0 + n�1 
 n1.Sine Vn is irreduible, Burnside's Theorem [La℄ implies End(Vn) isalgebraially generated by G < Aut(Vn). Hene, n�n�k 
 nn�l is thematrix oeÆient, olumn n� k + 1 and row n� l + 1, of Vn.For example, onsider �1. V1 is the standard representation and itsdiagonal matrix oeÆients, forx = � x11 x12x21 x22 � ;are x11 and x22. Hene �1 = x11 + x22 = tr(x):Reall that a triple of non-negative integers fa; b; g is admissible ifa+ b+  2 2Z; a � b+ ; b � a+ ;  � a+ b;and that the set of integers  for whih fa; b; g is admissible is denotedby da; b (Convention 2.18).



26 SEAN LAWTON, ELISHA PETERSONGiven the funtions �0 and �1, we an determine a reursive formulafor a general �n using the following multipliation formula.Theorem 3.6 (Produt Formula).�a�b = X2da;b�(30)Proof. From the Clebsh-Gordan deomposition,(Va 
 Vb)� 
 (Va 
 Vb) �= X0�j;k�min(a;b)V �a+b�2j 
 Va+b�2k;and so from Shur's LemmaEnd(Va 
 Vb)G �= X0�j�min(a;b)End(Va+b�2j)G:Hene the haraters satisfy�a�b = �(Va
Vb) = �(�jVa+b�2j) = X2da;b�: �Using the produt formula (30) and the initial alulations of �0 and�1; we proveTheorem 3.7. C [G℄G �= C [t℄Proof. Consider the ring homomorphism � : C [t℄ ! C [G℄G de�ned byf 7! f Æ tr: Suppose f(tr(g)) = 0 for all g 2 G. If f 6= 0, then sine fhas a �nite number of zeros, tr(g) must have a �nite number of values.However, � t 1�1 0� 2 Gfor all values of t. Hene, f = 0 and � is injetive. It remains toestablish surjetivity. We have already shown t 7! �1 and 1 7! �0:Suppose a � 2 and �b is in the image of � for all b < a. Equation (30)implies �1�a�1 = �a + �a�2: Thus, by indution,t��1(�a�1)� ��1(�a�2) 7! �a: �We an also express �n as a funtion of eigenvalues. Sine �n isdetermined by its values on normal forms,�� �0 ��1� 2 G;



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 27omputing the matrix representations of suh forms give formulas forthe funtions �n. Expliitly, � � �0 ��1 � ats on Vn by the matrix0BBBBB� �n � � � � � �0 �n�2 � � � � �... 0 . . . � �0 ... 0 �2�n �0 0 � � � 0 ��n 1CCCCCA :Hene, �n = �n + �n�2 + � � �+ �2�n + ��n = �n+1 � ��n�1� � ��1 ;whih are the Chebyshev polynomials. These rational funtions de�nedin terms of eigenvalues, orrespond to elements in C [t℄ by t 7! �+��1:4. Struture of C [G �G℄GWe now onsider C [G � G℄G and in like manner begin with somebasi omputations. As before, �0;00 = 1:Let x1 = � x111 x112x121 x122 �, x2 = � x211 x212x221 x222 � be matrix variables, andlet x = tr(x1) = x111 + x122;y = tr(x2) = x211 + x222;z = tr(x1x�12 ) = (x111x222 + x122x211)� (x112x221 + x121x212):From the Clebsh-Gordan deomposition and Shur's lemma, for  2da; b there exists a unique (up to a salar) injetion� : V ,! Va 
 Vb:Similarly, we have an inlusionV � ,! V �a 
 V �b �= (Va 
 Vb)�:Reall that we have shownC [G �G℄G �= X0�a;b<12da;b SpanC (�a;b );where �a;b orresponds toX0�k� �k 
 k 2 V � 
 V ,! V �a 
 V �b 
 Va 
 Vb;and f�k 
 kg is a basis for V.



28 SEAN LAWTON, ELISHA PETERSONLet fa�k 
 akg be a basis for Va, and fb�k 
 bkg be a basis for Vb.We will desribe �: To motivate its onstrution, we begin with theinvariane of the inlusion V0 ,! V1 
 V1 given by0 7! a0 
 b1 � a1 
 b0:The invariane follows from a straightforward alulation or the obser-vation that it is the exterior produt, whih is unimodularly invariant.When a = b, the mapping V0 ,! Va 
 Vb is given by projetion of themap(31) 0 7! (a0 
 b1 � a1 
 b0)
a+b2 ;and therefore is also invariant.Moreover when  = a+ b; the mapV 
 s�! V 
a 
 V 
b;whih independently symmetrizes the �rst a and last b fators of a basielement of V 
, is equivariant, sine it preserves tensor degree. Thefollowing diagram V 
 s�! V 
a 
 V 
b???y ???yV ��! Va 
 Vb;given by projetion, is ommutative, and so � is given by(32) �k�k 7! X0�i�a0�j�bi+j=k �ai�ai 
 �bj�bj;and is also equivariant.Before we write down the general form of � we do some alulations.For �1;10 we onsider V0 ,! V1 
 V1. In this ase0 7! a0 
 b1 � a1 
 b0; �0 7! a�0 
 b�1 � a�1 
 b�0:So �0 
 0 7! �1;10 = (a�0 
 b�1 � a�1 
 b�0)
 (a0 
 b1 � a1 
 b0)= (a�0 
 a0)
 (b�1 
 b1)� (a�1 
 a0)
 (b�0 
 b1)�(a�0 
 a1)
 (b�1 
 b0) + (a�1 
 a1)
 (b�0 
 b0)= x111 
 x222 � x112 
 x221 � x121 
 x212 + x122 
 x211= (x111x222 + x122x211)� (x112x221 + x121x212)= z



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 29We next alulate �1;01 and �0;11 , orresponding to the inlusions V1 ,!V0 
 V1 and V1 ,! V1 
 V0; respetively. With respet to the former,0 7! a0 
 b0; �0 7! a�0 
 b�0;1 7! a1 
 b0; �1 7! a�1 
 b�0;and with respet to the latter,0 7! a0 
 b0; �0 7! a�0 
 b�0;1 7! a0 
 b1; �1 7! a�0 
 b�1:Hene�0 
 0 + �1 
 1 7! �1;01 = (a�0 
 a0)
 (b�0 
 b0) + (a�1 
 a1)
 (b�0 
 b0)= x111 
 1 + x122 
 1 = x111 + x122 = x:and�0 
 0 + �1 
 1 7! �0;11 = (a�0 
 a0)
 (b�0 
 b0) + (a�0 
 a0)
 (b�1 
 b1)= 1
 x211 + 1
 x222 = x211 + x222 = y:Note that Va� 
 (V 
 V )
 
 Vb� projets naturally to Va 
 Vb viamultipliation in the graded tensor ringX0�a;b<1Va 
 Vb:With this in mind, we may ombine (31) and (32) to give the general formof �, whih is determined by mapping �k�k, for 0 � k �  and  = a+b�2 ,to the projetion ofX0�i�a�0�j�b�i+j=k �a�i �ai 
 (a0 
 b1 � a1 
 b0)
 
 �b�j �bj :4.1. Symmetry of Central Funtions. Our next result is not at all obvi-ous via the algebrai de�nition of entral funtions, but essentially trivial indiagram form. In the theorem, we will use �(}1;}2;}3) to denote the or-dered triple (}�(1);}�(2);}�(3)) obtained by applying a given permutation� 2 �3 to the triple (}1;}2;}3).Theorem 4.1 (Symmetry of Central Funtions). Suppose a entral funtionis expressed as a polynomial P in the variables x = tr(x1), y = tr(x2),and z = tr(x1x�12 ), so that Pa;b;(x; y; z) = �a;b (x1;x2) for some admissibletriple fa; b; g. These polynomials are symmetri with respet to (x; y; z) inthe following sense:P�(a;b;)(x; y; z) = Pa;b;(��1(y; x; z)):



30 SEAN LAWTON, ELISHA PETERSONProof. De�ne the following funtion G� G� G! C :X�;�;( � ; � ; � ) =��z}|{ �z}|{ z}|{ ;where the symmetrizer on the right is assumed to `wrap around' to the one onthe left (imagine this diagram being drawn on a ylinder). By onstrutionthis funtion is symmetri, in the sense that:X�(�;�;) �� � � ; � ; � �� = X�;�; � � ; � ; � � :For x1 = � ; x�11 = � ; x2 = � ; x�12 = 	 , a entral funtion �a;b (x1;x2)may be drawn as:� ba =�a�b+2z}|{ a+b�2z}|{ �a+b+2z}|{ =��z}|{ z}|{ �z}|{ ;with the symmetrizers in the last two diagrams assumed to wrap around asbefore. Thus, Pa;b;(x; y; z) = X�;�;(x2;x�11 ;x1x�12 ) and so:P�(a;b;)(x; y; z) = X�(�;�;)(x2;x�11 ;x1x�12 )= X�;�;(��1(x2;x�11 ;x1x�12 ))= Pa;b;(��1(y; x; z)): �4.2. A Reurrene Relation for Central Funtions. De�ne the rankof a entral funtion to be:Æ = rank(�a;b ) = 12(a+ b+ ):We will obtain a reurrene relation for an arbitrary entral funtion �a;bby manipulating diagrams to express the produt tr(x1) � �a;b (x1;x2) as asum of entral funtions. This formula an be rearranged to write �a;b asa linear ombination of entral funtions with lower rank. There are threemain ingredients to the diagram manipulations: the bubble identity and thefusion identity from setion 2.3.6, and two reoupling formulae whih weprove in the following lemma.Lemma 4.2. For i = 12(a+ 1� b+ ) and appropriate triples admissible,1� ab�1 = 1 aba+1 �(�1)i �a+b�+12(a+1) �1 aba�1 ;(33) 1� ab+1 =(�1)i ��a+b++12(+1) �1 aba+1+� (a+b++3)(a�b++1)4(a+1)(+1) �1 aba�1 :(34)Proof. Note that i is just the number of strands onneting �a+1 to �in 1 aba+1 = �a+1b . For (33), use n = a+1 and i in reurrene relation (12)



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 31to get: �a+1 = i�aa+1�i + (�1)i�a+ 1� ia + 1 � i�aa+1�i:Compose this equation with 
 biz}|{ a+1�iz}|{ to get, via the staking relation:1 aba+1 = �a+1b = 1� ab�1 + (�1)i�a+ 1� ia+ 1 � 1 aba�1 ;whih is the desired result.To prove (34), notie that if we swith a and  in the previous relation, andapply a �4 reetion to the relation about the 1 $ b axis as in Proposition2.22, then i is unhanged and the equation beomes:1� ab+1 = 1 aba�1 + (�1)i�+ 1� i+ 1 � 1� ab�1 :Rearrange this equation, and use (33) in its exat form to get:1� ab+1 = 1 aba�1 + (�1)i � +1�i+1 ��1 aba+1 � (�1)i � a+1�ia+1 � 1 aba�1�= (�1)i � +1�i+1 � 1 aba+1 + �1� (a+1�i)(+1�i)(a+1)(+1) � 1 aba�1= (�1)i ��a+b++12(+1) � 1 aba+1 + � (a+b++3)(a�b++1)4(a+1)(+1) � 1 aba�1 :To show the last omputation, note that a + 1 � i = 12(a + b �  + 1) and+ 1� i = 12(�a+ b+ + 1), so the numerator of the last term is:4((a+ 1)(+ 1)� (a+ 1� i)(+ 1� i)) = 4(a+ 1)(+ 1)� ((b+ 1) + (� a))((b+ 1)� (� a))= 4(a+ 1)(+ 1)� (b+ 1)2 + (a� )2= ((a+ 1)� (+ 1))2 + 4(a+ 1)(+ 1)� (b+ 1)2= ((a+ 1) + (+ 1))2 � (b+ 1)2= (a+ 1 + + 1 + b+ 1)(a+ 1 + + 1� b� 1)= (a+ b+ + 3)(a� b+ + 1): �The oeÆients we have omputed are examples of 6j-symbols, most eas-ily de�ned to be the oeÆients � a b fd  e �0 in the following hange of basisequation: ad� be = Xf2da;b\d;d� a b fd  e �0 � ad bf :We use a prime beause we will need an alternate version later:



32 SEAN LAWTON, ELISHA PETERSONDe�nition 4.3. The 6j-symbols � a b fd  e � are the oeÆients given bybaÆ d e = Xf2da;b\d;d� a b fd  e � � ba� df :Both versions given here di�er from those in the literature [CFS, Ka℄. Itis not hard to show, using Corollary 2.23, that� a b fd  e �0 = (�1) 12 (b+d�e�f)� a b fd  e �:Thus, as a orollary to the above lemma we have the following 6j-symbols,given by replaing  with  + 1 or  � 1, whih we will need in our nexttheorem.Corollary 4.4.� 1 a a+1+1 b  � = 1; � 1 a a�1+1 b  � = (�1) 12 (a�b++2) (a+b�)2(a+1) ;� 1 a a+1�1 b  � = (�1) 12 (a�b++2) (�a+b+)2 ; � 1 a a�1�1 b  � = (a+b++2)(a�b+)4(a+1) :We an now prove the \multipliation by x" formula.Theorem 4.5. The produt x � �a;b (x; y; z) an be expressed by:(35) x � �a;b = �a+1;b+1 + (a+b�)24a(a+1) �a�1;b+1+ (�a+b+)24(+1) �a+1;b�1 + (a+b++2)2(a�b+)216a(a+1)(+1) �a�1;b�1 :This equation still holds for a = 0 or  = 0, provided we exlude the termswith a or  in the denominator.Proof. Diagrammatially, x � �a;b (x; y; z) is represented bya� b1  ;sine x = tr(x1) = � and multipliation is automati on disjoint diagrams.Now manipulate the diagram to obtain a sum over �'s with the followingthree steps.First, we an apply the fusion identity to onnet the lone � strand tothe �a;b :(36) a� b1  = a� b1+1  + + 1a� b1�1  ;where the oeÆients are evaluated from�(� 1)�(1; ; � 1) = � 1 + 1+ 32 � 12 :



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 33Seond, use the 6j-symbols omputed in Corollary 4.4 above to move thea strand from one side of the diagram to the other:a� b1+1  = a+1� b+1 + (a+b�)24(a+1)2 a� b1 +1a�1a�1(37) a� b1�1  = (�a+b+)242 a+1� b�1 + (a+b++2)2(a�b+)216(a+1)22 a� b1 �1a�1a�1 :(38)In eah ase, we are reoupling twie: one for the top piee Æ andone for the orresponding bottom piee. In doing this, we would atuallyget four terms, but sine the a� 1 labels must be the same on both the topand the bottom (a onsequene of Shur's Lemma or the bubble identity),two of the terms vanish.In the �nal step, use the bubble identity to ollapse the �nal piees:a� b1 b�1a�1a�1 = �(1; a; a� 1)�(a� 1) a�1� bb�1= �a+1;bb�1 or �a+1a ��a�1;bb�1 ;where b� represents a sign whih may di�er from that in a�1. At this point,obtaining (35) is simply a matter of multiplying the oeÆients obtained inthe previous formulae.Now onsider the speial ases. For a = 0, sine b =  and onsequently+1 = (�a+b+)24(+1) , the desired formula is exatly (36). Similarly, for  = 0,the desired formula is (37). �We �nd it interesting that, for all our disussion of signs introdued bynon-topologial invariane, all signs introdued are eventually squared andthus do not show up in this result.We an rearrange the terms in (35) and re-index to get:Corollary 4.6 (Central Funtion Reurrene). Provided a > 0 and  > 0,we an write�a;b = x ��a�1;b�1 � (a+b�)24a(a�1) �a�2;b � (�a+b+)24(�1) �a;b�2� (a+b+)2(a�b+�2)216a(a�1)(�1) �a�2;b�2 :The ondition a > 0;  > 0 arises beause derementing a and  in (35)means fa� 1; b; � 1g must now be admissible. Also, note that by applyingthe symmetry relation of Theorem 4.1, we ould easily write down formulaefor multipliation by y and z and two more reurrene relations. This fatis indispensable in our proof of Theorem 4.9.



34 SEAN LAWTON, ELISHA PETERSON4.3. Multipliation of Central Funtions. It is not diÆult towrite down the formula for the produt of two entral funtions, al-though the formula is by no means simple. We begin with a lemmawhih enapsulates the most tedious diagram manipulations:Lemma 4.7. aa
 b0b0 0a0a0 bb = Xi;j;k;l;mCab;a0b00j1k1l1;j2k2l2 ;maa� b0b0mk1k2 l1l2a0a0 bb ;where the oeÆients are given by the formulaCaba0b00j1k1l1;j2k2l2 ;m = �(;0 ;m)�(m) Yi=1;2 �(ji)�(a0 ;b;ji) � � a a0 ki ji b �� ji b li0 b0 a0 �� ki li m 0 ji �;and the following 13 triples are assumed to be admissible:fa; a0; kig, fb; b0; lig, f; 0; mg, fa0; b; jig, f; ki; jig, fb; li; jig, fki; li; mg.Proof. We will just demonstrate the diagram manipulation for the tophalf of the diagram, whih by symmetry must be the same as for thebottom half. Combining these two manipulations and applying a bub-ble identity will give the desired result. We will save enumeration ofadmissible triples until after the manipulation, but keep a lose eye onsigns in the meantime.a� b0 0a0 b =Xj (�1) 12 (a0�b+j) �(j)�(a0;b;j)a� b0 0a0 bb a0j=Xj;k (�1) 12 (a0�b+j)+j �(j)�(a0;b;j)� a a0 k j b �a� b0 0a0 bk a0j=Xj;k;l(�1) 12 (a0�b�j) �(j)�(a0;b;j)� a a0 k j b �� j b l0 b0 a0 �a� b0 0a0 bk lj=Xj;k;l(�1) 12 (a0�b�j)+ 12 (j+l�0) �(j)�(a0;b;j)� a a0 k j b �� j b l0 b0 a0 �a� b0 0a0 bk lj= Xj;k;l;m (�1) 12 (a0�b+�0�j�m)+l �(j)�(a0;b;j)� a a0 k j b �� j b l0 b0 a0 �� k l m 0 j �a	 b0 0a0 bk lm



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 35The (�1) terms all anel in the end, a onsequene of the fat thatthe following triples must be admissible:fa; a0; kg, fb; b0; lg, f; 0; mg, fa0; b; jg, f; k; jg, fb; l; jg, fk; l;mgOne omputes the 13-parameter oeÆients Cab;a0b00j1k1l1 ;j2k2l2;m above by re-eting this result vertially, taking two sets of indies for the variablesj; k; l;m on the two halves, and noting that the resulting bubble in themiddle ollapses with a fator of �(;0;m)�(m) for m = m1 = m2. �With that out of the way, we an desribe the entral funtion mul-tipliation table expliitly. Note the symmetry with respet to k; l;m,whih is guaranteed by Theorem 4.1.Theorem 4.8 (Multipliation of Central Funtions). The produt oftwo entral funtions �a;b and �a0b00 is given by:�a;b �a0b00 = Xj1;j2;k;l;mCj1klmCj2klm�(a;a0;k)�(b;b0;l)�(;0 ;m)�(k)�(l)�(m) �klm;where the sum is taken over admissible triplesfa; a0; kg, fb; b0; lg, f; 0; mg, fa0; b; jig, f; k; jig, fb; l; jig, fk; l;mgand the oeÆients are given by:Cjiklm = �(ji)�(a0;b;ji)� a a0 k ji b �� ji b l0 b0 a0 �� k l m 0 ji �:Proof. By the previous lemma and the bubble identity, we have:�a a0 b b0 0 = Xj1;k1;l1;j2;k2;l2;mCab;a0b00j1k1l1;j2k2l2;m�a a0 b b0mk1k2 l1l2= Xj1;j2;k;l;mCab;a0b00j1kl;j2kl;m��(a; a0; k)�(b; b0; l)�(k)�(l) � k� lm= Xi;j;k;lCj1klmCj2klm�(a;a0;k)�(b;b0;l)�(;0;m)�(k)�(l)�(m) k� lm : �4.4. Appliations. Spin networks o�er a novel approah to a las-sial theorem of Frike, Klein, and Vogt [FK, Vo℄. We give both anononstrutive proof and a new onstrutive proof whih depends onthe symmetry, reurrene, and multipliation formulae for entral fun-tions.Theorem 4.9 (Frike-Klein-Vogt Theorem). Let G at on G � G bysimultaneous onjugation. ThenC [G �G℄G �= C [x; y; z℄;



36 SEAN LAWTON, ELISHA PETERSONthe omplex polynomial ring in three indeterminants. Consequently,every funtion f : SL(2; C ) � SL(2; C ) ! C whih is invariant undersimultaneous onjugation by SL(2; C ), i.e.,f(x1;x2) = f(gx1g�1; gx2g�1) for all g 2 SL(2; C );an be written as a polynomial in the three variables x = tr(x1), y =tr(x2), and z = tr(x1x�12 ).Proof. De�ne the ring homomorphism� : C [x; y; z℄! C [G �G℄Gby f(x; y; z) 7! f(tr(x1); tr(x2); tr(x1x�12 )):We �rst show that � is injetive. Suppose f(tr(x1); tr(x2); tr(x1x�12 )) =0 for all pairs (x1;x2) 2 G � G. Let (x; y; z) 2 C 3, �x = � x 1�1 0 �,and �y(�)�1 = � 0 �1�� y � ; where � = z+pz2�42 . Then(x; y; z) = (tr(�x); tr(�y(�)); tr(�x�y(�)�1)):Hene f = 0 on C 3, Ker(�) = f0g, and � is injetive. This is the\Frike slie" given by Goldman in [G3℄.It remains to show that � is surjetive.Nononstrutive diagrammati proof of surjetivity. First, Theorem 3.1implies that the entral funtions form a basis for suh funtions, soit suÆes to prove the theorem for all �a;b . But expanding the sym-metrizers in �a;b gives a olletion of irles with matrix elements, eahof whih orrespond to a produt of traes of words in x1;x2, so itsuÆes to express the trae of any word in x1;x2 as a polynomial inx; y; z.This redution depends entirely on the binor identity, whih whenomposed with x1 
 x2 = � � gives:(39) � = � � �  :As speial ase we have, with � = x�11 :Æ = � � � � = � � � � and � = � � � � = � � � � :The �rst relation allows us to assume no loop has both x1 and x�11 ,while the seond allows us to assume no word has more than one ofany matrix. This leaves us with just the traes tr(x1); tr(x2); tr(x1x2),and tr(x1x�12 ), using SL(2; C ) trae identities. Finally, losing o� (39)gives: tr(x1x2) = tr(x1)tr(x2)� tr(x1x�12 );



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 37whih allows us to remove tr(x1x2).Construtive diagrammati proof of surjetivity. We show that an ar-bitrary entral funtion �a;b may be written as a polynomial in x; y; z,using an indution argument on its rank Æ = 12(a+ b+ ). For the basease Æ = 0 reall our earlier omputations demonstrating�0;00 = 1; �1;01 = x; �0;11 = y; �1;10 = z:For Æ > 0, we may indutively assume that all entral funtions withrank less than Æ are in C [x; y; z℄. The admissibility onditions implythat at least two out of the triple fa; b; g are positive, whih we anassume to be a and , without loss of generality, by the SymmetryTheorem (4.1). In this ase, the reurrene given by Corollary 4.6,�a;b = x��a�1;b�1 � (a+b�)24a(a�1) �a�2;b � (�a+b+)24(�1) �a;b�2� (a+b+)2(a�b+�2)216a(a�1)(�1) �a�2;b�2 ;allows us to write �a;b in terms of entral funtions of lower rank, whihby indution must be in C [x; y; z℄. Thus, �a;b 2 C [x; y; z℄, and we haveestablished surjetivity. �Using this onstrutive approah with Mathematia, we omputedthe following table of low-rank entral funtions. Note the three-foldsymmetry guaranteed by Theorem 4.1.a = b = 0 b = 1 b = 20 �0;00 = 1 �0;11 = y �0;22 = y2 � 11 �1;01 = x �1;10 = z �1;21 = yz � 12x�1;12 = xy � 12z �1;23 = xy2 � 23 (yz + x)2 �2;02 = x2 � 1 �2;11 = xz � 12y �2;20 = z2 � 1�2;13 = x2y � 23 (xz + y) �2;22 = xyz � 12 (x2 + y2 + z2) + 1�2;24 = x2y2 � xyz + 16z2 � 12 (x2 + y2) + 133 �0;03 =x3�2x �3;12 =x2z� 23 (xy+z) �3;21 =xz2� 23 (yz+x)�3;14 =x3y� 34 x2z� 12 (3xy�z) �3;23 =x2yz� 23 (xz2+xy2)� 12 x3� 19 (2yz�13x)�3;25 =x3y2� 65 (x2yz+xy2)+ 310 xz2� 25 x3+ 35 (yz+x)Table 1. Central Funtions �a;b with a � 3; b � 2.Referenes[BtD℄ T. Br�oker and T. tom Diek, \Representations of Compat Lie Groups,"Graduate Texts in Mathematis No. 98, Spring-Verlag, New York, 1985.[Bu1℄ D. Bullok, Rings of SL(2; C )-Charaters and the Kau�man Braket SkeinModule, Comment. Math. Helv. 72 (1997), 521-542.
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