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SPIN NETWORKS AND SL(2; C )-CHARACTERVARIETIESSEAN LAWTON, ELISHA PETERSONAbstra
t. Let G = SL(2; C ); � be a free group of rank r, andlet R = Hom(�;G) be the G-representation variety of �. G a
tson the 
oordinate ring C [R℄ by simultaneous 
onjugation in ther matrix variables of a regular fun
tion f , sin
e R �= G�r. Thesubring C [R℄G of invariants under this a
tion is �nitely generated,so its geometri
 points X = R==G are an aÆne variety identi�edwith the redu
ible 
hara
ters of R. X is 
alled the G-
hara
tervariety of �. We present a 
onstru
tive proof that the 
oordinatering C [G℄ is isomorphi
 as a G-module to the invariant ring ofmatrix 
oeÆ
ients, giving a natural additive basis of C [R℄G interms of 
lass fun
tions on the irredu
ible sub-representations of G.These 
lass fun
tions may be expli
itly des
ribed in terms of spinnetworks, a spe
ial type of graph useful in the study of SL(2; C )representations. We 
onstru
tively determine the multipli
ativestru
ture of these graphs, giving a 
anoni
al \Taylor-like" seriesdes
ription of the regular fun
tions onX. This allows us to des
ribeX and reprove a 
lassi
al result of Fri
ke, Klein and Vogt.Contents1. Introdu
tion 22. Preliminaries 42.1. Algebrai
 Stru
ture of X 42.2. Representation Theory of G 52.3. Spin Networks in Representation Theory 63. De
omposition of C [G℄ 193.1. Central Fun
tions 193.2. Proof of C [G℄ De
omposition Theorem 213.3. Ring Stru
ture of C [G℄G 254. Stru
ture of C [G �G℄G 274.1. Symmetry of Central Fun
tions 294.2. A Re
urren
e Relation for Central Fun
tions 304.3. Multipli
ation of Central Fun
tions 344.4. Appli
ations 35Referen
es 37Date: November 10, 2005. 1



2 SEAN LAWTON, ELISHA PETERSON1. Introdu
tionThe purpose of this work is to present a fun
tional approa
h to thealgebrai
 theory of SL(2; C ) representations of free groups. Let G =SL(2; C ), the 2�2 
omplex matri
es of determinant 1. For a rank r freegroup � = fx1; x2; :::; xrg; where xi are free letters, the representationsHom(�;G) form an aÆne variety denoted R and 
alled the SL(2; C )representation variety of �. Indeed, the map � 7! (�(x1); : : : ; �(xr))taking Hom(�;G) �! G�r is a bije
tion and G�r is the algebrai
variety determined by the ideal(xi11xi22 � xi12xi21�1 j 1 � i � r)in the 
omplex polynomial ring C [xi11; xi12; xi21; xi22 j 1 � i � r℄:We denote the 
oordinate ring of R by C [R℄; and soC [R℄ �= C [G℄
r :Let ~x = (x1;x2; :::;xr) be the r-tuple 
onsisting of matrix variablesxi = �xi11 xi12xi21 xi22� : Then G a
ts on C [R℄ by diagonal 
onjugation, i.e.,for g 2 G and f(~x) 2 C [R℄,g � f(~x) = f(g�1~xg) = f(g�1x1g; :::; g�1xrg):Hen
e, we may 
onsider the subring of invariants C [R℄G : This ring isknown to be �nitely-generated as a C -algebra, sin
e G is redu
tive [Do℄.For r = 2, we de
ompose this ring into spe
i�
 
lass fun
tions as-so
iated with the �nite-dimensional irredu
ible representations of G.These fun
tions may be represented by a spe
ial type of graph 
alleda spin network. This de
omposition determines a 
anoni
al des
rip-tion of the invariants C [R℄G ; and we subsequently determine, in theseterms, the multipli
ative stru
ture on C [R℄G .We are motivated not only by the interesting algebrai
 question ofdetermining a 
omplete des
ription of the invariant ring and the sub-sequent knowledge of the 
hara
ter varietyX = Spe
max(C [R℄G);whi
h en
odes many geometri
 obje
ts of interest [G3, G2℄, but alsoby the promise of a methodology and point of view that will allow forgeneralizations to other Lie groups and free groups of rank greater thantwo.The remainder of this paper is organized as follows. In Se
tion 2, weintrodu
e spin networks after brie
y reviewing ba
kground from invari-ant theory and representation theory. Spin networks are spe
ial typesof graphs 
ommonly used for angular momentum problems. They 
an



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 3be identi�ed with fun
tions between tensor powers of C 2, and o�er apowerful means to work with regular fun
tions on X sin
e they relateto ea
h other by topologi
al equivalen
es. We give this 
on
ept a fulltreatment, as our point of view leads us to a di�erent de�nition forspin networks than is usually found in the literature.In Se
tion 3, we 
onstru
tively proveTheorem 3.1. As G-modulesC [G℄ �=Xn�0 V �n 
 Vn �=Xn�0 End(Vn);where fVng are the irredu
ible representations of G.This in turn shows, when r = 2, thatC [X℄ �= Xa+b+
22Za+b�
�0a+
�b�0b+
�a�0SpanC ��a;b
 � :We refer to the invariant fun
tions �a;b
 as 
entral fun
tions, and de-s
ribe how they are represented as spin networks. This de
ompositionprovides a 
anoni
al \Taylor-like" series des
ription of the regular fun
-tions on X, with a highly nontrivial multipli
ative stru
ture.In Se
tion 4, we �rst 
ompute a few simple 
entral fun
tions. Then,using spin networks, we demonstrate their surprising symmetries (The-orem 4.1), and prove our main theorem, whi
h gives an expli
it des
rip-tion of the multipli
ative stru
ture on C [X℄:Theorem 4.8 (Multipli
ation of Central Fun
tions). The produ
t oftwo 
entral fun
tions �a;b
 and �a0b0
0 is given by�a;b
 �a0b0
0 = Xj1;j2;k;l;mCj1klmCj2klm�(a;a0;k)�(b;b0;l)�(
;
0 ;m)�(k)�(l)�(m) �klm;where the sum is taken over triples of integersfa; a0; kg, fb; b0; lg, f
; 
0; mg, fa0; b; jig, f
; k; jig, fb; l; jig, fk; l;mg,
orresponding to the side lengths of Eu
lidean triangles with even perime-ter, and the 
oeÆ
ients are written in terms of 6j-symbols:Cjiklm = �(ji)�(a0;b;ji)� a a0 k
 ji b �� ji b l
0 b0 a0 �� k l m
 
0 ji �:A spe
ial 
ase of this, whi
h is proven independently, is:Corollary 4.6 (Central Fun
tion Re
urren
e). Provided a > 0 and
 > 0, we 
an write�a;b
 = x��a�1;b
�1 � (a+b�
)24a(a�1) �a�2;b
 � (�a+b+
)24
(
�1) �a;b
�2� (a+b+
)2(a�b+
�2)216a(a�1)
(
�1) �a�2;b
�2 :



4 SEAN LAWTON, ELISHA PETERSONFinally, using this relation and the the symmetry given by Theorem4.1, we give a 
onstru
tive proof of the following 
lassi
al theorem dueto Fri
ke, Klein [FK℄, and Vogt [Vo℄:Theorem 4.9 (Fri
ke-Klein-Vogt). Let G a
t on G�G by simultaneous
onjugation. Then C [G �G℄G �= C [x; y; z℄;the 
omplex polynomial ring in three indeterminants. Consequently,every fun
tion f : SL(2; C ) � SL(2; C ) ! C whi
h is invariant undersimultaneous 
onjugation by SL(2; C ), i.e.,f(x1;x2) = f(gx1g�1; gx2g�1) for all g 2 SL(2; C );
an be written as a polynomial in the three variables x = tr(x1), y =tr(x2), and z = tr(x1x�12 ).2. Preliminaries2.1. Algebrai
 Stru
ture of X. G = SL(2; C ) has the stru
ture of anirredu
ible aÆne variety sin
e it is the zero set in C 4 of the irredu
iblepolynomial x11x22 � x12x21 � 1 2 C [x11; x12; x21; x22℄:Hen
e, the 
oordinate ring of G is given byC [G℄ = C [x11; x12; x21; x22℄=(x11x22 � x12x21 � 1):This implies that the representation variety R �= G�r is irredu
ible aswell.We use the following fa
ts, whi
h may be found in [Do℄:� The set of maximal ideals (or geometri
 points) of the ring ofinvariants is the 
ategori
al quotient G�r==G.� If a redu
tive algebrai
 group G a
ts rationally on the set ofgeometri
 points of a 
omplex algebra A without zero divisors,then the algebra of invariants AG is �nitely generated.Hen
e C [G�r ℄G is �nitely generated, andX = Spe
max(C [R℄G) = R==Gis an irredu
ible aÆne variety referred to as the G-
hara
ter varietyof �. We identify the 
hara
ter variety X = G�r==G with the usual(redu
ible) 
hara
ters of the representation variety R: This identi�
a-tion is natural sin
e the points of X 
orrespond to 
onjuga
y 
lasses ofredu
ible representations. Pro
esi [Pr℄ has shown that C [R℄G is gener-ated by tra
es of produ
ts of matrix variables.



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 52.2. Representation Theory of G. The 
oordinate ring C [G℄ de-
omposes into a dire
t sum of tensor produ
ts of the �nite-dimensionalirredu
ible representations of G. We will use this de
omposition, givenexpli
itly by Theorem 3.1, to understand C [X℄. To this end, we reviewthe representation theory of G, whi
h is des
ribed in [BtD℄, [Do℄, and[FH℄.Denote by K = SU(2), the maximal 
ompa
t subgroup of G. Thereis an equivalen
e of 
ategories between the �nite-dimensional C -linearrepresentations of G and K, given by passing through the equivalen
eof 
ategories of the asso
iated representations of the Lie algebras sl(2)and su(2). Sin
eK is homeomorphi
 to the 3-sphere, it is 
ompa
t andits �nite-dimensional representations are 
ompletely redu
ible. Thesymmetri
 powers of the standard representation of K, and thus of Gas well, are all irredu
ible representations and moreover they 
omprisea 
omplete list.Let V0 = C = V �0 be the trivial representation of G and denote thestandard representation and its dual byV = V1 = C e1 � C e2 ; V � = V �1 = C e�1 � C e�2;where e1 and e2 are the basi
 ve
tors � 10 � and � 01 �; respe
tively. Denotethe symmetri
 powers of these representations byVn = Symn(V ) and V �n = Symn(V �):Sin
e there exists an invariant non-degenerate C -bilinear form on Vn,we have Vn �= (Vn)�.Moreover, V �n is naturally isomorphi
 to (Vn)�, so elements in Vn pairwith elements in V �n . Let the element v1 
 v2 
 � � � 
 vn 2 V 
n proje
tto v1 Æ v2 Æ � � � Æ vn 2 Vn, so that we 
an express the basis elements ofVn and V �n bynn�k = en�k1 ek2 = e1 Æ e1 Æ � � � Æ e1| {z }n�k Æ e2 Æ e2 Æ � � � Æ e2| {z }k andn�n�k = (e�1)n�k(e�2)k = e�1 Æ e�1 Æ � � � Æ e�1| {z }n�k Æ e�2 Æ e�2 Æ � � � Æ e�2| {z }k ;respe
tively, for k = 0; : : : ; n. Then, this pairing is des
ribed byn�n�k(v1 Æ v2 Æ � � � Æ vn) = 1n! X�2�n(nn�k)�(v�(1) 
 v�(2) 
 � � � 
 v�(n));where �n is the symmetri
 group of permutations on n elements. Inparti
ular, n�n�k(nn�l) = (n� k)!k!n! Ækl = Ækl(nk) :



6 SEAN LAWTON, ELISHA PETERSONThe tensor produ
t Va 
 Vb; where a; b 2 N, is also a representationof G. Sin
e G is 
ompletely redu
ible, it may be de
omposed intoirredu
ible representations byProposition 2.1 (Clebs
h-Gordan formula).Va 
 Vb �= min(a;b)Mj=0 Va+b�2j :Finally, we give several versions of S
hur's lemma, whi
h we will usefrequently.Proposition 2.2 (S
hur's Lemma). Let G be a group, V and W rep-resentations of G, and f 2 HomG(V;W ) with f 6= 0.(1) If V is irredu
ible, then f is inje
tive.(2) If W is irredu
ible, then f is surje
tive.(3) If V = W , then f is a homothety (a multiple of the identity).(4) Suppose V;W are irredu
ible:if V �= W , then dimC HomG(V;W ) = 1;if V 6�= W , then dimC HomG(V;W ) = 0.See [BtD℄ or [CSM℄ for proof of Propositions 2.1 and 2.2.With respe
t to the basis des
ribed above, we expli
itly formulatethe G-a
tion on Vn. For a given g = �g11 g12g21 g22� 2 G, theng � nn�k = X0�j�n�k0�i�k �n�kj ��ki� �gn�k�j11 gk�i12 gj21gi22� nn�(i+j);and G a
ts on V �n in the usual way:(g � n�n�k)(v) = n�n�k(g�1 � v) for v 2 Vn:It is left to the reader to verify that these are in fa
t a
tions.2.3. Spin Networks in Representation Theory. At its heart, aspin network is a graph whi
h 
an be assigned a spe
i�
 fun
tion be-tween tensor powers of the standard SL(2; C ) representation V = C 2 .They were �rst introdu
ed by Roger Penrose to aid in angular momen-tum 
al
ulations, who interpreted C 2 ve
tors as spinors and SL(2; C )representations as quantum angular momentum states [Pen℄.Before de�ning spin networks, we note that our 
hara
terization ofspin networks di�ers from that in the literature [Ka, Pen, St℄. Thisis be
ause the standard de�nition is not well-suited to studying thealgebrai
 stru
ture of the 
hara
ter variety X, and in parti
ular tra
e
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al
ulations. Also, our de�nition relates dire
tly to the inherent stru
-ture ofG and V , and therefore easily extends to arbitrary matrix groups[Pet℄.In this paper, we will fully develop our des
ription of spin networks,due in part to the uniqueness of our presentation and in part to theuniqueness of diagrammati
 methods.De�nition 2.3. A spin network S is a graph with vertex set SitSotSv
onsisting of degree 1 `inputs' Si, degree 1 `outputs' So and degree 2`
iliated verti
es' Sv. If there are ki = jSij inputs and ko = jSoj outputs,then S is identi�ed with a fun
tion fS : V 
ki ! V 
ko where V = C 2 .If the spin network is 
losed, meaning ki = 0 = ko, it is identi�ed witha 
omplex s
alar fS 2 C .A 
iliation is an ordering of edges in
ident to a vertex. When agraph is drawn in the plane, this may be represented by a mark drawnout from a vertex and labelling the edges in the order 
rossed whenpro
eeding 
lo
kwise from this mark. Thus, in the degree 2 
ase, thereare two possible 
iliations: � 12 and �21:We normally draw spin networks in general position within a box (inthe plane) with inputs at the bottom and outputs at the top. For exam-ple, the following spin network has two 
iliated verti
es and representsa fun
tion from V 
5 ! V 
3: F :This is 
onvenient be
ause the fun
tion 
omposition fS0ÆfS 
orrespondsto the diagram 
omposition S 0 Æ S formed by pla
ing S 0 on top of S.Sin
e we are de�ning spin networks as 
iliated graphs, it does notmatter how we represent the graph in the plane. Thus, we 
an freelymove strands about and \slide" 
iliations along the strands without
hanging the underlying spin network.Let v;w 2 V and let fe1; e2g be the standard basis for C 2 . We
ompute the fun
tion fS of a spin network S by de
omposing it intothe four spin network 
omponent maps:� the identity � : V ! V , v 7! v;� the 
ap � : V 
 V ! C , v 
 w 7! vTw (inner produ
t);� the 
up � : C ! V 
 V , 1 7! e1 
 e1 + e2 
 e2;� the 
ap vertex � : V 
 V ! C , v 
 w 7! det[v w℄.In the most standard spin network de�nitions [CFS, Ka, Pen℄, � and� are omitted, while � is in
luded with a multiplier of i = p�1.We will later see that omitting the i fa
tor gives an advantage with



8 SEAN LAWTON, ELISHA PETERSONtra
e 
al
ulations, while the � and � maps are in
luded to simplifyour next proof.Theorem 2.4. Any spin network S may be de
omposed into the above
omponent maps. Any su
h de
omposition gives the same fun
tion, andso fS is well-de�ned.Proof. It suÆ
es to prove the statement for a 
onne
ted spin network,whi
h topologi
ally must be either an ar
 or a 
ir
le. For ea
h 
iliatedvertex in this network, there must be a � . The only ambiguity in
onne
ting the remainder of the diagram using 
ups, 
aps, and theidentity, 
omes from `kinks' of the form � . However, the observation� � Æ � � = � ; or � = � ;makes this a moot point. For alternate proofs, see [CFS℄ or [Ka℄. �When 
omputing a spin network's fun
tion, it is not 
onvenient tolimit ourselves to these four maps. We 
an make this pro
ess a littlesmoother by identifying some additional maps.Proposition 2.5. In the spin network sense,(1) the swap, � : V 
 V ! V 
 V takes v 
 w 7! w 
 v;(2) the vertex on a straight line, � : V ! V takes v 7! � 0 �11 0 �v;(3) the vertex on a 
up, � : C ! V 
V takes 1 7! e1
e2�e2
e1;(4) with opposite 
iliations, � = � � ; � = � � ; � = � � .Proof. We have (1) sin
e with respe
t to the overlying graph stru
ture
rossings are meaningless. We 
an 
ompute (2) by re
ognizing that� = � � � � Æ � � � �, so � takes v = � v1v2 � to� � � � (v 
 e1 
 e1 + v 
 e2 
 e2) = det[v e1℄e1 + det[v e2℄e2= �v2e1 + v1e2 = � 0 �11 0 �v:Statement (3) is 
omputed similarly, using the de
omposition� = � � � � � Æ ( � � ) :Finally, (4) follows from the observation � = � Æ � ; whi
h saysthat reversing the 
iliation at a vertex 
orresponds to swapping theinputs, hen
e two 
olumns of a determinant. �As an example of these de
ompositions, we have:F = � � � � � � Æ � � � � � Æ � � � � � � :This 
ould of 
ourse be further de
omposed into just the four basi

omponent maps.



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 9At this point, the 
up and 
ap maps de�ned above are no longerne
essary, and we make the following assumption:Convention 2.6. For the remainder of this paper, we assume the setof 
iliated verti
es 
oin
ides exa
tly with the set of lo
al extrema, andwe rede�ne the 
ap and 
up fun
tions:� = � : 1 7! e1 
 e2 � e2 
 e1;� = � : v 
 w 7! det[v w℄:This 
onvention does pre
lude diagrams 
onne
ting verti
es in Si orSo without at least one vertex in between, and 
omes at a pri
e ofnon-topologi
al invarian
e. In fa
t, ea
h straightened kink � $ �introdu
es a fa
tor of (�1), or more generally,� n = (�1)n � n:Thus, we have to be very 
areful with diagram manipulations whi
hstraighten su
h kinks. We avoid the 
ommon �x (multiplying � and� by i) for the following reason if the matrix map x : V ! V forx 2M2�2 is represented diagrammati
ally by = , then we want� = tr( = ):This works with our de�nition of spin networks, but one gets �tr( = )for the de�nition 
ommonly found in the literature.2.3.1. Re
e
tions on Spin Networks. There is a large amount of sym-metry in spin networks whi
h we 
an exploit to 
al
ulate more easily.First, sin
e re
e
ting � horizontally gives � = � � , we see that:Proposition 2.7. If a spin network S 
orresponds to a fun
tion fS :V 
ki ! V 
ko , then its mirror image  !S 
orresponds to the fun
tionf !S = (�1)jSvj !f S : V 
ki ! V 
ko , where jSvj is the number of lo
alextrema in the diagram and  !f indi
ates that the ordering of inputsand outputs is reversed.There is also some verti
al symmetry. The verti
al 
ip of a diagramex
hanges the inputs and outputs, and gives the dual of the originalfun
tion, in the following sense:Proposition 2.8. If a spin network S 
orresponds to a fun
tion fS :V 
ki ! V 
ko , then its dual diagram Sl, obtained by verti
al re
e
tion,
orresponds to the fun
tion f�S : V 
ko ! V 
ki withf�S(v1 
 � � � 
 vki) = Xeb2B(V
ki ) (fS(eb) � (v1 
 � � � 
 vko)) eb;



10 SEAN LAWTON, ELISHA PETERSONwhere � is the inner produ
t with respe
t to the standard basis for V 
ko ,and B(V 
ki ) is the basis for V 
ki . Alternately stated, f� and f aredual with respe
t to the standard inner produ
t on V .Proof. Given S = � and vi = � v1iv2i �, we havef�S(v1 
 v2) = � (1) � (v1 
 v2) = (e1 
 e2 � e2 
 e1) � (v1 
 v2)= v11v22 � v21v12 = det[v1 v2℄ = � (v1 
 v2):In [Pet℄, it is shown that this, together with the 
omputation for S =� , is suÆ
ient to show that the proposition holds in general. �These symmetries give:Theorem 2.9 (Spin Network Re
e
tion Theorem). A relationXm �mSm = 0among some 
olle
tion of spin networks fSmg is equivalent to the samerelation for the verti
ally re
e
ted spin networks fSlmg and (up to sign)for the horizontally re
e
ted spin networks f !S mg, i.e.,Xm �mSlm = 0 and Xm �m(�1)jSmv j !S m = 0:The proof is given in [Pet℄. This fa
t allows us to freely use \re
e
tedrelations," simplifying many of the proofs in se
tion 4.2.3.2. Working with Spin Networks. Perhaps the most valuable assetof spin networks as a 
al
ulational tool is:Proposition 2.10. All 
rossings and loops may be removed from spinnetworks. In parti
ular,(1) � = � � � ; � S = tr(I)S = 2S:The proof is given in [Pet℄, although this is a good exer
ise.The �rst of these relations is 
alled the Fundamental Binor Identity,and represents a fundamental type of stru
ture in mathemati
s; it isthe 
ore 
on
ept in de�ning both the Kau�man Bra
ket Skein Modulein knot theory [Bu2℄ and the Poisson bra
ket on the set of loops ona surfa
e, whi
h Goldman des
ribes in [G1℄. It 
an also be identi�edwith the 
hara
teristi
 polynomial for 2 � 2 matri
es.We now des
ribe how spin networks intera
t with a given matrixx 2M2�2. Any su
h x a
ts naturally on V 
k by multipli
ation on ea
htensor fa
tor:(2) x � (v1 
 v2 
 � � � 
 vn) = xv1 
 � � � 
 xvn:



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 11We represent the a
tion v 7! x � v by inserting a polygon on a strand,and thus identify = $ x. Then, the a
tion of x on V 
k is representedby ? . We are primarily interested in the 
ase x 2 SL(2; C ), for whi
hspin networks are espe
ially 
onvenient.Proposition 2.11. The spin network 
omponent maps � ; � = � ;and � = � , and therefore all spin networks, are invariant underthe natural a
tion of SL(2; C ) on V des
ribed above.Proof. The 
ase for the identity � is 
lear, whileE (v 
 w) = det[xv xw℄ = det(x � [v w℄)= det(x) � det[v w℄ = 1 � det[v w℄ = � (v 
 w)shows that � Æ x = x Æ � .The proof for � follows by re
e
ting this relation. �This means that matri
es in su
h a diagram 
an \slide a
ross" avertex (lo
al extremum) by simply inverting the matrix, so thatif > = x�1 2 SL(2; C ); then B = C :We 
an work with a general matrix x 2 M2�2 almost as easily: thedeterminant frequently shows up sin
e D = det( = )S and so B =det( = ) C , provided x is invertible.When a matrix = is pla
ed somewhere within a 
losed spin network,we obtain a map G ! C . For multiple matri
es, we obtain a mapG� � � ��G! C . One of our primary motivations for this paper is thestudy of invarian
e properties of su
h maps. For example, we have thefollowing interpretations of the simplest 
losed networks:Proposition 2.12. For x 2M2�2 and I= � 1 00 1 �, we have:(3) � = 2 = tr(I); � = tr(x); A = det(x) � tr(I):2.3.3. Symmetrizers and Irredu
ible Representations. We have one moreSL(2; C )-invariant map to introdu
e:De�nition 2.13. The symmetrizer �n : V 
n ! V 
n is the maptaking(4) v1 
 v2 
 � � � 
 vn 7! 1n! X�2�n v�(1) 
 v�(2) 
 � � � 
 v�(n);where vi 2 V and �n is the symmetri
 group of permutations on nelements.



12 SEAN LAWTON, ELISHA PETERSONIn the simplest examples, we have:(5) �2 = 12 � � + � � = � � 12 � � � ;(6)  3 = 16 � � + � + � + 
 + 	 + 
 �= � � 23 � Æ + � �+ 13 � � + � �Note that the 
rossings are removed by applying the Fundamental Bi-nor Identity.The de�ning equation (4) of �n should look familiar: its image is asubspa
e of V 
n isomorphi
 to the nth symmetri
 power SymnV , andthus it 
an be thought of as either the proje
tion � : V 
n ! SymnVor as the in
lusion � : SymnV ! V 
n (see [FH℄, page 473).What does this mean for us? If a diagram from V 
ki to V 
ko hassymmetrizers at its top and bottom, it 
an be thought of as a mapbetween Vki and Vko instead. We freely interpret su
h spin networks asmaps between tensor powers of these irredu
ible representations.Proposition 2.14 (Basi
 Symmetrizer Properties).Invarian
e: ? Æ �n = �n Æ ? ;(7) sta
king relation: ! kn = "n;(8) 
apping/
upping: # = 0 and $ = 0;(9) symmetrizer sliding: ) = * ;(10)Proof. The �rst relation (7) is evident if one expands the symmetrizerin terms of permutations, sin
e permutations are SL(2; C )-invariant.The sta
king relation is the statement that symmetrizing the last kelements of a symmetri
 tensor has no e�e
t, sin
e they are alreadysymmetri
.The 
apping and 
upping relations follow from the equations � Æ�2 = 0 and �2 Æ � = 0, and the sta
king relation.Two methods may be used to demonstrate (10). First, re
all thatthe minimum � 
orresponds to the map � = B for = = g =� 0 1�1 0 � 2 SL(2; C ). Thus, this 
an be thought of as a spe
ial 
ase ofSL(2; C )-invarian
e (7). Alternately, if we expand the symmetrizer,and write ea
h permutation as a produ
t of transpositions, then (10)follows from the simple relation + = , . �We now move on to some more involved relations among symmetriz-ers. Although it is easy to write down an arbitrary �n in terms ofpermutations, it is usually rather diÆ
ult to write it down in terms of
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rossings. The next two propositions give re
urren
erelations whi
h 
an simplify this pro
ess.Proposition 2.15. The symmetrizer �n satis�es the following re-
urren
e relation:(11)-n = .n�1 ��n� 1n � /n�1 +�n� 2n � 0n�1 + � � �+ (�1)i�n� in � 1n�1 + � � �+ (�1)n�1�1n� 2n�1:Proof. The proof begins with a basi
 
ombinatorial formula: a permu-tation on n obje
ts is determined uniquely by (a) the number mappingto 1; and (b) a permutation on the remaining n � 1 numbers. In dia-gram form, this statement 
orresponds to the equation:-n = 1n .n�1Æ�8 + 9 + : + � � �+ ; + � � �+ < � :Now, use the binor identity and the key observation that any termswhose 
ups are not in the `�rst position' on top will vanish, due to the
apping relation, to expand an arbitrary term on the righthand side:. Æ ; = . � / + 0 + � � �+ (�1)i 1 ;where i is the number of `kinks' � in ; or 1 plus the number ofkinks in 1 . Finally, group the number of terms on the righthandside with the same number of kinks together: there will be n � i � 1terms with i kinks. �Proposition 2.16. �n also satis�es the re
urren
e relations:-n = i3n�1n�i + (�1)i�n � in � i4n�1n�i ;(12) 5n = 6n�1 ��n� 1n � 7n�1n�1:(13)Proof. Compose relation (11) with �i 
 �n�i. This has no e�e
ton the lefthand side, by the sta
king relation. On the righthand side,all but one of the terms with a 
ap on the bottom vanish, due to the
apping relation, sin
e they will 
ap o� either the �i or the �n�i.The one term whi
h remains `
aps between' these two symmetrizers.The 
oeÆ
ient is (�1)i �n�in � sin
e in re
urren
e (11), i is equal to onemore than the number of kinks � in 1 .Relation (13) is 
learly a spe
ial 
ase of the �rst. �



14 SEAN LAWTON, ELISHA PETERSONAs a �rst appli
ation of the above, we have the looping relation:Proposition 2.17 (Looping Relations).%n = �n+ 1n � &n�1;(14) kn'n = � n+ 1n� k + 1� &n�k;(15) (n= n + 1:(16)Proof. Close o� the left strand in (13) above. Then, 5n; 6n�1;and 7n�1n�1 be
ome %n, � �n�1 = 2�n�1 and �n�1, re-spe
tively. Now 
olle
t terms to get (14), and pro
eed to (15) or (16)by applying the �rst relation k or n times. �2.3.4. Symmetrizers and Trivalent Spin Networks. Re
all the Clebs
h-Gordan de
omposition of Proposition 2.1,Va 
 Vb �= M
2da;b
V
; da; b
 = fa+ b; a+ b� 2; : : : ; ja� bjg:The 
ondition 
 2 da; b
 is 
ompletely symmetri
, sin
e it is equivalentto the following:Convention 2.18. We write 
 2 da; b
, or say that fa; b; 
g is anadmissible triple, when a; b; 
 are nonnegative integers satisfying:(17) a+ b+ 
 2 2Z; a � b+ 
; b � a+ 
; 
 � a+ b:This may alternately be interpreted as the integer side lengths of aEu
lidean triangle with even perimeter.Two maps arise from this de
omposition: an inje
tion ia;b
 : V
 !Va 
 Vb and a proje
tion P 
a;b : Va 
 Vb ! V
. Both have extremelysimple diagrammati
 representations (see [CFS℄):ia;b
 = a�b
 : V
 ! Va 
 Vb; P 
a;b = a�
 b: Va 
 Vb ! V
:Note that the symmetrizers allow us to impli
itly identify the tops andbottoms of these diagrams with tensor produ
ts of irredu
ible repre-sentations of SL(2; C ).We �nd it useful to introdu
e notation for the numbers of strands inthese diagrams:



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 15Convention 2.19. Given a; b; 
, denote by �, �, and 
 the total num-ber of strands 
onne
ting Vb to V
, Va to V
, and Va to Vb, respe
tively,and by Æ the total number of strands in the diagram. Then:� = 12(�a+b+
); � = 12(a�b+
); 
 = 12(a+b�
); Æ = 12(a+b+
):Note that fa; b; 
g is admissible if and only if �; �; 
 2 N.Sin
e ia;b
 and P 
a;b will be so important for the remainder of thispaper, we introdu
e a notation whi
h simpli�es their depi
tion. Let nlines with a symmetrizer be represented by one thi
k line labelled n,so that 	n � �n.De�nition 2.20. A trivalent spin network S is a graph drawn on theplane with verti
es of degree � 3 and edges labelled by positive integerssu
h that:� 2-verti
es are 
iliated and 
oin
ide with lo
al extrema;� 3-verti
es are drawn `up' � or `down' � ;� any two edges meeting at a 2-vertex have the same label;� the three labels adja
ent to any vertex form an admissible triple.If there are m input edges with labels li for i = 1; : : : ;m and n outputedges with labels l0i for i = 1; : : : ; n, the network is identi�ed with amap between tensor produ
ts of irredu
ible SL(2; C ) representations,fS : Vl1 
 � � � 
 Vlm ! Vl01 
 � � � 
 Vl0n;whi
h is 
omputed by identifying S with a regular spin network usingthe following identi�
ations:	n � �n; 
n � nz }| {� � � � � � � n = � n ��a� b
 � a�b
 a�
 b � a�
 b:Note that 
iliations are normally 
hosen to be on the lo
al extrema,and degree-3 verti
es, when expanded, also have a number of 
iliatedverti
es. Thus, topologi
al invarian
e be
omes a more deli
ate opera-tion, and the next se
tion treats it as su
h.For the remainder of this paper, we assume that all sets of labelsin
ident to a 
ommon vertex in a diagram are admissible. Moreover,whenever we sum over a label in a diagram, the sum is taken over allpossible values of that label whi
h make the requisite triples in thediagram admissible.



16 SEAN LAWTON, ELISHA PETERSON2.3.5. Fun with Signs. The identity � = � � gives rise to the follow-ing 
ompendium of sign 
hanges through diagram manipulations:Proposition 2.21. The following diagrams are equivalent up to sign:n� = (�1)n 	n;(18) a�
 b = (�1) 12 (a+b�
)a�
 b;(19) 
� ba = (�1) 12 (�a+b+
)a�
 b;(20) d� ba
 e = (�1) 12 (a+b+
+d�2e)ad� b
e ;(21) (�1) 12 (a+
)ad� b
e = (�1) 12 (b+d)ad� b
e ;(22) d� ba
 e = (�1)b+d�ead� b
e :(23)Proof. First, (18) is just a restatement of � n = (�1)n � n, and(19) follows dire
tly from the Re
e
tion Theorem (2.22), sin
e a�
 b
ontains 
 = 12(a+ b� 
) lo
al extrema.For (20), noti
e that in the simplest 
ase� = �� ;the negative sign 
omes from the strand on top of the diagram. Sim-ilarly, the general 
ase for transforming 
� ba into a�
 b has a signfor ea
h strand between b and 
, giving (�1)� = (�1) 12 (�a+b+
). Thisidentity is used twi
e to give (21).Finally, (22) follows from:ad� b
e = (�1)ed� b
a e = (�1)e+ 12 (d+e�a+b+e�
)ad� b
e ;and (23) is given by 
ombining (21) and (22). �The above relations allow us to de�ne a �4 re
e
tion on 
ertain typesof diagrams, whi
h will be important later:Proposition 2.22. If a relation 
onsists entirely of terms of the formad� b
e and ad� b
f , then one may \re
e
t about the line through a and
" in the following sense:Xe �ead� b
e =Xf �fad� b
f () Xe �eab� d
e =Xf �fab� d
f :



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 17Proof. By horizontally re
e
ting the �rst relation, using Theorem 2.9,Xe �ead� b
e =Xf �f ad� b
f() Xe �e(�1) 12 (a+b+
+d�2e)b
� ade =Xf �f (�1) 12 (a+b+
+d�2f)b
� adf() Xe �eb
� ade =Xf �f b
� adf ;where the signs 
an
el due to the admissibility 
onditions.Now, add strands to both sides, so that the right side b
� adf be
omesb� da
f = (�1)b+d�f ab� d
f :Likewise, on the left side, b
� ade be
omes (�1)b+d�eab� d
e . On
eagain, admissibility implies that e and f must have the same parity, sothese signs 
an
el. �We give two alternate versions of this proposition as a 
orollary,whose proof may be found in [Pet℄.Corollary 2.23. We have the additional equivalen
es:Xe �ead� b
e =Xf �fad� b
f () Xe �eab� d
e =Xf �fab� d
fand Xe �ead� b
e =Xf �fad� b
f() Xe �e(�1) 12 (e�b) ba� 
d e =Xf �f(�1) 12 (d�f) ba� 
df :2.3.6. Properties of Trivalent Spin Networks. As for regular spin net-works, any 
losed trivalent spin network may be interpreted as a 
on-stant. The simplest su
h diagrams are given byProposition 2.24. Let �(a; b; 
) = �
a b and �(
) = �
 (sym-metrizer shown for 
larity). Then �(a; b; 
) is symmetri
 in fa; b; 
g



18 SEAN LAWTON, ELISHA PETERSONand expli
itly (re
all the �; �; 
; Æ given in Convention 2.19):�(
) = 
+ 1 = dim(V
);(24) �(a; b; 
) = (�a+b+
2 )!(a�b+
2 )!(a+b�
2 )!(a+b+
+22 )!a!b!
! = �!�!
!(Æ+1)!a!b!
! ;(25) �(1; a; a+ 1) = �(a+ 1) = a+ 2:(26)Proof. The �rst equation (24) is a 
onsequen
e of the Looping Relation(14). That �(1; a; a+ 1) = �(a+ 1) is a 
onsequen
e of the sta
kingrelation, and demonstrates (26). We refer the reader to [CFS℄ for the�(a; b; 
) formula. �Ratios of � and � show up in the next two propositions, whi
h tellus how to \pop bubbles" and how to \fuse together" two thi
k edges.The �rst demonstrates the usefulness of S
hur's Lemma (Proposition2.2) in diagrammati
 te
hniques.Proposition 2.25 (Bubble Identity). �
da b = ��(a;b;
)�(
) 	
� Æ
d, whereÆ
d is the Krone
ker delta.Proof. S
hur's Lemma requires �
da b = C 	
Æ
d for some 
onstant C,sin
e �
da b is a map between irredu
ible representations. This equationremains true if we \
lose o�" the diagrams, giving:�
a b = C�
 =) C = �(a; b; 
)�(
) : �Proposition 2.26 (Fusion Identities).a� b = X
2da;b
� �(
)�(a; b; 
)� aa� bb
abÆ ba = X
2da;b
(�1) 12 (a�b+
)� �(
)�(a; b; 
)� ab� ba
 :Proof. Maps of the form aa� bb
 for 
 2 da; b
 form a basis for the spa
eof SL(2; C )-invariant maps Va 
 Vb ! Va 
 Vb (see [CFS℄). Thus, wemay express the �rst diagram as a linear 
ombination:a� b = X
2da;b
C(
)aa� bb
 ;
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i�
 d 2 da; b
, we may 
ompute the 
onstant C(d) by
omposing this expression with a� bd , giving:a� bd = X
2da;b
C(
)a� b
 Æ �
da b= X
2da;b
C(
)��(a; b; 
)�(
) � a� b
 Æ 	dÆ
d= C(d)��(a; b; d)�(d) � a� bd =) C(d) = �(d)�(a; b; d) :For the se
ond equation, we haveabÆ ba = X
2da;b
(�1) 12 (�a+b+
) � �(
)�(a; b; 
)� b� baa 
= X
2da;b
(�1) 12 (a�b+
)� �(
)�(a; b; 
)� ab� ba
 : �3. De
omposition of C [G℄The following theorem is a 
onsequen
e of the \unitary tri
k"[Do℄,the Peter-Weyl Theorem [CSM℄, and the fa
t that the set of matrix
oeÆ
ients of G is exa
tly its 
oordinate ring [CSM℄. We o�er a self-
ontained 
onstru
tive proof in se
tion 3.2, sin
e it gives us an expli
it
orresponden
e between regular fun
tions and spin networks.Theorem 3.1. For G = SL(2; C ), we have a G-module isomorphism:C [G℄ �=Xn�0 V �n 
 Vn:3.1. Central Fun
tions. As a 
onsequen
e of Theorem 3.1, we de-s
ribe C [G�G℄G in terms of an additive basis of 
lass fun
tions, whi
hhave an elegant realization as spin networks.



20 SEAN LAWTON, ELISHA PETERSONIndeed, as a 
onsequen
e of Theorem 3.1 and the Clebs
h-Gordande
omposition, we have the following de
omposition:C [G �G℄ �= C [G℄ 
 C [G℄�=  Xa�0 V �a 
 Va!
 Xb�0 V �b 
 Vb!�= Xa�0Xb�0 V �a 
 Va 
 V �b 
 Vb�= X0�a;b<1(V �a 
 V �b )
 (Va 
 Vb)�= X0�a;b<10�min(a;b)Xi=0 V �a+b�2i1A
0�min(a;b)Xj=0 Va+b�2j1A�= X0�a;b<10�i;j�min(a;b)V �a+b�2i 
 Va+b�2j :And hen
e, sin
e all above maps are G-equivariant,(27) C [G �G℄G �= X0�a;b<10�i;j�min(a;b) �V �a+b�2i 
 Va+b�2j�G :But by S
hur's lemma (2.2),dimC �V �a+b�2i 
 Va+b�2j�G = � 1 if i = j0 if i 6= j ;so C [G �G℄G �= X0�a;b<10�j�min(a;b)End(Va+b�2j)G:De�nition 3.2. Given the above isomorphism, for ea
h 
 2 da; b
,there exists a 
lass fun
tion �a;b
 2 C [G �G℄G whi
h 
orresponds to agenerating homothety (unique up to s
alar) in End(V
)G. We refer tothe fun
tions �a;b
 as 
entral fun
tions.Denote by SpanC ��a;ba+b�2j� � C [G �G℄G the linear span over C of�a;ba+b�2j. Then we 
an rewrite (27) asC [G �G℄G �= X0�a;b<1
2da;b
 SpanC ��a;b
 � :
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tions �a;b
 we understand the additive stru
tureof C [G �G℄G, and so have a 
anoni
al \Taylor-like" series des
riptionof the regular fun
tions on X. In se
tion 4, we will des
ribe the mul-tipli
ative stru
ture of C [G � G℄G in terms of this additive basis of
entral fun
tions.This de
omposition allows us to expli
itly express these 
lass fun
-tions as �a;b
 (x1;x2) = tr��(
�i )�(x1;x2) � �(
j)��ij;where � is the \Clebs
h-Gordan" inje
tion V
 ,! Va 
 Vb, and f
jg is abasis for V
.The fun
tions �a;b
 take a natural diagrammati
 form. If the matrixx1 is represented diagrammati
ally by � , then its a
tion on Va 
an berepresented by 
a � � a Æ �a: If there are r di�erent matri
es in a
losed spin network, we 
an interpret it as a fun
tion G�r ! C . Inparti
ular, if x1 and x2 are depi
ted by � and � , respe
tively, then�a;b
 (x1;x2) =  
ba = a! b
 :As a spe
ial 
ase, setting x1 = x2 = I, where I is the identity matrixin G, gives �a;b
 (I;I) = �(a; b; 
).Before expli
itly 
omputing the multipli
ative stru
ture of C [X℄, weprove the de
omposition theorem.3.2. Proof of C [G℄ De
omposition Theorem. De�ne� :Xn�0 V �n 
 Vn �! C [G℄by linear extension of the mappingn�n�k 
 nn�l 7! n�n�k(x � nn�l);where x = � x11 x12x21 x22 � is a matrix variable. We will show this is anisomorphism in the following steps:(1) Show that � is well-de�ned.(2) Constru
t isomorphisms(i)Ln�0(HomG(Vn; C [G℄R)
 Vn) ��! C [G℄(ii) HomG(Vn; C [G℄R) 	n�! V �n :(3) Show that � = � Æ (�	n 
 id).



22 SEAN LAWTON, ELISHA PETERSONWe �rst verify that � is a G-equivariant with the 
al
ulation:�(g � (n�n�k 
 nn�l)) = � �(g � n�n�k)
 (g � nn�l)�= (g � n�n�k)(x � (g � nn�l)) = n�n�k((g�1xg) � nn�l)= g � n�n�k(x � nn�l) = g ��(n�n�k 
 nn�l):Its image 
onsists of regular fun
tions sin
en�n�k(x � nn�l) = n�n�k �(x11e1 + x21e2)n�l(x12e1 + x22e2)l�= Xi+j=k0�i�n�l0�j�l �nk��1�n�li ��lj�xn�l�i11 xl�j12 xi21xj22;whi
h is 
lear a polynomial. We have now shown � is well-de�ned.G a
ts on the right of C [G℄ by (f; g) 7! f � g; wheref � g(x) = f(xg):We let C [G℄R be the ring C [G℄ with this right a
tion, to distinguish itfrom the diagonal 
onjugation a
tion already imposed on C [G℄. Ad-ditionally, G a
ts on the left of HomG(Vn; C [G℄R) by (g; 
) 7! g � 
;where (g � 
)(v)(x) = 
v(g�1x);and 
v = 
(v) 2 C [G℄: This a
tion is well-de�ned sin
e(g � 
)(g0 � v)(x) = 
g0�v(g�1x) = 
v(g�1x � g0) = (g � 
)(v)(x � g0):Lemma 3.3. De�ne� :Mn�0 (HomG(Vn; C [G℄R)
C Vn) �! C [G℄;by linear extention of the mappings 
 
 v 7! 
(v). G a
ts onL (HomG(Vn; C [G℄R)
C Vn) by g � (P 

v) =P(g �
)
 (g �v): Withrespe
t to this a
tion, � is an isomorphism of G-modules.Before we prove Lemma 3.3, we require some preliminary te
hni
alresults.Lemma 3.4. Every regular fun
tion is 
ontained in a �nite-dimensionalsub-representation of C [G℄.Proof of Lemma 3.4. Sin
e we are 
onsidering two a
tions of G, namelythe diagonal and rightG-a
tions, we 
onsider the followingG�G-a
tionwhi
h en
ompasses both by restri
tion. Let this a
tion� : G �G�G �! G



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 23be de�ned by (g1; g2;x) 7! g1xg�12 , and further let(28) �� : C [G℄ �! C [G �G �G℄ �= C [G℄
3de�ned by f 7! f Æ � be the pull-ba
k of regular fun
tions on G toregular fun
tions on G�3. For f 2 C [G℄, (28) implies that there existsnf 2 N and regular fun
tions fi; f 0i ; f 00i for 1 � i � nf su
h that��(f) = nfXi=1 fi 
 f 0i 
 f 00i :Therefore ��(f)(g�11 ; g�12 ;x) = nfXi=1 fi(g�11 )f 0i(g�12 )f 00i (x):On the other hand,��(f)(g�11 ; g�12 ;x) = f(�(g�11 ; g�12 ;x)) = f(g�11 xg2) = ((g1; g2) � f)(x);whi
h implies(29) (g1; g2) � f = nfXi=1 fi(g�11 )f 0i(g�12 )f 00i :Let (G �G)f = f(g1; g2) � f : f 2 Gg be the G�G-orbit of f , and letVf be the linear subspa
e spanned over C by (G �G)f in C [G℄. Vf is�nite-dimensional by (29), and so ff 00i g is a �nite spanning set. ClearlyVf is G � G-invariant, and so invariant with respe
t to the diagonaland right G-a
tions. Thus, it is a �nite-dimensional sub-representation
ontaining f . �Lemma 3.5. C [G℄ is 
ompletely G �G-redu
ible.Proof of Lemma 3.5. Let I be the set of dire
t sums of irredu
ible�nite-dimensional sub-representations of C [G℄. I is partially orderedby set in
lusion and is non-empty sin
e C [G℄ 6= f�g and any Vf is 
om-pletely redu
ible sin
e it is a �nite-dimensional G-module. Thus, byZorn's lemma there exists a maximal element M 2 I. If M 6= C [G℄,then 
onsider any f =2 M . There exists Vf , a �nite-dimensional sub-representation that 
ontains f , by Lemma 3.4. Re
all that K = SU(2)is the maximal 
ompa
t subgroup of G. Restri
ting the a
tion of G�Gto K �K, we �nd an orthogonal 
omplement to Vf in M [ Vf , whi
hwe denote byM?. But thenM?�Vf 2 I, sin
eK�K representationsextend to G � G representations. Hen
e we 
ontradi
t the maximal-ity of M . Therefore C [G℄ is 
ompletely redu
ible with respe
t to the
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tion, and so with respe
t to the diagonal and right G-a
tions.In parti
ular, C [G℄ �=Xj�0 
jVj;where 
j 2 N is the multipli
ity of Vj in C [G℄. This de
ompositionholds for both C [G℄ and C [G℄R sin
e they both are restri
tions of thesame G �G-a
tion. �Proof of Lemma 3.3. By Lemma 3.5,� :Mn�0 (HomG(Vn; C [G℄R)
C Vn) �! C [G℄is an isomorphism if and only ifMn�0  Xj�0 
jHomG(Vn; Vj)
C Vn! �!Xj�0 
jVjis an isomorphism. By S
hur's Lemma, this redu
es toMn�0 (
nHomG(Vn; Vn)
C Vn) �!Xn�0 
nVn;whi
h is in turn equivalent toMn�0 (
nC 
C Vn) �!Xn�0 
nVn:However, this is the map sending P� 
 v 7! P�v for � 2 C andv 2 Vn, whi
h is 
anoni
ally an isomorphism. �We 
an now �nish the proof of the theorem. De�ne	n : V �n �! HomG(Vn; C [G℄R)by w� 7! Fw�, where Fw�(v)(x) = w�(x � v). 	n is well-de�ned sin
eFw�(g � v)(x) = w�(x � (g � v)) = w�((xg) � v)= g �w�(x � v) = g � (Fw�(v))(x);and is G-equivariant be
ause	n(g � w�)(v)(x) = Fg�w�(v)(x) = (g �w�)(x � v) = w�((g�1x) � v)= Fw�(v)(g�1x) = (g � Fw�)(v)(x) = g �	n(w�)(v)(x):Sin
e V �n is irredu
ible, S
hur's Lemma implies 	n is inje
tive. Wenow show surje
tivity. Consider 
 2 HomG(Vn; C [G℄R): For I2 G, thefun
tion 
(v)(I) is linear in v 2 Vn. Hen
e there exists w� 2 V �n su
h
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(v)(I) for all v 2 Vn. We now show Fw� = 
 whi
hproves that 	n is surje
tive.Fw�(v)(x) = w�(x � v) = 
(x � v)(I)= (x � 
)(v)(I) = 
(v)(I� x) = 
(v)(x):Therefore,Xn�0 V �n 
 Vn �=Mn�0 (HomG(Vn; C [G℄R)
 Vn) ;given by the map 	 = �(	n 
 id):Finally, we verify � = � Æ	:� Æ	(w� 
 v)(x) = �(Fw� 
 v)(x) = Fw�(v)(x)= w�(x � v) = �(w� 
 v)(x): �3.3. Ring Stru
ture of C [G℄G . We have establishedC [G℄ �=Xn�0 V �n 
 Vn:Sin
e V �n �= (Vn)� , V �n 
Vn �= End(Vn); for all n 2 N. Hen
e, by S
hur'sLemma, C [G℄G �=Xn�0(V �n 
 Vn)G �=Xn�0 SpanC (�n);where �n 2 End(Vn)G is a homothety.Therefore, using the isomorphism V �n 
 Vn ! End(Vn) given byn�n�k 
 nn�l 7! (nn�k)�(x)nn�l;we 
ompute �0 = n�0 
 n0 = 1, and �1 = n�0 
 n0 + n�1 
 n1.Sin
e Vn is irredu
ible, Burnside's Theorem [La℄ implies End(Vn) isalgebrai
ally generated by G < Aut(Vn). Hen
e, n�n�k 
 nn�l is thematrix 
oeÆ
ient, 
olumn n� k + 1 and row n� l + 1, of Vn.For example, 
onsider �1. V1 is the standard representation and itsdiagonal matrix 
oeÆ
ients, forx = � x11 x12x21 x22 � ;are x11 and x22. Hen
e �1 = x11 + x22 = tr(x):Re
all that a triple of non-negative integers fa; b; 
g is admissible ifa+ b+ 
 2 2Z; a � b+ 
; b � a+ 
; 
 � a+ b;and that the set of integers 
 for whi
h fa; b; 
g is admissible is denotedby da; b
 (Convention 2.18).
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tions �0 and �1, we 
an determine a re
ursive formulafor a general �n using the following multipli
ation formula.Theorem 3.6 (Produ
t Formula).�a�b = X
2da;b
�
(30)Proof. From the Clebs
h-Gordan de
omposition,(Va 
 Vb)� 
 (Va 
 Vb) �= X0�j;k�min(a;b)V �a+b�2j 
 Va+b�2k;and so from S
hur's LemmaEnd(Va 
 Vb)G �= X0�j�min(a;b)End(Va+b�2j)G:Hen
e the 
hara
ters satisfy�a�b = �(Va
Vb) = �(�jVa+b�2j) = X
2da;b
�
: �Using the produ
t formula (30) and the initial 
al
ulations of �0 and�1; we proveTheorem 3.7. C [G℄G �= C [t℄Proof. Consider the ring homomorphism � : C [t℄ ! C [G℄G de�ned byf 7! f Æ tr: Suppose f(tr(g)) = 0 for all g 2 G. If f 6= 0, then sin
e fhas a �nite number of zeros, tr(g) must have a �nite number of values.However, � t 1�1 0� 2 Gfor all values of t. Hen
e, f = 0 and � is inje
tive. It remains toestablish surje
tivity. We have already shown t 7! �1 and 1 7! �0:Suppose a � 2 and �b is in the image of � for all b < a. Equation (30)implies �1�a�1 = �a + �a�2: Thus, by indu
tion,t��1(�a�1)� ��1(�a�2) 7! �a: �We 
an also express �n as a fun
tion of eigenvalues. Sin
e �n isdetermined by its values on normal forms,�� �0 ��1� 2 G;
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omputing the matrix representations of su
h forms give formulas forthe fun
tions �n. Expli
itly, � � �0 ��1 � a
ts on Vn by the matrix0BBBBB� �n � � � � � �0 �n�2 � � � � �... 0 . . . � �0 ... 0 �2�n �0 0 � � � 0 ��n 1CCCCCA :Hen
e, �n = �n + �n�2 + � � �+ �2�n + ��n = �n+1 � ��n�1� � ��1 ;whi
h are the Chebyshev polynomials. These rational fun
tions de�nedin terms of eigenvalues, 
orrespond to elements in C [t℄ by t 7! �+��1:4. Stru
ture of C [G �G℄GWe now 
onsider C [G � G℄G and in like manner begin with somebasi
 
omputations. As before, �0;00 = 1:Let x1 = � x111 x112x121 x122 �, x2 = � x211 x212x221 x222 � be matrix variables, andlet x = tr(x1) = x111 + x122;y = tr(x2) = x211 + x222;z = tr(x1x�12 ) = (x111x222 + x122x211)� (x112x221 + x121x212):From the Clebs
h-Gordan de
omposition and S
hur's lemma, for 
 2da; b
 there exists a unique (up to a s
alar) inje
tion� : V
 ,! Va 
 Vb:Similarly, we have an in
lusionV �
 ,! V �a 
 V �b �= (Va 
 Vb)�:Re
all that we have shownC [G �G℄G �= X0�a;b<1
2da;b
 SpanC (�a;b
 );where �a;b
 
orresponds toX0�k�
 
�k 
 
k 2 V �
 
 V
 ,! V �a 
 V �b 
 Va 
 Vb;and f
�k 
 
kg is a basis for V
.
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 akg be a basis for Va, and fb�k 
 bkg be a basis for Vb.We will des
ribe �: To motivate its 
onstru
tion, we begin with theinvarian
e of the in
lusion V0 ,! V1 
 V1 given by
0 7! a0 
 b1 � a1 
 b0:The invarian
e follows from a straightforward 
al
ulation or the obser-vation that it is the exterior produ
t, whi
h is unimodularly invariant.When a = b, the mapping V0 ,! Va 
 Vb is given by proje
tion of themap(31) 
0 7! (a0 
 b1 � a1 
 b0)
a+b2 ;and therefore is also invariant.Moreover when 
 = a+ b; the mapV 

 s�! V 
a 
 V 
b;whi
h independently symmetrizes the �rst a and last b fa
tors of a basi
element of V 

, is equivariant, sin
e it preserves tensor degree. Thefollowing diagram V 

 s�! V 
a 
 V 
b???y ???yV
 ��! Va 
 Vb;given by proje
tion, is 
ommutative, and so � is given by(32) �
k�
k 7! X0�i�a0�j�bi+j=k �ai�ai 
 �bj�bj;and is also equivariant.Before we write down the general form of � we do some 
al
ulations.For �1;10 we 
onsider V0 ,! V1 
 V1. In this 
ase
0 7! a0 
 b1 � a1 
 b0; 
�0 7! a�0 
 b�1 � a�1 
 b�0:So 
�0 
 
0 7! �1;10 = (a�0 
 b�1 � a�1 
 b�0)
 (a0 
 b1 � a1 
 b0)= (a�0 
 a0)
 (b�1 
 b1)� (a�1 
 a0)
 (b�0 
 b1)�(a�0 
 a1)
 (b�1 
 b0) + (a�1 
 a1)
 (b�0 
 b0)= x111 
 x222 � x112 
 x221 � x121 
 x212 + x122 
 x211= (x111x222 + x122x211)� (x112x221 + x121x212)= z
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al
ulate �1;01 and �0;11 , 
orresponding to the in
lusions V1 ,!V0 
 V1 and V1 ,! V1 
 V0; respe
tively. With respe
t to the former,
0 7! a0 
 b0; 
�0 7! a�0 
 b�0;
1 7! a1 
 b0; 
�1 7! a�1 
 b�0;and with respe
t to the latter,
0 7! a0 
 b0; 
�0 7! a�0 
 b�0;
1 7! a0 
 b1; 
�1 7! a�0 
 b�1:Hen
e
�0 
 
0 + 
�1 
 
1 7! �1;01 = (a�0 
 a0)
 (b�0 
 b0) + (a�1 
 a1)
 (b�0 
 b0)= x111 
 1 + x122 
 1 = x111 + x122 = x:and
�0 
 
0 + 
�1 
 
1 7! �0;11 = (a�0 
 a0)
 (b�0 
 b0) + (a�0 
 a0)
 (b�1 
 b1)= 1
 x211 + 1
 x222 = x211 + x222 = y:Note that Va�
 
 (V 
 V )

 
 Vb�
 proje
ts naturally to Va 
 Vb viamultipli
ation in the graded tensor ringX0�a;b<1Va 
 Vb:With this in mind, we may 
ombine (31) and (32) to give the general formof �, whi
h is determined by mapping �
k�
k, for 0 � k � 
 and 
 = a+b�
2 ,to the proje
tion ofX0�i�a�
0�j�b�
i+j=k �a�
i �ai 
 (a0 
 b1 � a1 
 b0)

 
 �b�
j �bj :4.1. Symmetry of Central Fun
tions. Our next result is not at all obvi-ous via the algebrai
 de�nition of 
entral fun
tions, but essentially trivial indiagram form. In the theorem, we will use �(}1;}2;}3) to denote the or-dered triple (}�(1);}�(2);}�(3)) obtained by applying a given permutation� 2 �3 to the triple (}1;}2;}3).Theorem 4.1 (Symmetry of Central Fun
tions). Suppose a 
entral fun
tionis expressed as a polynomial P in the variables x = tr(x1), y = tr(x2),and z = tr(x1x�12 ), so that Pa;b;
(x; y; z) = �a;b
 (x1;x2) for some admissibletriple fa; b; 
g. These polynomials are symmetri
 with respe
t to (x; y; z) inthe following sense:P�(a;b;
)(x; y; z) = Pa;b;
(��1(y; x; z)):



30 SEAN LAWTON, ELISHA PETERSONProof. De�ne the following fun
tion G� G� G! C :X�;�;
( � ; � ; � ) =��z}|{ �z}|{ 
z}|{ ;where the symmetrizer on the right is assumed to `wrap around' to the one onthe left (imagine this diagram being drawn on a 
ylinder). By 
onstru
tionthis fun
tion is symmetri
, in the sense that:X�(�;�;
) �� � � ; � ; � �� = X�;�;
 � � ; � ; � � :For x1 = � ; x�11 = � ; x2 = � ; x�12 = 	 , a 
entral fun
tion �a;b
 (x1;x2)may be drawn as:� 
ba =�a�b+
2z}|{ a+b�
2z}|{ �a+b+
2z}|{ =��z}|{ 
z}|{ �z}|{ ;with the symmetrizers in the last two diagrams assumed to wrap around asbefore. Thus, Pa;b;
(x; y; z) = X�;�;
(x2;x�11 ;x1x�12 ) and so:P�(a;b;
)(x; y; z) = X�(�;�;
)(x2;x�11 ;x1x�12 )= X�;�;
(��1(x2;x�11 ;x1x�12 ))= Pa;b;
(��1(y; x; z)): �4.2. A Re
urren
e Relation for Central Fun
tions. De�ne the rankof a 
entral fun
tion to be:Æ = rank(�a;b
 ) = 12(a+ b+ 
):We will obtain a re
urren
e relation for an arbitrary 
entral fun
tion �a;b
by manipulating diagrams to express the produ
t tr(x1) � �a;b
 (x1;x2) as asum of 
entral fun
tions. This formula 
an be rearranged to write �a;b
 asa linear 
ombination of 
entral fun
tions with lower rank. There are threemain ingredients to the diagram manipulations: the bubble identity and thefusion identity from se
tion 2.3.6, and two re
oupling formulae whi
h weprove in the following lemma.Lemma 4.2. For i = 12(a+ 1� b+ 
) and appropriate triples admissible,1
� ab
�1 = 1

 aba+1 �(�1)i �a+b�
+12(a+1) �1

 aba�1 ;(33) 1
� ab
+1 =(�1)i ��a+b+
+12(
+1) �1

 aba+1+� (a+b+
+3)(a�b+
+1)4(a+1)(
+1) �1

 aba�1 :(34)Proof. Note that i is just the number of strands 
onne
ting �a+1 to �
in 1

 aba+1 = 
�a+1b . For (33), use n = a+1 and i in re
urren
e relation (12)



SPIN NETWORKS AND SL(2; C )-CHARACTER VARIETIES 31to get: �a+1 = i�aa+1�i + (�1)i�a+ 1� ia + 1 � i�aa+1�i:Compose this equation with 

 biz}|{ a+1�iz}|{ to get, via the sta
king relation:1

 aba+1 = 
�a+1b = 1
� ab
�1 + (�1)i�a+ 1� ia+ 1 � 1

 aba�1 ;whi
h is the desired result.To prove (34), noti
e that if we swit
h a and 
 in the previous relation, andapply a �4 re
e
tion to the relation about the 1 $ b axis as in Proposition2.22, then i is un
hanged and the equation be
omes:1
� ab
+1 = 1

 aba�1 + (�1)i�
+ 1� i
+ 1 � 1
� ab
�1 :Rearrange this equation, and use (33) in its exa
t form to get:1
� ab
+1 = 1

 aba�1 + (�1)i � 
+1�i
+1 ��1

 aba+1 � (�1)i � a+1�ia+1 � 1

 aba�1�= (�1)i � 
+1�i
+1 � 1

 aba+1 + �1� (a+1�i)(
+1�i)(a+1)(
+1) � 1

 aba�1= (�1)i ��a+b+
+12(
+1) � 1

 aba+1 + � (a+b+
+3)(a�b+
+1)4(a+1)(
+1) � 1

 aba�1 :To show the last 
omputation, note that a + 1 � i = 12(a + b � 
 + 1) and
+ 1� i = 12(�a+ b+ 
+ 1), so the numerator of the last term is:4((a+ 1)(
+ 1)� (a+ 1� i)(
+ 1� i)) = 4(a+ 1)(
+ 1)� ((b+ 1) + (
� a))((b+ 1)� (
� a))= 4(a+ 1)(
+ 1)� (b+ 1)2 + (a� 
)2= ((a+ 1)� (
+ 1))2 + 4(a+ 1)(
+ 1)� (b+ 1)2= ((a+ 1) + (
+ 1))2 � (b+ 1)2= (a+ 1 + 
+ 1 + b+ 1)(a+ 1 + 
+ 1� b� 1)= (a+ b+ 
+ 3)(a� b+ 
+ 1): �The 
oeÆ
ients we have 
omputed are examples of 6j-symbols, most eas-ily de�ned to be the 
oeÆ
ients � a b fd 
 e �0 in the following 
hange of basisequation: ad� b
e = Xf2da;b
\d
;d
� a b fd 
 e �0 � ad
 b
f :We use a prime be
ause we will need an alternate version later:



32 SEAN LAWTON, ELISHA PETERSONDe�nition 4.3. The 6j-symbols � a b fd 
 e � are the 
oeÆ
ients given bybaÆ 
d e = Xf2da;b
\d
;d
� a b fd 
 e � � ba� 
df :Both versions given here di�er from those in the literature [CFS, Ka℄. Itis not hard to show, using Corollary 2.23, that� a b fd 
 e �0 = (�1) 12 (b+d�e�f)� a b fd 
 e �:Thus, as a 
orollary to the above lemma we have the following 6j-symbols,given by repla
ing 
 with 
 + 1 or 
 � 1, whi
h we will need in our nexttheorem.Corollary 4.4.� 1 a a+1
+1 b 
 � = 1; � 1 a a�1
+1 b 
 � = (�1) 12 (a�b+
+2) (a+b�
)2(a+1) ;� 1 a a+1
�1 b 
 � = (�1) 12 (a�b+
+2) (�a+b+
)2
 ; � 1 a a�1
�1 b 
 � = (a+b+
+2)(a�b+
)4(a+1)
 :We 
an now prove the \multipli
ation by x" formula.Theorem 4.5. The produ
t x � �a;b
 (x; y; z) 
an be expressed by:(35) x � �a;b
 = �a+1;b
+1 + (a+b�
)24a(a+1) �a�1;b
+1+ (�a+b+
)24
(
+1) �a+1;b
�1 + (a+b+
+2)2(a�b+
)216a(a+1)
(
+1) �a�1;b
�1 :This equation still holds for a = 0 or 
 = 0, provided we ex
lude the termswith a or 
 in the denominator.Proof. Diagrammati
ally, x � �a;b
 (x; y; z) is represented bya� b1 
 ;sin
e x = tr(x1) = � and multipli
ation is automati
 on disjoint diagrams.Now manipulate the diagram to obtain a sum over �'s with the followingthree steps.First, we 
an apply the fusion identity to 
onne
t the lone � strand tothe �a;b
 :(36) a� b1 
 = a� b1
+1 

 + 

+ 1a� b1
�1 

 ;where the 
oeÆ
ients are evaluated from�(
� 1)�(1; 
; 
� 1) = 
� 1 + 1
+ 32 � 12 :
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ond, use the 6j-symbols 
omputed in Corollary 4.4 above to move thea strand from one side of the diagram to the other:a� b1
+1 

 = a+1� b
+1 + (a+b�
)24(a+1)2 a� b1 
+1a�1a�1(37) a� b1
�1 

 = (�a+b+
)24
2 a+1� b
�1 + (a+b+
+2)2(a�b+
)216(a+1)2
2 a� b1 
�1a�1a�1 :(38)In ea
h 
ase, we are re
oupling twi
e: on
e for the top pie
e Æ andon
e for the 
orresponding bottom pie
e. In doing this, we would a
tuallyget four terms, but sin
e the a� 1 labels must be the same on both the topand the bottom (a 
onsequen
e of S
hur's Lemma or the bubble identity),two of the terms vanish.In the �nal step, use the bubble identity to 
ollapse the �nal pie
es:a� b1 
b�1a�1a�1 = �(1; a; a� 1)�(a� 1) a�1� b
b�1= �a+1;b
b�1 or �a+1a ��a�1;b
b�1 ;where b� represents a sign whi
h may di�er from that in a�1. At this point,obtaining (35) is simply a matter of multiplying the 
oeÆ
ients obtained inthe previous formulae.Now 
onsider the spe
ial 
ases. For a = 0, sin
e b = 
 and 
onsequently

+1 = (�a+b+
)24
(
+1) , the desired formula is exa
tly (36). Similarly, for 
 = 0,the desired formula is (37). �We �nd it interesting that, for all our dis
ussion of signs introdu
ed bynon-topologi
al invarian
e, all signs introdu
ed are eventually squared andthus do not show up in this result.We 
an rearrange the terms in (35) and re-index to get:Corollary 4.6 (Central Fun
tion Re
urren
e). Provided a > 0 and 
 > 0,we 
an write�a;b
 = x ��a�1;b
�1 � (a+b�
)24a(a�1) �a�2;b
 � (�a+b+
)24
(
�1) �a;b
�2� (a+b+
)2(a�b+
�2)216a(a�1)
(
�1) �a�2;b
�2 :The 
ondition a > 0; 
 > 0 arises be
ause de
rementing a and 
 in (35)means fa� 1; b; 
� 1g must now be admissible. Also, note that by applyingthe symmetry relation of Theorem 4.1, we 
ould easily write down formulaefor multipli
ation by y and z and two more re
urren
e relations. This fa
tis indispensable in our proof of Theorem 4.9.
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ation of Central Fun
tions. It is not diÆ
ult towrite down the formula for the produ
t of two 
entral fun
tions, al-though the formula is by no means simple. We begin with a lemmawhi
h en
apsulates the most tedious diagram manipulations:Lemma 4.7. aa
 b0b0
 
0a0a0 bb = Xi;j;k;l;mCab
;a0b0
0j1k1l1;j2k2l2 ;maa� b0b0mk1k2 l1l2a0a0 bb ;where the 
oeÆ
ients are given by the formulaCab
a0b0
0j1k1l1;j2k2l2 ;m = �(
;
0 ;m)�(m) Yi=1;2 �(ji)�(a0 ;b;ji) � � a a0 ki
 ji b �� ji b li
0 b0 a0 �� ki li m
 
0 ji �;and the following 13 triples are assumed to be admissible:fa; a0; kig, fb; b0; lig, f
; 
0; mg, fa0; b; jig, f
; ki; jig, fb; li; jig, fki; li; mg.Proof. We will just demonstrate the diagram manipulation for the tophalf of the diagram, whi
h by symmetry must be the same as for thebottom half. Combining these two manipulations and applying a bub-ble identity will give the desired result. We will save enumeration ofadmissible triples until after the manipulation, but keep a 
lose eye onsigns in the meantime.a� b0
 
0a0 b =Xj (�1) 12 (a0�b+j) �(j)�(a0;b;j)a� b0
 
0a0 bb a0j=Xj;k (�1) 12 (a0�b+j)+j �(j)�(a0;b;j)� a a0 k
 j b �a� b0
 
0a0 bk a0j=Xj;k;l(�1) 12 (a0�b�j) �(j)�(a0;b;j)� a a0 k
 j b �� j b l
0 b0 a0 �a� b0
 
0a0 bk lj=Xj;k;l(�1) 12 (a0�b�j)+ 12 (j+l�
0) �(j)�(a0;b;j)� a a0 k
 j b �� j b l
0 b0 a0 �a� b0
 
0a0 bk lj= Xj;k;l;m (�1) 12 (a0�b+
�
0�j�m)+l �(j)�(a0;b;j)� a a0 k
 j b �� j b l
0 b0 a0 �� k l m
 
0 j �a	 b0
 
0a0 bk lm
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an
el in the end, a 
onsequen
e of the fa
t thatthe following triples must be admissible:fa; a0; kg, fb; b0; lg, f
; 
0; mg, fa0; b; jg, f
; k; jg, fb; l; jg, fk; l;mgOne 
omputes the 13-parameter 
oeÆ
ients Cab
;a0b0
0j1k1l1 ;j2k2l2;m above by re-
e
ting this result verti
ally, taking two sets of indi
es for the variablesj; k; l;m on the two halves, and noting that the resulting bubble in themiddle 
ollapses with a fa
tor of �(
;
0;m)�(m) for m = m1 = m2. �With that out of the way, we 
an des
ribe the 
entral fun
tion mul-tipli
ation table expli
itly. Note the symmetry with respe
t to k; l;m,whi
h is guaranteed by Theorem 4.1.Theorem 4.8 (Multipli
ation of Central Fun
tions). The produ
t oftwo 
entral fun
tions �a;b
 and �a0b0
0 is given by:�a;b
 �a0b0
0 = Xj1;j2;k;l;mCj1klmCj2klm�(a;a0;k)�(b;b0;l)�(
;
0 ;m)�(k)�(l)�(m) �klm;where the sum is taken over admissible triplesfa; a0; kg, fb; b0; lg, f
; 
0; mg, fa0; b; jig, f
; k; jig, fb; l; jig, fk; l;mgand the 
oeÆ
ients are given by:Cjiklm = �(ji)�(a0;b;ji)� a a0 k
 ji b �� ji b l
0 b0 a0 �� k l m
 
0 ji �:Proof. By the previous lemma and the bubble identity, we have:�a a0 b b0
 
0 = Xj1;k1;l1;j2;k2;l2;mCab
;a0b0
0j1k1l1;j2k2l2;m�a a0 b b0mk1k2 l1l2= Xj1;j2;k;l;mCab
;a0b0
0j1kl;j2kl;m��(a; a0; k)�(b; b0; l)�(k)�(l) � k� lm= Xi;j;k;lCj1klmCj2klm�(a;a0;k)�(b;b0;l)�(
;
0;m)�(k)�(l)�(m) k� lm : �4.4. Appli
ations. Spin networks o�er a novel approa
h to a 
las-si
al theorem of Fri
ke, Klein, and Vogt [FK, Vo℄. We give both anon
onstru
tive proof and a new 
onstru
tive proof whi
h depends onthe symmetry, re
urren
e, and multipli
ation formulae for 
entral fun
-tions.Theorem 4.9 (Fri
ke-Klein-Vogt Theorem). Let G a
t on G � G bysimultaneous 
onjugation. ThenC [G �G℄G �= C [x; y; z℄;
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omplex polynomial ring in three indeterminants. Consequently,every fun
tion f : SL(2; C ) � SL(2; C ) ! C whi
h is invariant undersimultaneous 
onjugation by SL(2; C ), i.e.,f(x1;x2) = f(gx1g�1; gx2g�1) for all g 2 SL(2; C );
an be written as a polynomial in the three variables x = tr(x1), y =tr(x2), and z = tr(x1x�12 ).Proof. De�ne the ring homomorphism� : C [x; y; z℄! C [G �G℄Gby f(x; y; z) 7! f(tr(x1); tr(x2); tr(x1x�12 )):We �rst show that � is inje
tive. Suppose f(tr(x1); tr(x2); tr(x1x�12 )) =0 for all pairs (x1;x2) 2 G � G. Let (x; y; z) 2 C 3, �x = � x 1�1 0 �,and �y(�)�1 = � 0 �1�� y � ; where � = z+pz2�42 . Then(x; y; z) = (tr(�x); tr(�y(�)); tr(�x�y(�)�1)):Hen
e f = 0 on C 3, Ker(�) = f0g, and � is inje
tive. This is the\Fri
ke sli
e" given by Goldman in [G3℄.It remains to show that � is surje
tive.Non
onstru
tive diagrammati
 proof of surje
tivity. First, Theorem 3.1implies that the 
entral fun
tions form a basis for su
h fun
tions, soit suÆ
es to prove the theorem for all �a;b
 . But expanding the sym-metrizers in �a;b
 gives a 
olle
tion of 
ir
les with matrix elements, ea
hof whi
h 
orrespond to a produ
t of tra
es of words in x1;x2, so itsuÆ
es to express the tra
e of any word in x1;x2 as a polynomial inx; y; z.This redu
tion depends entirely on the binor identity, whi
h when
omposed with x1 
 x2 = � � gives:(39) � = � � � 
 :As spe
ial 
ase we have, with � = x�11 :Æ = � � � � = � � � � and � = � � � � = � � � � :The �rst relation allows us to assume no loop has both x1 and x�11 ,while the se
ond allows us to assume no word has more than one ofany matrix. This leaves us with just the tra
es tr(x1); tr(x2); tr(x1x2),and tr(x1x�12 ), using SL(2; C ) tra
e identities. Finally, 
losing o� (39)gives: tr(x1x2) = tr(x1)tr(x2)� tr(x1x�12 );
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h allows us to remove tr(x1x2).Constru
tive diagrammati
 proof of surje
tivity. We show that an ar-bitrary 
entral fun
tion �a;b
 may be written as a polynomial in x; y; z,using an indu
tion argument on its rank Æ = 12(a+ b+ 
). For the base
ase Æ = 0 re
all our earlier 
omputations demonstrating�0;00 = 1; �1;01 = x; �0;11 = y; �1;10 = z:For Æ > 0, we may indu
tively assume that all 
entral fun
tions withrank less than Æ are in C [x; y; z℄. The admissibility 
onditions implythat at least two out of the triple fa; b; 
g are positive, whi
h we 
anassume to be a and 
, without loss of generality, by the SymmetryTheorem (4.1). In this 
ase, the re
urren
e given by Corollary 4.6,�a;b
 = x��a�1;b
�1 � (a+b�
)24a(a�1) �a�2;b
 � (�a+b+
)24
(
�1) �a;b
�2� (a+b+
)2(a�b+
�2)216a(a�1)
(
�1) �a�2;b
�2 ;allows us to write �a;b
 in terms of 
entral fun
tions of lower rank, whi
hby indu
tion must be in C [x; y; z℄. Thus, �a;b
 2 C [x; y; z℄, and we haveestablished surje
tivity. �Using this 
onstru
tive approa
h with Mathemati
a, we 
omputedthe following table of low-rank 
entral fun
tions. Note the three-foldsymmetry guaranteed by Theorem 4.1.a = b = 0 b = 1 b = 20 �0;00 = 1 �0;11 = y �0;22 = y2 � 11 �1;01 = x �1;10 = z �1;21 = yz � 12x�1;12 = xy � 12z �1;23 = xy2 � 23 (yz + x)2 �2;02 = x2 � 1 �2;11 = xz � 12y �2;20 = z2 � 1�2;13 = x2y � 23 (xz + y) �2;22 = xyz � 12 (x2 + y2 + z2) + 1�2;24 = x2y2 � xyz + 16z2 � 12 (x2 + y2) + 133 �0;03 =x3�2x �3;12 =x2z� 23 (xy+z) �3;21 =xz2� 23 (yz+x)�3;14 =x3y� 34 x2z� 12 (3xy�z) �3;23 =x2yz� 23 (xz2+xy2)� 12 x3� 19 (2yz�13x)�3;25 =x3y2� 65 (x2yz+xy2)+ 310 xz2� 25 x3+ 35 (yz+x)Table 1. Central Fun
tions �a;b
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