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SPIN NETWORKS AND SL(2,C)-CHARACTER

VARIETIES
SEAN LAWTON, ELISHA PETERSON

ABSTRACT. Let GG = SL(2,C), 7 be a free group of rank r, and
let R = Hom(m, ) be the G-representation variety of m. G acts
on the coordinate ring C[R] by simultaneous conjugation in the
r matrix variables of a regular function f, since R = G*". The
subring C[R]“ of invariants under this action is finitely generated,
so its geometric points X = R /G are an affine variety identified
with the reducible characters of R. X is called the G-character
variety of m. We present a constructive proof that the coordinate
ring C[G] is isomorphic as a G-module to the invariant ring of
matrix coefficients, giving a natural additive basis of C[R]“ in
terms of class functions on the irreducible sub-representations of Gi.
These class functions may be explicitly described in terms of spin
networks, a special type of graph useful in the study of SL(2,C)
representations. We constructively determine the multiplicative
structure of these graphs, giving a canonical “Taylor-like” series
description of the regular functions on X. This allows us to describe
X and reprove a classical result of Fricke, Klein and Vogt.
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2 SEAN LAWTON, ELISHA PETERSON

1. INTRODUCTION

The purpose of this work is to present a functional approach to the
algebraic theory of SL(2,C) representations of free groups. Let G =
SL(2,C), the 2 x2 complex matrices of determinant 1. For a rank r free
group m = {xy, x9, ..., ¥, }, where a; are free letters, the representations
Hom(w, ) form an affine variety denoted R and called the SL(2,C)
representation variety of 7. Indeed, the map p — (p(x1),...,p(z,))
taking Hom(7w,G) — G*" is a bijection and G is the algebraic
variety determined by the ideal

(2 by — atyah =11 <i<r)

in the complex polynomial ring Cla},, 2%y, x5, 2y | 1 <1 < 7).
We denote the coordinate ring of R by C[R], and so

C[R] = C[G]*".
Let X = (x1,X3,...,X,) be the r-tuple consisting of matriz variables
X; = izﬂ i212> . Then G acts on C[R] by diagonal conjugation, i.e.,
21 T2

for g € G and f(X) € C[R],

9-F(X) = flg'%g) = flg7' %19, . g7 %,9).

Hence, we may consider the subring of invariants C[R]“. This ring is
known to be finitely-generated as a C-algebra, since ¢ is reductive [Lid].

For r = 2, we decompose this ring into specific class functions as-
sociated with the finite-dimensional irreducible representations of G.
These functions may be represented by a special type of graph called
a spin network. This decomposition determines a canonical descrip-
tion of the invariants C[R]“, and we subsequently determine, in these
terms, the multiplicative structure on C[R]%.

We are motivated not only by the interesting algebraic question of
determining a complete description of the invariant ring and the sub-
sequent knowledge of the character variety

X = Spec,, .. (C[R]Y),
which encodes many geometric objects of interest [G3, [ZZ], but also
by the promise of a methodology and point of view that will allow for

generalizations to other Lie groups and free groups of rank greater than
two.

maxr

The remainder of this paper is organized as follows. In Section B we
introduce spin networks after briefly reviewing background from invari-
ant theory and representation theory. Spin networks are special types
of graphs commonly used for angular momentum problems. They can
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be identified with functions between tensor powers of C?, and offer a
powerful means to work with regular functions on X since they relate
to each other by topological equivalences. We give this concept a full
treatment, as our point of view leads us to a different definition for
spin networks than is usually found in the literature.

In Section B we constructively prove

Theorem BEZll. As (-modules
G =) VieV, =Y End(V,),

n>0 n>0

where {V,} are the irreducible representations of G.

This in turn shows, when r = 2, that

Clxl= ) Spanc (x2').

a+b+cE2Z

a+b>c>0

a+c>b>0

b+c>a>0
We refer to the invariant functions y%* as central functions, and de-
scribe how they are represented as spin networks. This decomposition
provides a canonical “Taylor-like” series description of the regular func-
tions on X, with a highly nontrivial multiplicative structure.

In Section @ we first compute a few simple central functions. Then,
using spin networks, we demonstrate their surprising symmetries (The-
orem ), and prove our main theorem, which gives an explicit descrip-
tion of the multiplicative structure on C[X]:

Theorem EX (Multiplication of Central Functions). The product of
two central functions Y** and Xg,/b/ is given by
a,b_a'b _ O(a,a’ k)O(b,b ,1)O(c,c' ym) _ Kl
Xe X = Z Cjbim Cy kim ( A()k)(A(l)A)(TfE) )Xm7

J1.g2,k,0m

where the sum is taken over triples of integers

{a,d' K}, {b, 0,1}, {c,d,m}, {a' b, i}, {c, k, i}, {b, 1, 5}, {k,{,m},
corresponding to the side lengths of Fuclidean triangles with even perime-
ter, and the coefficients are written in terms of 65-symbols:

A(di) [aa’k][j,‘ b lHk 1 m]

Cjikim = O(a'bg)Leji blle b a’llcd g

A special case of this, which is proven independently, is:

Corollary BB (Central Function Recurrence). Provided a > 0 and
c >0, we can write

ab _ ... a—l,b_(a—l—b—c)2 (1,—276_(—(1—|—b—|—c)2 a,b _(a—l—b—l—c)2(a—b—|—c—2)2 a—2,b
Xew = T Xemt Ta(a—1) Xe Ice(c—1) Ne—2 T6a(a—1)c(e—1) Nc=2 °
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Finally, using this relation and the the symmetry given by Theorem
0 we give a constructive proof of the following classical theorem due
to Fricke, Klein [ER], and Vogt [8d]:

Theorem B (Fricke-Klein-Vogt). Let G act on G X G by simultaneous

conjugation. Then
ClG x GIY = Cla,y, 2],

the complex polynomial ring in three indeterminants. Consequently,
every function f : SL(2,C) x SL(2,C) — C which is invariant under
simultaneous conjugation by SL(2,C), i.e.,

f(x1,x2) = flgxig~ " gx20™")  for all g € SL(2,C),

can be written as a polynomial in the three variables © = tr(xy), y =
tr(xz), and z = tr(x;x; ).

2. PRELIMINARIES

2.1. Algebraic Structure of X. G = SL(2, C) has the structure of an
irreducible affine variety since it is the zero set in C* of the irreducible
polynomial

T11T92 — Ti28g — 1 € Clayy, 212, T2y, Ta2].
Hence, the coordinate ring of G is given by
(C[G] = C[$11751?12751?21751?22]/(51?1151?22 — L1221 — 1)-

This implies that the representation variety R = GG*" is irreducible as
well.
We use the following facts, which may be found in [Eid]:

e The set of maximal ideals (or geometric points) of the ring of
invariants is the categorical quotient G*" // (.

o [f a reductive algebraic group G acts rationally on the set of
geometric points of a complex algebra A without zero divisors,
then the algebra of invariants AY is finitely generated.

Hence C[G*"]9 is finitely generated, and
X = Spec,,,,(C[R]7) = R//G

is an irreducible affine variety referred to as the G-character variety
of m. We identify the character variety X = G*"//G' with the usual
(reducible) characters of the representation variety R. This identifica-
tion is natural since the points of X correspond to conjugacy classes of
reducible representations. Procesi 2] has shown that C[R]“ is gener-
ated by traces of products of matrix variables.
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2.2. Representation Theory of (. The coordinate ring C[G] de-
composes into a direct sum of tensor products of the finite-dimensional
irreducible representations of (G. We will use this decomposition, given
explicitly by Theorem BEJl to understand C[X]. To this end, we review
the representation theory of (¢, which is described in [BEL]], [0d], and
KR

Denote by K = SU(2), the maximal compact subgroup of GG. There
is an equivalence of categories between the finite-dimensional C-linear
representations of G and K, given by passing through the equivalence
of categories of the associated representations of the Lie algebras s[(2)
and su(2). Since K is homeomorphic to the 3-sphere, it is compact and
its finite-dimensional representations are completely reducible. The
symmetric powers of the standard representation of K, and thus of GG
as well, are all irreducible representations and moreover they comprise
a complete list.

Let Vo = C = V{ be the trivial representation of G and denote the
standard representation and its dual by

V=Vi=Ce &Ce, V*=1V;=CedCe,

where €1 and e; are the basic vectors (é) and (?), respectively. Denote

the symmetric powers of these representations by
V, = Sym, (V) and V" = Sym, (V7).
Since there exists an invariant non-degenerate C-bilinear form on V,,,
we have V,, = (V)"
Moreover, V* is naturally isomorphic to (V,,)*, so elements in V,, pair

with elements in V*. Let the element vy @ v, @ --- @ v, € VO™ project
toviovgo---0wv, €V, so that we can express the basis elements of

V., and V* by

nn_k:e?_keg:eloelo---0610620620---062 and
n—k k
* _ s\n—k/ *\k _ % * * * * *
n,_x = (e7)""(e3)" =ejoejo---oefoes0e50 - 0€;,
n—k k

respectively, for k£ = 0,...,n. Then, this pairing is described by

1
n._p(viovgo---ow,) = ! Z (nn—k)*(vgu) @ Vo2) @+ @ Ucr(n))?
‘oeX,

where Y, is the symmetric group of permutations on n elements. In
particular,

(n — k)IK! 8



6 SEAN LAWTON, ELISHA PETERSON

The tensor product V, @ V4, where a,b € N, is also a representation
of GG. Since G is completely reducible, it may be decomposed into
irreducible representations by

Proposition 2.1 (Clebsch-Gordan formula).
min(a,b)
VooV, = Vato—2;.
7=0
Finally, we give several versions of Schur’s lemma, which we will use
frequently.

Proposition 2.2 (Schur’s Lemma). Let G be a group, V and W rep-
resentations of G, and f € Homg(V, W) with f # 0.
(1) If V is irreducible, then f is injective.
(2) If W is irreducible, then f is surjective.
(3) If V=W, then f is a homothety (a multiple of the identity).
(4) Suppose V,W are irreducible:
if V=W, then dimgc Homg(V, W) = 1;
if V2 W, then dimc Home(V, W) = 0.

See [BEL] or SR for proof of Propositions Bl and E21
With respect to the basis described above, we explicitly formulate

the G-action on V,,. For a given ¢ = <g11 9z ¢ G, then

921 g22
gne= > (N0 <g?fk_jgfiigilgéz> M (i+)
0<j<n—k
0<i<k

and G acts on V.* in the usual way:
(g-ni (@) =n_ (g™ -v) forve V.

It is left to the reader to verify that these are in fact actions.

2.3. Spin Networks in Representation Theory. At its heart, a
spin network is a graph which can be assigned a specific function be-
tween tensor powers of the standard SL(2,C) representation V = C?.
They were first introduced by Roger Penrose to aid in angular momen-
tum calculations, who interpreted C* vectors as spinors and SL(2,C)
representations as quantum angular momentum states [Benl].

Before defining spin networks, we note that our characterization of
spin networks differs from that in the literature [iKa, [Bed, Bfi]. This
is because the standard definition is not well-suited to studying the
algebraic structure of the character variety X, and in particular trace
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calculations. Also, our definition relates directly to the inherent struc-
ture of G and V', and therefore easily extends to arbitrary matrix groups
(2]

In this paper, we will fully develop our description of spin networks,
due in part to the uniqueness of our presentation and in part to the
uniqueness of diagrammatic methods.

Definition 2.3. A spin network S is a graph with vertex set S;UUS,US,
consisting of degree 1 ‘inputs’ S;, degree 1 ‘outputs’ S, and degree 2
‘ciliated vertices’ S,. If there are k; = |S;| inputs and k, = |S,| outputs,
then S is identified with a function fs : V@& — V& where V = C2.
If the spin network is closed, meaning k; = 0 = k,, it is identified with
a complex scalar fs € C.

A ciliation is an ordering of edges incident to a vertex. When a
graph is drawn in the plane, this may be represented by a mark drawn
out from a vertex and labelling the edges in the order crossed when
proceeding clockwise from this mark. Thus, in the degree 2 case, there
are two possible ciliations: -*; and *—f

We normally draw spin networks in general position within a box (in
the plane) with inputs at the bottom and outputs at the top. For exam-
ple, the following spin network has two ciliated vertices and represents

a function from V&> — V@3.

This is convenient because the function composition fs/o fs corresponds
to the diagram composition &’ o S formed by placing S’ on top of S.

Since we are defining spin networks as ciliated graphs, it does not
matter how we represent the graph in the plane. Thus, we can freely
move strands about and “slide” ciliations along the strands without
changing the underlying spin network.

Let v,w € V and let {e;,es} be the standard basis for C*. We
compute the function fs of a spin network & by decomposing it into
the four spin network component maps:

the identity | :V =V, v o

the cap ~ : V@V = C, v®@w+— vTw (inner product);
the cup o :C=> VRV, 1l=e ®@e+ey® e

the cap vertezx A V@V = C, v®w— det[vw].

In the most standard spin network definitions [ES] K&l [Bed], ~ and
« are omitted, while A is included with a multiplier of 1 = \/—1.
We will later see that omitting the ¢ factor gives an advantage with
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trace calculations, while the ,~ and « maps are included to simplify
our next proof.

Theorem 2.4. Any spin network & may be decomposed into the above
component maps. Any such decomposition gives the same function, and

so fs is well-defined.

Proof. 1t suffices to prove the statement for a connected spin network,
which topologically must be either an arc or a circle. For each ciliated
vertex in this network, there must be a A . The only ambiguity in
connecting the remainder of the diagram using cups, caps, and the
identity, comes from ‘kinks’ of the form [U . However, the observation

| ~eow =1 o p=1.
makes this a moot point. For alternate proofs, see [LES] or [Ka]. O
When computing a spin network’s function, it is not convenient to

limit ourselves to these four maps. We can make this process a little
smoother by identifying some additional maps.
Proposition 2.5. In the spin network sense,

(1) the swap, >< VoV VeV tdes v @ wi— w@v;

(2) the vertex on a straight line, 4 :V — V takes v i— (? Iy )v;

(3) the vertex on a cup, w : C = VRV takes 1 — e;@es—ea@eq;

(4) with opposile ciliations, 4~ =— A, b =—4, VY =W
Proof. We have (1) since with respect to the overlying graph structure
crossings are meaningless. We can compute (2) by recognizing that

FECR o] )] takes em () o
( A ‘ ) (v®er @er+v@ ey ® ey) = det[veg]er + det[v eser
= —vle; fovley = (? _01 )v.
Statement (3) is computed similarly, using the decomposition
w=(]Al)olu ).
Finally, (4) follows from the observation 4 = A o X, which says

that reversing the ciliation at a vertex corresponds to swapping the
inputs, hence two columns of a determinant. O

As an example of these decompositions, we have:

D = (A b1 24011 1K)

This could of course be further decomposed into just the four basic
component maps.
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At this point, the cup and cap maps defined above are no longer
necessary, and we make the following assumption:

Convention 2.6. For the remainder of this paper, we assume the set
of ciliated vertices coincides exactly with the set of local extrema, and
we redefine the cap and cup functions:

U =W il @es—er®er;
~ = A v @w— detvw].

This convention does preclude diagrams connecting vertices in S; or
S, without at least one vertex in between, and comes at a price of
non-topological invariance. In fact, each straightened kink [U > ‘
introduces a factor of (—1), or more generally,

()" = (=1 /"

Thus, we have to be very careful w1th diagram manipulations which
straighten such kinks. We avoid the common fix (multiplying ~ and
« by 1) for the following reason if the matrix map x : V. — V for
X € Myyo is represented diagrammatically by # , then we want

&) =tr($).

This works with our definition of spin networks, but one gets —tr( §)
for the definition commonly found in the literature.

2.3.1. Reflections on Spin Networks. There is a large amount of sym-
metry in spin networks which we can exploit to calculate more easily.
First, since reflecting 4 horizontally gives A = — 4, we see that:

Proposition 2.7. If a spin network S corresponds to a function fs :
| V®ko, then its mirror image S corresponds to the function
o = (- 1)lsel f s VEki o V& where |S,| is the number of local

extrema in the diagram and f indicates that the ordering of inputs
and outputs is reversed.

There is also some vertical symmetry. The vertical flip of a diagram
exchanges the inputs and outputs, and gives the dual of the original
function, in the following sense:

Proposition 2.8. If a spin network S corresponds to a function fs :
V& 5 Vo then its dual diagram ST, obtained by vertical reflection,
corresponds to the function f5: VO — VO with

fs(vr @ Qo) = Z (fs(en) - (v1 @ - @ vy,)) e,

ebEB(V®ki )
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where - is the inner product with respect to the standard basis for V%o,
and B(V®%) is the basis for VO . Alternately stated, f* and f are
dual with respect to the standard inner product on V.

1

Proof. Given § =  and v; = (Z; ), we have

fslor@v)= (1) (11 Quvy) = (1@ ez —ex@eq) - (v1 @ vy)

= vjvs — vivy = det[v; v)] = A (v1 @ vy).

In [Bef], it is shown that this, together with the computation for & =
A, 1s sufficient to show that the proposition holds in general. O

These symmetries give:

Theorem 2.9 (Spin Network Reflection Theorem). A relation
Z a,S™ =0

among some collection of spin networks {S™} is equivalent to the same
relation for the vertically reflected spin networks {SY"} and (up to sign)

for the horizontally reflected spin networks {?m}, i.c.,
Zamsim =0 and Zam(—1)|55n|<§>m =0.

The proof is given in [Befl]. This fact allows us to freely use “reflected
relations,” simplifying many of the proofs in section l

2.3.2. Working with Spin Networks. Perhaps the most valuable asset
of spin networks as a calculational tool is:

Proposition 2.10. All crossings and loops may be removed from spin
networks. In particular,

(1) o= - Y oS =u(l)S = 28.

~
The proof is given in [Eefl], although this is a good exercise.

The first of these relations is called the Fundamental Binor Identity,
and represents a fundamental type of structure in mathematics; it is
the core concept in defining both the Kauffman Bracket Skein Module
in knot theory [Bul] and the Poisson bracket on the set of loops on
a surface, which Goldman describes in [Gl]. It can also be identified
with the characteristic polynomial for 2 x 2 matrices.

We now describe how spin networks interact with a given matrix
X € Msy,. Any such x acts naturally on V% by multiplication on each
tensor factor:

(2) X (01 @0y @ e D 0,) = X0y @ -+ @ Xy
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We represent the action v — x - v by inserting a polygon on a strand,
and thus identify # ¢+ x. Then, the action of x on V® is represented
by ¢¢ We are primarily interested in the case x € SL(2,C), for which
spin networks are especially convenient.

Proposition 2.11. The spin network component maps |, o = w,
and ~ = A, and therefore all spin networks, are invariant under
the natural action of SL(2,C) on V described above.

Proof. The case for the identity ‘ is clear, while

Q(U @ w) = det[xv xw] = det(x - [v w])
= det(x) - det[v w] =1 - det[v w] = ~ (v @ w)
shows that A ox=x0 A.
The proof for  follows by reflecting this relation. O

This means that matrices in such a diagram can “slide across” a
vertex (local extremum) by simply inverting the matrix, so that

if 4 =x1'eSL(2,0), then J=1U.
We can work with a general matrix x € My almost as easily: the
determinant frequently shows up since w = det( &) J and so U =
det($) U, provided x is invertible.

When a matrix # is placed somewhere within a closed spin network,
we obtain a map G — C. For multiple matrices, we obtain a map
G x -+ x G = C. One of our primary motivations for this paper is the
study of invariance properties of such maps. For example, we have the
following interpretations of the simplest closed networks:

Proposition 2.12. For x € My, and I= (§9), we have:

3) o =2=t(l) §)=t(x); {3 =det(x)ta(I).

2.3.3. Symmetrizers and Irreducible Representations. We have one more
SL(2, C)-invariant map to introduce:

Definition 2.13. The symmetrizer W@" : V" — V@ is the map
taking

1
(4) U1®U2®"'®Un'_>ﬁZUU(1)®UU(2)®"'®UU(n)7
" oeX,

where v; € V and %, is the symmetric group of permutations on n
elements.
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In the simplest examples, we have:

(5) B =+ X) =1 -3(X);

©) W =50l +X+X+K+K+X)

=2+ 38+ )
Note that the crossings are removed by applying the Fundamental Bi-
nor Identity.

The defining equation (M) of ##" should look familiar: its image is a
subspace of V" isomorphic to the nth symmetric power Sym”™V, and
thus it can be thought of as either the projection 7 : V" — Sym"V
or as the inclusion ¢ : Sym™V — V& (see [EL], page 473).

What does this mean for us? If a diagram from V&% to V@ has
symmetrizers at its top and bottom, it can be thought of as a map
between Vi, and V;, instead. We freely interpret such spin networks as
maps between tensor powers of these irreducible representations.

Proposition 2.14 (Basic Symmetrizer Properties).

(7) Invariance: &6 o " = W o &;
(8) stacking relation: uﬂ : = Lu-ll ;

(9) capping/cupping: bl o =0,

=0 and
(10) symmetrizer sliding: w = w ;

Proof. The first relation (H) is evident if one expands the symmetrizer
in terms of permutations, since permutations are SL(2, C)-invariant.

The stacking relation is the statement that symmetrizing the last k
elements of a symmetric tensor has no effect, since they are already
symmetric.

The capping and cupping relations follow from the equations ~ o
*2 = 0 and *2 o « =0, and the stacking relation.

Two methods may be used to demonstrate (). First, recall that

the minimum Y corresponds to the map U = U for # =g =

<_01 é) € SL(2,C). Thus, this can be thought of as a special case of
SL(2,C)-invariance (H). Alternately, if we expand the symmetrizer,
and write each permutation as a product of transpositions, then (L)

follows from the simple relation @ = @ . O

We now move on to some more involved relations among symmetriz-
ers. Although it is easy to write down an arbitrary Hn in terms of
permutations, it is usually rather difficult to write it down in terms of
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diagrams without crossings. The next two propositions give recurrence
relations which can simplify this process.

Proposition 2.15. The symmetrizer W" salisfies the following re-
currence relation:

(11)
= I () T () e

+(—1)i<n;i> W”_1+---+(—1)”—1 (%) =

Proof. The proof begins with a basic combinatorial formula: a permu-
tation on n objects is determined uniquely by (a) the number mapping

to 1; and (b) a permutation on the remaining n — 1 numbers. In dia-
gram form, this statement corresponds to the equation:

B = Lo W e K D

Now, use the binor identity and the key observation that any terms
whose cups are not in the ‘first position’ on top will vanish, due to the
capping relation, to expand an arbitrary term on the righthand side:

1 < K= S B
where ¢ is the number of ‘kinks’ // in HH or 1 plus the number of

kinks in W . Finally, group the number of terms on the righthand
side with the same number of kinks together: there will be n —i — 1
terms with ¢ kinks. O

Proposition 2.16. W#" also salisfies the recurrence relations:

n n—1 fn—1 n—1
oo ()
| .| n-1 n—1 T n—1

W ()
Proof. Compose relation (E) with HZ ® Hn_Z This has no effect
on the lefthand side, by the stacking relation. On the righthand side,
all but one of the terms with a cap on the bottom vanish, due to the
capping relation, since they will cap off either the " or the """
The one term which remains ‘caps between’ these two symmetrizers.
The coefficient is (—1)° (%) since in recurrence (El), ¢ is equal to one

more than the number of kinks // n 1.
Relation () is clearly a special case of the first. O
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As a first application of the above, we have the looping relation:

Proposition 2.17 (Looping Relations).

.| n n-+1 .n—1
14 = ;
i oH - () B

oo {BH - () B
(16) nz n+ 1.

Proof. Close off the left strand in () above. Then, +H—+n, iHn_l,

\ n—1 i . (n—1 . (n—1 . (n—1

and (ot 1 become OH , O H =2 H and H , Te-
spectively. Now collect terms to get (), and proceed to (EJ) or (LH)
by applying the first relation k or n times. O

2.3.4. Symmetrizers and Trivalent Spin Networks. Recall the Clebsch-
Gordan decomposition of Proposition B,

.o @ v, [a,b] = {a+ba+b—2,... |a—bl}.
c€[ab|

The condition ¢ € [a,b| is completely symmetric, since it is equivalent
to the following:

Convention 2.18. We write ¢ € [a,b|, or say that {a,b,c} is an
admissible triple, when a, b, ¢ are nonnegative integers satisfying:

(17) a+b+ce?2Z; a<b+4+e¢ b<a+c¢ c<a+b.

This may alternately be interpreted as the integer side lengths of a
Euclidean triangle with even perimeter.

Two maps arise from this decomposition: an injection 1%° : V. —
V., ® V, and a projection P;b : Ve, @V, = V.. Both have extremely
simple diagrammatic representations (see [LZES]):

a b c
i = Y:Vc—ﬂ/a@v; P, = :Va®V—>Vc-
c . b a,b “ n b b

Note that the symmetrizers allow us to implicitly identify the tops and
bottoms of these diagrams with tensor products of irreducible repre-
sentations of SL(2,C).

We find it useful to introduce notation for the numbers of strands in
these diagrams:
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Convention 2.19. Given a, b, ¢, denote by «, 3, and v the total num-
ber of strands connecting Vj to V., V, to V., and V, to V4, respectively,
and by ¢ the total number of strands in the diagram. Then:

o= (—atbte), B =3(a—b+tc), v=1i(atb—c); &§=3(atbtc).
Note that {a,b,c} is admissible if and only if «, 3,7 € N.

Since 1" and P;, will be so important for the remainder of this
paper, we introduce a notation which simplifies their depiction. Let n
lines with a symmetrizer be represented by one thick line labelled n,

so that ‘n = "
Definition 2.20. A trivalent spin network S is a graph drawn on the

plane with vertices of degree < 3 and edges labelled by positive integers
such that:

e 2-vertices are ciliated and coincide with local extrema;

o 3-vertices are drawn ‘up’ Y or ‘down’ *;

e any two edges meeting at a 2-vertex have the same label;

e the three labels adjacent to any vertex form an admissible triple.

If there are m input edges with labels [; for : = 1,...,m and n output
edges with labels [l for i = 1,...,n, the network is identified with a
map between tensor products of irreducible SL(2, C) representations,

fs:Vll®...®vm_>\/,1®...®V417

which is computed by identifying & with a regular spin network using
the following identifications:

f= W = e

R/ EAY

Note that ciliations are normally chosen to be on the local extrema,
and degree-3 vertices, when expanded, also have a number of ciliated
vertices. Thus, topological invariance becomes a more delicate opera-
tion, and the next section treats it as such.

For the remainder of this paper, we assume that all sets of labels
incident to a common vertex in a diagram are admissible. Moreover,
whenever we sum over a label in a diagram, the sum is taken over all
possible values of that label which make the requisite triples in the
diagram admissible.
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2.3.5. Fun with Signs. The identity t = — ‘ gives rise to the follow-

ing compendium of sign changes through diagram manipulations:

Proposition 2.21. The following diagrams are equivalent up to sign:

(18) = |
c _ %(a—l—b—c) ¢
(19) aéb B ( 1) a*b’
‘ — (_1\s(—atbte) |° .
(20) Y, = (s K
af b a b
21 2 (L) Hatbretd—2e) H .
( ) dl fe ( 1) d c’
1 a . b 1 af . b
(22) (—1)btato) H — (—1)3+d) M :
d c d c
af b bd a b
> 2| = (e % .
( 3) d[‘;*J ( ) d c

Proof. First, () is just a restatement of ([QJ)” = (=1)" //”, and
(EX) follows directly from the Reflection Theorem (E2ZZ), since ‘

contains y = %(a + b — ¢) local extrema.

For (E), notice that in the simplest case

N

the negative sign comes from the strand on top of the diagram. Sim-

ilarly, the general case for transforming Y]b into Xb has a sign

for each strand between b and ¢, giving (—1)* = (—1)%(_“"'6"'0). This
identity is used twice to give (EH).
Finally, (E2) follows from:

aHb = (-1)° Mb - (—1)6+%<d+e—a+b+e—c>“>/e<b
di c d c d ¢
and (E3) is given by combining (E) and (E2). O

The above relations allow us to define a § reflection on certain types
of diagrams, which will be important later:

Proposition 2.22. If a relation consists entirely of terms of the form

a b af b
- and I , then one may “reflect about the line through a and
d c

¢” in the following sense:

b b d d
SR G SHTS GRED T G ST g
€ €
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Proof. By horizontally reflecting the first relation, using Theorem EX

af b a b
Zaend - zf:ﬁfdxc
Lia ctd—2e ’ e ¢ lig cetd— b @
= Y a(—Flertrerd- >C7\<d =37 py(—1)lertrerd Zf)cId
e f
b . a by a
= o=

where the signs cancel due to the admissibility conditions.

by a
Now, add strands to both sides, so that the right side I becomes
¢ d

af 1d brd fa ; d
Il =(—1 B M .
ol fc ( ) b c

b a a d
Likewise, on the left side, Hd becomes (—1)b+d_ebx . Once

again, admissibility implies that e and f must have the same parity, so
these signs cancel. O

We give two alternate versions of this proposition as a corollary,
whose proof may be found in [Ef].

Corollary 2.23. We have the additional equivalences:
oy b b a s d UL
Z:OéedHc—zfzﬁdeC = Z:aebIc _zf:ﬁfbHc
o b a b
and Zaend - zf:ﬁfdxc

€

b b

= P ad=DHNT =Yg
!

€

2.3.6. Properties of Trivalent Spin Networks. As for regular spin net-
works, any closed trivalent spin network may be interpreted as a con-
stant. The simplest such diagrams are given by

Proposition 2.24. Let O(a,b,c) = U@C and Ac) = O (sym-
a,b, e

metrizer shown for clarity). Then O(a,b,c) is symmetric in {a,b,c}
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and explicitly (recall the o, B,~,d given in Convention EZZ1):

(24) Ae) =c+ 1 =dim(V,);
—atbtc i a=btc\1f atb—c 1 atbtct2 )y 1Rt !
(25) O(a,b,c) = (Fp(= gl.b(!c! () - a.ﬁ;j!é(!i:rl)';

(26) O(l,a,a+1)=A(a+1)=a+2.

Proof. The first equation (B is a consequence of the Looping Relation
(). That ©(1,a,a + 1) = A(a + 1) is a consequence of the stacking
relation, and demonstrates (E). We refer the reader to [LES] for the
O(a, b, c) formula. O

Ratios of A and © show up in the next two propositions, which tell
us how to “pop bubbles” and how to “fuse together” two thick edges.
The first demonstrates the usefulness of Schur’s Lemma (Proposition
E3) in diagrammatic techniques.

Proposition 2.25 (Bubble Identity). a?g) = <®(a’b’c) ‘c> 8eq, where
Seq 15 the Kronecker della.

C
. C
Proof. Schur’s Lemma requires a¢b =C ‘ deq for some constant C',
d

C
since a¢b is a map between irreducible representations. This equation
d

remains true if we “close oftf” the diagrams, giving:

@:c-@c — 0:%. 0

Proposition 2.26 (Fusion Identities).

Y=Y (G )Y

c€[ab|

Ko 3 e () 2K

c€[ab|

a b
Proof. Maps of the form Ib for ¢ € [a,b| form a basis for the space
of SL(2, C)-invariant maps V, @ V, — V, @ V; (see [LES]). Thus, we

may express the first diagram as a linear combination:
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Given a specific d € [a,b], we may compute the constant C(d) by
a b
composing this expression with m , giving:

d

N = X e o= X e (k)Y [
c€fasb] cefab]
:C(d)( @ bd) Y o= = (9@(‘;)@
For the second equation, we have
ag Jb L(—atbtc A(e) Yy |
R = ce%;bj(_l)Q( | (W) bfgé.l
= 2 (e (@(Aa(lc))c)>b>/<b -

c€[ab|

3. DECOMPOSITION OF C[(]

The following theorem is a consequence of the “unitary trick” [id],
the Peter-Weyl Theorem [CSM], and the fact that the set of matrix
coefficients of (7 is exactly its coordinate ring [LSE]. We offer a self-
contained constructive proof in section B2 since it gives us an explicit
correspondence between regular functions and spin networks.

Theorem 3.1. For GG = SL(2,C), we have a G-module isomorphism:

Gy Viav.

n>0

3.1. Central Functions. As a consequence of Theorem EJl we de-
scribe C[(G x ]% in terms of an additive basis of class functions, which
have an elegant realization as spin networks.
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Indeed, as a consequence of Theorem Bl and the Clebsch-Gordan
decomposition, we have the following decomposition:

QG x G = 6] odq

= (Z‘/j@%) ® (ZV;@%)

a>0 b>0
>~ YN vrev,eWoel
a>0 >0

112

Yo Vrewye .o

0<a,b<oo
min(a,b) min(a,b)

~ *
= Z Z atb—2i | @ Vitb—2j

0<a,b<o =0 7=0
~ *
= E Viro—2i @ Vayp—2;.

0<a,b<oo

0<¢,5<min(a,b)

And hence, since all above maps are GG-equivariant,

~ * G
(27) e xa“= (Voo © Vagoozs)
0<a,b<oo
0<¢,5<min(a,b)

But by Schur’s lemma (E23),

dim¢ <Va_|_b—2i ® Va+b—2j> - { 0 ifs 75; ’

S0
CGx G192 Y End(Vigz)°.
0<a,b<
0<j<min(a.b)

Definition 3.2. Given the above isomorphism, for each ¢ € [a,b],
there exists a class function x** € C[¢ x G] which corresponds to a
generating homothety (unique up to scalar) in End(V,.)%. We refer to
the functions y*® as central functions.

Denote by Spang <X3ﬁb—2j> C C[G x G]% the linear span over C of

a,b .
Xayp_g;- Lhen we can rewrite () as
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In terms of the functions y** we understand the additive structure
of C[¢ x (]9, and so have a canonical “Taylor-like” series description
of the regular functions on X. In section [l we will describe the mul-
tiplicative structure of C[G x G]% in terms of this additive basis of
central functions.

This decomposition allows us to explicitly express these class func-
tions as

) = (1) (G 1) )
tj
where ¢ is the “Clebsch-Gordan” injection V. — V, @V}, and {c;} is a
basis for V..
The functions y** take a natural diagrammatic form. If the matrix
x; is represented diagrammatically by # , then its action on V, can be

represented by #a = #::#“ o Ha If there are r different matrices in a

closed spin network, we can interpret it as a function G*" — C. In
particular, if x; and x5 are depicted by # and JP, respectively, then

c ay b
con- ) -4

As a special case, setting x; = xo = [, where [ is the identity matrix

in G, gives Y**(I, 1) = O(a, b, c).
Before explicitly computing the multiplicative structure of C[X], we

prove the decomposition theorem:.

3.2. Proof of C[(G] Decomposition Theorem. Define

T:) VieV, — Cd]

n>0
by linear extension of the mapping
Ny @ Mg g (X ny),

T11 T12

where x = is a matrix variable. We will show this is an

L21 T22
isomorphism in the following steps:

(1) Show that T is well-defined.

(2) Construct isomorphisms
(1) @1s0(Homg (V. C[G) @ V) = €G]

(i) Homg(V,, C[G]r) —= V=,
(3) Show that T = ® o (¥, @ id).
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We first verify that T is a G-equivariant with the calculation:

T(g- (ni_p @) =T ((g-1072p) @ (g M)
= (g p)(x (g nu-r)) =7 (97" xg) - nuc)
=g N (X nn) =g T(nj_ @npy).
Its image consists of regular functions since

N (X-np_)=nr_, ((51?1161 + $21€2)n_l(51?12€1 + 51?2262)[)

= Y ()7 () ey e,

which is clear a polynomial. We have now shown T is well-defined.

(' acts on the right of C[G] by (f,g) — f - g, where

[-9(x) = [(xg).
We let C[G/]g be the ring C[(] with this right action, to distinguish it
from the diagonal conjugation action already imposed on C[G]. Ad-

ditionally, GG acts on the left of Homg(V,, C[G]r) by (g,7) — ¢ -7,
where

(9 M()x) = 7(g7x),
and v, = v(v) € C[G]. This action is well-defined since
(9-7(g" v)(X) = 77(97'%) = 3lg”'x-¢) = (g-7)(v)(x- ¢).
Lemma 3.3. Define
¢ : @ (Homa(V,,, C[G]r) @c V) — C[G],

by linear extention of the mappings v @ v — y(v). G acts on
@D (Home (Vs ClGIR) @c Vi) by g- (327 @v) = 3o(g-7) @ (g-v). With

respect to this action, ® is an isomorphism of G-modules.

Before we prove Lemma B2l we require some preliminary technical
results.

Lemma 3.4. Fvery reqular function is contained in a finite-dimensional
sub-representation of C[G].

Proof of Lemma [f Since we are considering two actions of ¢, namely
the diagonal and right G-actions, we consider the following GG x G-action
which encompasses both by restriction. Let this action

a: G xExGE—G
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be defined by (g1, ¢2,%) + g1Xg; ', and further let
(28) o C[G)] — ClG x G x G] = C[G)*°

defined by f — f o a be the pull-back of regular functions on G to
regular functions on G*?. For f € C[G], (BH) implies that there exists
ny € N and regular functions f;, f/, f for 1 <i < ny such that

nf
a(fy=> foflef

=1

Therefore
nf
o (Nlortsg5"x) =D Jilor V(g5 7 (0),

On the other hand,

a*(Ngrt g7 x) = flalgr g7 x) = fg7 %g2) = (91, 92) - F)(x),

which implies

ny
(29) UNDEED SYRTHUE

i=1
Let (G x G)f ={(g1,92) - [ : [ € G} be the (¢ x G-orbit of f, and let
V; be the linear subspace spanned over C by (G x G)f in C[G]. V} is
finite-dimensional by (BH), and so {f/'} is a finite spanning set. Clearly
Vi is G x G-invariant, and so invariant with respect to the diagonal
and right G-actions. Thus, it is a finite-dimensional sub-representation
containing f. O

Lemma 3.5. C[(7] is completely G x G-reducible.
Proof of LemmaB2d. Let Z be the set of direct sums of irreducible

finite-dimensional sub-representations of C[G]. Z is partially ordered
by set inclusion and is non-empty since C[G] # {¢} and any V} is com-
pletely reducible since it is a finite-dimensional G-module. Thus, by
Zorn’s lemma there exists a maximal element M € Z. If M # C[G],
then consider any f ¢ M. There exists V}, a finite-dimensional sub-
representation that contains f, by Lemma B2l Recall that K = SU(2)
is the maximal compact subgroup of . Restricting the action of G x &
to K x K, we find an orthogonal complement to V; in M U V}, which
we denote by M*. But then M+ @ V; € Z, since K x K representations
extend to GG x (G representations. Hence we contradict the maximal-
ity of M. Therefore C[(] is completely reducible with respect to the
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GG x G-action, and so with respect to the diagonal and right G-actions.
In particular,

e => oV,
720
where ¢; € N is the multiplicity of V; in C[G]. This decomposition
holds for both C[G] and C[G]r since they both are restrictions of the
same (G X G-action. O

Proof of Lemma B2 By Lemma B3
¢ : P (Homa(Vi,, C[G]r) @c V) — CIG]
n>0

is an isomorphism if and only if

@ (Z ¢;Home(V,,, V;) ®@c V) — Zc]

n>0 \j>0 7>0
is an isomorphism. By Schur’s Lemma, this reduces to
@ (¢,Homg(V,, V) @c V) — Z cn Vi,
n>0 n>0
which is in turn equivalent to
@ (Cn(c Q¢ Vn) — Z cnvn
n>0 n>0

However, this is the map sending > A ® v — > Av for A € C and

v € V,,, which is canonically an isomorphism. O

We can now finish the proof of the theorem. Define
U, : V* — Homg(V,, C[G]Rr)
by w* = Fox, where F«(v)(x) = w*(x - v). U, is well-defined since
Fus(g-0)(x) = w(x-(g-v)) = w((xg) - v)
=g-wi(x-v) =g (Fu(v))(x),

and is G-equivariant because

Walg - w)(v)(x) = Fye(v)(x) = (g - w")(x - v) = w((g7'x) - v)
=Fou(v)(g7'%) = (g Fue)(0)(x) = g Yu(w)(v)(x).

Since V. is irreducible, Schur’s Lemma implies W,, is injective. We
now show surjectivity. Consider v € Homg(V,,, C|G]g). For I € G, the
function v(v)(I) is linear in v € V,,. Hence there exists w* € V* such
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that w*(v) = ~v(v)(I) for all v € V. We now show F,» = ~ which
proves that W, is surjective.
Foe(0)(x) = wi(x-v) = y(x - v)(I)
= (x-)()(I) = y(v)(I- x) = v(v)(x).
Therefore,
> Vi@V = P (Homa(V,, ClGIR) © Vi)
n>0 n>0
given by the map ¥ = &(V,, @ id).
Finally, we verify T = ® o U
Qo W(w @0v)(x) = P(Fu @0)(x) = Fou«(v)(x)
=w(x-v)=T(w @v)(x). O

3.3. Ring Structure of C[G]“. We have established
G =) ViaV,.

n>0
Since V> 2 (V,)*, V@V, = End(V,), for all n € N. Hence, by Schur’s
Lemma,
ClG)% =y (Vi@ V)T =) Spanc(xa),
n>0 n>0

where x, € End(V},)% is a homothety.

Therefore, using the isomorphism V. @ V,, — End(V,) given by

n:;_k N, — (nn—k)*(x)nn—h

we compute Yo = nj @ ng =1, and x1 = n§ @ ng + nT @ ny.

Since V;, is irreducible, Burnside’s Theorem [La] implies End(V}) is
algebraically generated by G < Aut(V,). Hence, n*_, @ n,_; is the
matrix coefficient, column n — &+ 1 and row n — [+ 1, of V.

For example, consider y;. Vi is the standard representation and its
diagonal matrix coefficients, for

T11 T12
X = ,
T21 T2

X1 = @11 + T92 = tr(X).

are r11 and z... Hence

Recall that a triple of non-negative integers {a,b, ¢} is admissible if
a+b+ce?2Z; a<b+4+e b<a+c¢ c<Za+b,

and that the set of integers ¢ for which {a, b, ¢} is admissible is denoted
by [a,b| (Convention EEIH).
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Given the functions yo and y;, we can determine a recursive formula
for a general y, using the following multiplication formula.

Theorem 3.6 (Product Formula).
(30) XaXs = Y Xe
c€[ab|
Proof. From the Clebsch-Gordan decomposition,
V.oW)ro(VeoV) 2 Y Vi © Vi,
0<7,k<min(a,b)

and so from Schur’s Lemma

End(V, @)= Y End(Vags-o;)”.
0<j<min(a,b)
Hence the characters satisfy

XaXb = X(Va®Vb) = X(@]Va+b—2j) - Z Xe- -
c€[ab|

Using the product formula (B) and the initial calculations of y¢ and
X1, wWe prove

Theorem 3.7. C[G]Y = C[t]

Proof. Consider the ring homomorphism ® : C[t] — C[G] defined by
f = fotr. Suppose f(tr(g)) =0 for all g € G. If f # 0, then since f

has a finite number of zeros, tr(g) must have a finite number of values.

However,
t 1
(1 ¢)<c

for all values of t. Hence, f = 0 and ® is injective. It remains to
establish surjectivity. We have already shown ¢ — y; and 1 — xo.
Suppose a > 2 and y; is in the image of ® for all b < a. Equation (EH)
implies x1Ya—1 = Xa + Xa—2. Thus, by induction,

tq)_l(Xa—l) - (I)_I(Xa—Z) = Xa- 4

We can also express y, as a function of eigenvalues. Since y,, is
determined by its values on normal forms,

A%
(0 )\—1> €G,
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computing the matrix representations of such forms give formulas for
the functions y,. Explicitly, (A L) acts on V,, by the matrix

0 A

A" * * ce *
0 A2 % ...
0 * *
0 0 A

0 0 0 AT

Hence,
An+1___A—n—1
. ::An An—? L. AQ—n A—n::
X FANT N —~— =

which are the Chebyshev polynomials. These rational functions defined
in terms of eigenvalues, correspond to elements in C[t] by ¢ — A+ A~1.

4. STRUCTURE OF C[G x G]“

We now consider C[G x ]9 and in like manner begin with some
basic computations. As before, Xg,o =1.

xi ozl x2 x?
Let x; = 2 ) x, = 712 ) be matrix variables, and
To1 Lo To1 Lo
let
1 1
T = tr(Xy) = 2y + Ty,
_ 2 2
y = tr(xz) = i, + x5,
- 1y /12 1 2 1 2 1 2
z = tr(Xlxz ) = (51/'1151/'22 + 51/'2251/'11) - (51/'121'21 + 51/'2151/'12)-

From the Clebsch-Gordan decomposition and Schur’s lemma, for ¢ €
[a,b] there exists a unique (up to a scalar) injection

L Ve =V, @ V.
Similarly, we have an inclusion
VeV ey (Ve Vi)
Recall that we have shown

ClG xGlI7= > Spang(x*").
0<a,b<co
c€[a,b|

where y® corresponds to
Y goeacViaV.o VoW eV,e,
0<k<c

and {c} ® ci} is a basis for V..
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Let {a; @ ar} be a basis for V,, and {b} @ by} be a basis for Vj.
We will describe ¢. To motivate its construction, we begin with the
invariance of the inclusion Vj — V] @ V; given by

c0|—>a0®b1—a1®b0.

The invariance follows from a straightforward calculation or the obser-
vation that it is the exterior product, which is unimodularly invariant.
When a = b, the mapping Vy — V, ® V; is given by projection of the
map

ath

(31) o+ (a0 @ by — a1 @bg)® 7,

and therefore is also invariant.
Moreover when ¢ = a 4+ b, the map

| AR VL R

which independently symmetrizes the first a and last b factors of a basic
element of V®°, is equivariant, since it preserves tensor degree. The
following diagram

vee 2y o g yeh

Lo

Vo — VeV,
given by projection, is commutative, and so ¢ is given by

c a b
(32) (k)ck = Z (i)ai @ (j)biv
0<i<a
02
iti=k
and is also equivariant.
Before we write down the general form of ¢ we do some calculations.

For Xé’l we consider Vo — Vi @ Vi. In this case
Co —ag @by —a; @by, ¢y — ay @ b —a] @by,
So
o xy = (ap@b —aj @bh) @ (ag @by —a; @ by)
= (ag@ag) @ (by @by) — (a] @ ag) @ (by @ by)
—(ag @ a1) @ (b] @ bo) + (a] @ a1) @ (bg @ bo)
= 95%1 ® 95%2 - 95%2 ® 95%1 - 95%1 ® 95%2 + 95%2 ® 95%1
= (95%195%2 + 95%295%1) - (951295%1 + 95%195%2)

= Z
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We next calculate X}’O and X?’l, corresponding to the inclusions V; —
Vo ® Vi and Vi — Vi @ Vp, respectively. With respect to the former,

co — ag @ b, co ++ ag @ by,

cp — a1 @ by, ¢y —aj @ by,
and with respect to the latter,

co — ag ® by, ¢, — aj @ by,

c1 — ag @ by, c] — ap @ by.

Hence
G @co+ci@er = Y = (ag @ ap) ® (b @ bo) + (a] @) @ (b @ bo)
= @1 +aen@l=aq +ay =2
and
¢ @co @ = xY = (a5 @ ag) @ (b @ bg) + (af @ ag) @ (b @ by)
=1@af +10a3 =i +25=y.

Note that V,_, @ (V ® V)@ @ Vi— projects naturally to V, @ V; via
multiplication in the graded tensor ring

Y. Vo

0<a,b<oo

With this in mind, we may combine (Ell) and (B3) to give the general form
of ¢, which is determined by mapping (;)ck, for0 <k <cand v = “"'Qﬂ,
to the projection of

Yo ("7ai@ (a0 @by —a @bo)? @ (77)b;.
0<i<a—y
0Zy<b—

=k

4.1. Symmetry of Central Functions. Our next result is not at all obvi-
ous via the algebraic definition of central functions, but essentially trivial in
diagram form. In the theorem, we will use o({$q, 2, O3) to denote the or-
dered triple ($p(1), Co(2)s Qo(3)) obtained by applying a given permutation
o € Y3 to the triple ($1, O2, ¢3).

Theorem 4.1 (Symmetry of Central Functions). Suppose a central function
is expressed as a polynomial P in the variables x = tr(x1), y = tr(xa),
and z = tr(x;x; ), so that P,y (2, y,2) = X?’b(xl, X3) for some admissible
triple {a,b,c}. These polynomials are symmetric with respect to (z,y, z) in
the following sense:

Pcr(a,b,c) ($7 Y, Z) - Pa,b,c(g_l(y7 €T, Z))
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Proof. Define the following function G x G x G = C:

o B v
N AN AN

Xosal$o 40 4)= BOIRTET

where the symmetrizer on the right is assumed to ‘wrap around’ to the one on
the left (imagine this diagram being drawn on a cylinder). By construction
this function is symmetric, in the sense that:

Koo (7(§: 4, 6)) = Xasa (§,6.4).

For x; = #, x;! = §, Xy = é, x; ! = #, a central function X?’b(xl,XQ)
may be drawn as:

—btc gtb—c —atbt
a 5 c a 5 c a2 c /B ,y o

e
) - sty - HEpET

with the symmetrizers in the last two diagrams assumed to wrap around as
before. Thus, Py (2,9, 2) = X 5~(X2, x] 1, x1%5 1) and so:
—1 —1
Pcr(a,b,c) ($7 Y, Z) — Xcr(oz,ﬁq) (X27 X; 5 X1Xy )
= Xo a0 (x2, %7, 305 1))
= ULJLC(U_I(yvva))' U

4.2. A Recurrence Relation for Central Functions. Define the rank
of a central function to be:

§ = rank(y*?) = L(a+ b+ c).

We will obtain a recurrence relation for an arbitrary central function X?’b
by manipulating diagrams to express the product tr(x;) -Xg’b(xl,XQ) as a
sum of central functions. This formula can be rearranged to write X?’b as
a linear combination of central functions with lower rank. There are three
main ingredients to the diagram manipulations: the bubble identity and the
fusion identity from section BEXH, and two recoupling formulae which we
prove in the following lemma.

Lemma 4.2, Fori= %(a + 1 — b+ ¢) and appropriate triples admissible,
1 c—1 @ 1 @ . -|—b +1 1 a
(33) ch - CI-I}: _(_1) (W) CI_;;
1 a 1 a
e+l _(_ 1\t [ —atbtct1 A (a+b+c+3)(a—b+c+1)) I_
(34) . , =(-1) ( 2(c+1) )CIJ}; + ( A(at 1) (ot 1) A
Proof. Note that ¢ is just the number of strands connecting HGH to HC

1 a

. a+1 . .

in Iﬂrl = *b . For (BX), use n = a+1 and 7 in recurrence relation (=)
c b ¢
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to get:

nﬁaﬂ - ¢Z+1_¢ + (=1 (%) za+1 i

7 a+1—1
AN AN

Compose this equation with Zm to get, via the stacking relation:

at+1 -1 at+1—1 I“
+1 — a—1
I * ( a+1 )c b7

which is the desired result.

To prove (B), notice that if we switch a and ¢ in the previous relation, and

apply a 7 reflection to the relation about the 1 <+ b axis as in Proposition

22 then ¢ is unchanged and the equation becomes:
1 a
P (1) 3K
c c+ 1 c b
Rearrange this equation, and use (BJ) in its exact form to get:
1 ot a 1 a ; i 1 a ; i 1 a
c b - CI_bl + (_1) (C—l_—l) (cI-I-bl B (_1) (F) CI_;)
(e N ot1-i)(et1=0) ) Y7
_ 7 ct+1—2 a —)c —1 _
= v () e+ (- she) X
1 a 1 a
_ i —atbtetl - (at+btet3)(a=btctl) T
= (0 (=) o + (M) Y

To show the last computation, note that a +1 — 7 = %(a +b—c+1) and
c+1—1= %(—a + b+ ¢+ 1), so the numerator of the last term is:

AWa+Dle+ D —(a+l=d(c+1-1))=4a+1)(c+1) = ((b+1)+(c—a))((b+1) - (c—a))
=4a+1)(c+1) = (b+1)" +(a—c)’
=((a+1) = (c+1)* +4a+)(c+1) - (b+1)°
=((a+ 1)+ (c+1)" = (b+1)
=(a+l4+c+14+b+1)a+14+c+1-b-1)
=(a+b+c+3)(a—b+c+1). a

The coefficients we have computed are examples of 6j-symbols, most eas-
ily defined to be the coefficients [; i J;]/ in the following change of basis
equation:

af . b b1 al b
a
nd: Z [dce] ‘dIc'

f€lab|N[cd]

We use a prime because we will need an alternate version later:
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Definition 4.3. The 6j-symbols [3 i J;] are the coeflicients given by

a b & a b &
Y=y Y
d f€lab]nfe,d] d

Both versions given here differ from those in the literature [CES, [K3]. It
is not hard to show, using Corollary 223, that
ab f1 — S(b+d—e—f)[ab
[ch;] _(_1)2( f)[dcje[]'

Thus, as a corollary to the above lemma we have the following 6j-symbols,
given by replacing ¢ with ¢+ 1 or ¢ — 1, which we will need in our next
theorem.

Corollary 4.4.

1 aa+l . 1 aa—-17 _ Lig—btc+2) (a+b—c) .

[c-l—lb _|c_ ]:17 [c-l—lb c ]—(_1)2( et )W’
aa Lig—bte —a+b+c a a— a+b+c+2)(a—b+c
[cilb —lc—l] = (_1)2( ot +2)( —2|—c+ )7 [cilb cl] = (ot +4(—|!;+)1()c + )

We can now prove the “multiplication by z” formula.

Theorem 4.5. The product x -Xg’b(x, y,z) can be expressed by:
b atlpb +b—c)2 _a—1,b
(35) @' =+ e

(—a—l—b—l—c)2 a+1,b (a—l—b—l—c—l—?)2(a—b—l—c)2 a—1,b
T Fern Xe-t T T Teaare(ern) Ne—1 -

This equation still holds for a = 0 or ¢ = 0, provided we exclude the terms
with a or ¢ in the denominator.

Proof. Diagrammatically, z -Xg’b(x, y, z) is represented by

| . |
a
Y
since = tr(xy) = {) and multiplication is automatic on disjoint diagrams.

Now manipulate the diagram to obtain a sum over y’s with the following
three steps.
First, we can apply the fusion identity to connect the lone # strand to

the 2

a b a b
a " O QO *XeoXe
(36) @ = +—
c+1 ’

where the coefficients are evaluated from

Alexl)  c£t1+41

O(1,c,et1) e+ 241
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Second, use the 6j-symbols computed in Corollary EEl above to move the
a strand from one side of the diagram to the other:

a b a b
1 at1 b i SO0
3 _ a+b—c
(37) e+1f . = % + Hat1)?
a b a b
1 (=atbtc)? o ’ (atbtet2)? (a—btc)? <
c _ (=a c a c a—b4c
(38) g - 4c? % + 16(a+1)2c2
In each case, we are recoupling twice: once for the top piece and

once for the corresponding bottom piece. In doing this, we would actually
get four terms, but since the a & 1 labels must be the same on both the top
and the bottom (a consequence of Schur’s Lemma or the bubble identity),
two of the terms vanish.

In the final step, use the bubble identity to collapse the final pieces:

a b
O O O
_O(l,a,at 1)ailb
 AaE1)
_ a+1lpb at1 a—1,b
_Xc:/El or ( a ) k1 ?

where £ represents a sign which may differ from that in a4 1. At this point,
obtaining (BH) is simply a matter of multiplying the coefficients obtained in
the previous formulae.

Now consider the special cases. For @ = 0, since b = ¢ and consequently

o= %, the desired formula is exactly (BH). Similarly, for ¢ = 0,
the desired formula is (Ed). O

We find it interesting that, for all our discussion of signs introduced by
non-topological invariance, all signs introduced are eventually squared and
thus do not show up in this result.

We can rearrange the terms in (B3) and re-index to get:

Corollary 4.6 (Central Function Recurrence). Provided a > 0 and ¢ > 0,
we can write

ab _ . a—1p (a—l—b—c)2 a—2,b (—a—l—b—l—c)2 a,b (a—l—b—l—c)2(a—b—|—c—2)2 a—2,b
Xew =T Xem1 — 4a(a—1) Xe T T ac(e-1) Xe—2 — 16a(a—1)c(c—1) Xe—2

The condition @ > 0, ¢ > 0 arises because decrementing a and ¢ in (EJ)
means {a— 1,b,c— 1} must now be admissible. Also, note that by applying
the symmetry relation of Theorem X, we could easily write down formulae
for multiplication by y and z and two more recurrence relations. This fact
is indispensable in our proof of Theorem E4
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4.3. Multiplication of Central Functions. It is not difficult to
write down the formula for the product of two central functions, al-
though the formula is by no means simple. We begin with a lemma
which encapsulates the most tedious diagram manipulations:

Lemma 4.7.

' '
a' b a' b
a b’ a b’
¢ C/ _ Cabc,a/b/c/ k1 mll
- J1k1l1d2koly,m k2 2 >
a f b’ TN a , b’
a’ b 2, ]88, a’ b

where the coefficients are given by the formula

i = 220 T 28 (5 41 [5 0 S 67
Jikiligzkalem T A(m) O(a’,b,j;) c Ji doatlled il

1=1,2

and the following 13 triples are assumed to be admissible:
{a7 a/7 kl}) {b7 b/7 lz}} {C7 Cl7 m}} {0/7 b7ji}} {C7 kﬂjl}} {b7 127]2}; {klv li7 m}

Proof. We will just demonstrate the diagram manipulation for the top
half of the diagram, which by symmetry must be the same as for the
bottom half. Combining these two manipulations and applying a bub-
ble identity will give the desired result. We will save enumeration of
admissible triples until after the manipulation, but keep a close eye on
signs in the meantime.

a b/ al b/
1 ' . A3 J a/
= E (—1)z(@'=b49) ()
- ©(a’,b,7) b
c o J c o
I
u a’ b b
1 ! . I

— La'—b+i)+5 _AG) aa k AY
_Z( 1)2 a,b,y)[cyb] k

gk c !

. a’ b b

- La/=b—j) _AG) Taa k1[5 b ! 2
B ( 1)2 a/7 J)[C J b][c' b/ a’] § !

j7k7l ¢ C/

. a’ b b

— La'—b=j)+L(+—¢) _AG) [aa k][4 b 1
= ( 1)2 2 a,b,j)[C]b][c’b’a’] EN i/

ol m,

. a’ b b
Log/— PR A '

— 1\ se bt —j—m) i _AG) ad k][5 b L[k I m
- ( 1)2 @(a’,b,])[c]b][c’b’a’][cc']] L oL

]7k7l7m !
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The (—1) terms all cancel in the end, a consequence of the fact that
the following triples must be admissible:

{a,a k}, {b,0" 1}, {c, ', m}, {a',b, 5}, {c, k, 5}, {b, 1, 5}, {k, [, m}

. tpt t
One computes the 13-parameter coefficients C*¢*¢ above by re-
Jikili,g2koly,m

flecting this result vertically, taking two sets of indices for the variables
J,k,l,m on the two halves, and noting that the resulting bubble in the

(c,c';m)

middle collapses with a factor of GA(m) for m = m; = ms. O

With that out of the way, we can describe the central function mul-
tiplication table explicitly. Note the symmetry with respect to k, [, m,
which is guaranteed by Theorem 1

Theorem 4.8 (Multiplication of Central Functions). The product of

. 111 . .
two central functions Y*° and v%% is given by:
Xe Xe g y
ab_ a'b! __ § : O(a,a’,k)O(b,b ,1)O(c,c’ ;m) ki
Xe Xet = leklijlem A(R)ADA(m) Xms
J1,42,k,0,m

where the sum is taken over admissible triples
{av alv k}} {b7 blv l}} {Cv Clv m}) {0/7 b?ji}} {Cv kvji}f {b7 lvji}; {kv lv m}
and the coefficients are given by:

A(:) [aa'k][j,‘ b lHk ! m]

Ciokin = garpyLe g bl Loy o lle e b

Proof. By the previous lemma and the bubble identity, we have:

SO OO &S O
abe,a’b’c!
. - : : Cj1k1117j2k2l27m

J1,k1,01,02,k2,02,m

— Z Cabc,a/b/c/ ®(a7 a/7 k)®(b7 bl? l) k%l
— J1kl,jaklm A(k)A(l)

J1,52,5k,0,m
C C O(a,a’ k)0 (b,b',1)O(c,c m)k :
= E Jikim ™~ jaklm A(R)A(D)A(m) ) -
.5k,

4.4. Applications. Spin networks offer a novel approach to a clas-
sical theorem of Fricke, Klein, and Vogt [EEL Bd]. We give both a
nonconstructive proof and a new constructive proof which depends on
the symmetry, recurrence, and multiplication formulae for central func-
tions.

Theorem 4.9 (Fricke-Klein-Vogt Theorem). Let G act on G x G by
simultaneous conjugation. Then

ClG x G1° = Cla,y, 2],
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the complex polynomial ring in three indeterminants. Consequently,
every function f : SL(2,C) x SL(2,C) — C which is invariant under
simultaneous conjugation by SL(2,C), i.e.,

f(x1,%2) = fgx1g~ ", gx2g™")  forall g € SL(2,C),
can be written as a polynomial in the three variables © = tr(xy), y =
tr(xz), and z = tr(x;x; ).

Proof. Define the ring homomorphism
I':Clz,y, 2] - C[G x G]°

by f(xv Y, Z) e f(tr(xl)vtr(XQ)vtr(Xlxgl))‘
We first show that ' is injective. Suppose f(tr(x;), tr(xs), tr(x;x5')) =
x 1

0 for all pairs (x1,X) € G x G. Let (z,y,z) € C°, ¢, = 1o )

=1 _
and n,(¢)~! = ( 2 ; ) , where ( = Z""\/%. Then
(2,9, 2) = (tr(ex), br(ny(C)), treany () 7))-
Hence f = 0 on €, Ker(I') = {0}, and T is injective. This is the
“Fricke slice” given by Goldman in [G3].
It remains to show that I' is surjective.

Nonconstructive diagrammatic proof of surjectivity. First, Theorem EJI
implies that the central functions form a basis for such functions, so
it suffices to prove the theorem for all y*. But expanding the sym-
metrizers in y** gives a collection of circles with matrix elements, each
of which correspond to a product of traces of words in xi,X5, so it
suffices to express the trace of any word in x;,xX, as a polynomial in
$7 y7 <.

This reduction depends entirely on the binor identity, which when

composed with x; ® x5 = #JP gives:

(39) =4s-%.

As special case we have, with § =x;"

-/
Y=b-=9t-8 . =gp-Y=9p-3
The first relation allows us to assume no loop has both x; and x]*,
while the second allows us to assume no word has more than one of
any matrix. This leaves us with just the traces tr(xy), tr(xs), tr(x:x2),
and tr(x;x; "), using SL(2, C) trace identities. Finally, closing off (EJ)
gives:
tr(x1Xg) = tr(x;)tr(xy) — tr(x1x5 '),
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which allows us to remove tr(x;Xz).

Constructive diagrammatic proof of surjectivity. We show that an ar-
bitrary central function Y%* may be written as a polynomial in z,y, z,
using an induction argument on its rank § = %(a + b+ ¢). For the base
case 0 = 0 recall our earlier computations demonstrating

0,0 1,0 0,1 1,1
Xo :17 X1 =% X1 =Y Xo =%

For § > 0, we may inductively assume that all central functions with
rank less than § are in C[z,y,z]. The admissibility conditions imply
that at least two out of the triple {a,b, ¢} are positive, which we can
assume to be a and ¢, without loss of generality, by the Symmetry
Theorem (). In this case, the recurrence given by Corollary &

ab _ .. a—l,b_(a—l—b—c)2 (1,—276_(—(1—|—b—|—c)2 a,b _(a—l—b—l—c)2(a—b—|—c—2)2 a—2,b
Xe =T Xeo1 4a(a—1) Ac 4c(c—1) c—2 16a(a—1)c(c—1) Xe—2 s

allows us to write Y%* in terms of central functions of lower rank, which
by induction must be in Clz,y, z]. Thus, x** € C[z, y, 2], and we have
established surjectivity. O

Using this constructive approach with Mathematica, we computed
the following table of low-rank central functions. Note the three-fold
symmetry guaranteed by Theorem 1

la=] b=0 | b = | b =
0 xo' =1 =y o=y -1
1 X}’O =z Xé’l =z X}Q = yz — %x
Xp =y — 3z X’ = ey’ — F(yz +a)
2 Xg,o =z -1 X?’l =xz — %y X§’2 =2?-1
X3t =ty — S(ez+y) Xo® = oyz = 5(of 7 +27) + 1
Xit =ty ey 4 52 - (P ) 4 g
3 Xg’0=r3—2r xg’1=r2z—§(ry+2) X?’2=IZ2—§(yz+r)
X3’1=z3y—%r2z—%(3ry—2) xg’2=r2y1—§(rz2+zy2)—%f —%(2112—13”)
X§’2=r3y2—%(I2yz+zy2)+%rz2—%r3+%(yz+r)

TABLE 1. Central Functions y** with a < 3,b < 2.
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