
ABSTRACT

Title of Dissertation: TRACE DIAGRAMS, REPRESENTATIONS,
AND LOW-DIMENSIONAL TOPOLOGY

Elisha Peterson, Doctor of Philosophy, 2006

Dissertation directed by: Professor William Goldman

Department of Mathematics

This thesis concerns a certain basis for the coordinate ring of the character

variety of a surface. Let G be a connected reductive linear algebraic group, and

let Σ be a surface whose fundamental group π is a free group. Then the co-

ordinate ring C[Hom(π,G)] of the homomorphisms from π to G is isomorphic

to C[G×r] ∼= C[G]⊗r for some r ∈ N. The coordinate ring C[G] may be identi-

fied with the ring of matrix coefficients of the maximal compact subgroup of G.

Therefore, the coordinate ring on the character variety, which is also the ring of

invariants C[Hom(π,G)]G, may be described in terms of the matrix coefficients

of the maximal compact subgroup.

This correspondence provides a basis {χα} for C[Hom(π,G)]G, whose con-

stituents will be called central functions. These functions may be expressed as

labelled graphs called trace diagrams. This point-of-view permits diagram ma-

nipulation to be used to construct relations on the functions.



In the particular case G = SL(2,C), we give an explicit description of the

central functions for surfaces. For rank one and two fundamental groups, the

diagrammatic approach is used to describe the symmetries and structure of the

central function basis, as well as a product formula in terms of this basis. For

SL(3,C), we describe how to write down the central functions diagrammatically

using the Littlewood-Richardson Rule, and give some examples. We also indicate

progress for SL(n,C).
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Chapter 1 Introduction

The purpose of this work is to explore the use of diagrammatic techniques in

studying the structure of certain character varieties. The space of representa-

tions is a useful tool for studying a particular group, even when restricting to

the finite-dimensional irreducible representations. It should come as no surprise

that the space of representations of the fundamental group of a surface encodes

a lot of information about that surface. Indeed, this set of representations in

some sense actually encodes the possible geometries on the surface. This thesis

examines the algebraic structure of a particular basis of functions on the space

of representations of the fundamental group.

Let G be a connected reductive linear algebraic group. If U < G is the maxi-

mal compact subgroup of G, then the coordinate ring C[G] may be identified with

Calg(U), the algebra of matrix coefficients of finite-dimensional unitary represen-

tations of U . Moreover, for the action of G on C[G] by simultaneous conjugation,

the ring of invariants C[G]G is generated by the characters of such representations

[CSM].

Let Σ be a compact surface with boundary and consider

R = Hom(π1(Σ, x0), G),

the space of homomorphisms from the fundamental group of Σ into G. The G-

character variety of Σ is defined as the categorical quotient X = R//G. This space

may be identified with conjugacy classes of completely reducible representations
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[Dol]. Since the fundamental group of Σ is a free group Fr of rank r ∈ N, the

space R of homomorphisms is isomorphic to Gr. Hence C[R] ∼= C[Gr]. The

coordinate ring of the character variety consists of the G-invariant functions on

this space:

C[X] ∼= C[R]G ∼= C[Gr]G ∼= (C[G]⊗r)G ∼= (Calg(U)⊗r)G. (1.1)

An application of the Peter-Weyl Theorem gives a decomposition

Calg(U) =
⊕

λ

V ∗
λ ⊗ Vλ,

where {Vλ} is the set of all irreducible finite-dimensional representations of U

[CSM]. An additive basis for C[X] is obtained by inserting this decomposition into

(1.1) and decomposing the resulting tensors into irreducibles. This construction

is described in detail in Chapter 5.

The constituents of this basis are called central functions, and are the central

object studied in this thesis. They may be described explicitly as spin networks,

which are special types of labelled graphs. Spin networks may be identified

canonically with functions in C[X], and provide enough algebraic horsepower to

give explicit descriptions of central functions and some of their properties.

This point-of-view was originated by mathematical physicist John Baez, who

interprets these spin networks as quantum mechanical “state vectors.” In [Ba],

he shows that the space of square integrable functions on a certain space of

smooth connections modulo gauge transformations is spanned by graphs similar

to the ones given here. More recently, the work of Florentino [FMN] uses a

similar basis to produce distributions related to geometric quantization of moduli

spaces of flat connections on a surface. The application of spin network bases

to the Fricke-Klein-Vogt problem, and in particular to character varieties, was
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considered by Adam Sikora [Sik]. The core problem, as described in Chapter

5, was first introduced to me by my advisor Bill Goldman. Notes based on

his discussions with Nicolai Reshetikhin [Res], Charles Frohman, and Joanna

Kania-Bartoszyńska provided the foundation for the explicit description of central

functions for SL(2,C) given in Chapter 6.

Outline

This thesis describes in detail the case G = SL(2,C) and rank r = 2. To a lesser

extent, higher rank SL(2,C) cases and the G = SL(3,C) case are considered.

There is also some discussion of the most general case.

Chapter 2 gives necessary background from representation theory, including

the classification of SU(n)-representations.

In Chapters 3 and 4, spin networks and trace diagrams are formally intro-

duced, with special emphasis on SL(2,C) and SL(3,C).

Chapter 5 describes in detail the construction of the central functions of a

surface, and explicitly demonstrates how spin networks may be used to construct

a basis for C[X]. The role of the topology of the surface in this construction is

strongly emphasized.

Chapter 6 describes results for the case G = SL(2,C). The algebraic structure

of C[X] is described in detail for the rank one and two cases. In particular,

for the rank two case, there is a theorem describing the symmetry of central

functions, a recurrence formula which may be used to compute an arbitrary

central function, and a formula for the product of two central functions. Finally,

there is a computation expressing an arbitrary polynomial in terms of this basis,

which may be inverted to find an explicit formula for central functions. Finally,
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the general rank case for G = SL(2,C) is briefly discussed.

Chapter 7 describes progress for G = SL(3,C). Computations are more diffi-

cult in this case, and the irreducible representations are much harder to describe.

The primary result is an explicit diagrammatic description of intertwiners, al-

lowing for the central functions to be written down in terms of diagrams. A few

examples are given, and diagrams for general groups are also discussed.

Some closing remarks about possible further applications of spin networks are

given in Chapter 8. A new proof of the Fricke-Klein-Vogt Theorem is given, and

there is speculation about how the computation of central functions may proceed

in the general case.
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Chapter 2 Background from Representation Theory

This chapter describes some basic facts about the representation theory of Lie

groups. For more details, see [CSM, Ful, FH].

A representation of a given Lie group G is a pair (π, V ), where V is a vector

space over C and π is a continuous homomorphism π : G → GL(V ). Here, GL(V )

is the Lie group comprised of invertible linear transformations. The action of an

element g ∈ G on V is denoted πg : V → V . For a matrix group G ⊂ GL(n,C),

the standard representation of G is the vector space V = Cn with πg(v) = gv,

the matrix product.

An irreducible representation V has no nontrivial invariant subspaces, mean-

ing there is no U such that πg(u) ∈ U for all u ∈ U . A finite-dimensional

representation is completely reducible if it can be decomposed into irreducible

invariant subrepresentations. In this case, V = V1 ⊕ · · · ⊕ Vk and

πg(v) = πg((v1, . . . , vk)) = πg1(v1) · · · πgk
(vk).

As a general rule, representations are not completely reducible. However, all

unitary representations are completely reducible. To be unitary, the representa-

tion must be invariant under a non-degenerate Hermitian inner product 〈·, ·〉, so

that 〈πg(v), πg(w)〉 = 〈v, w〉. If G is finite or compact, this inner product may be

constructed by adding or integrating over an arbitrary non-degenerate Hermitian

inner product. The compact case requires additionally a translation-invariant

measure on G called the Haar measure.
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A G-map between representations (π, V ) and ($,W ) is an invariant linear

map A : V → W satisfying A(πg(v)) = $g(Av). The set of such maps will

be denoted HomG(V, W ). If this map is also a vector space isomorphism, then

(π, V ) and ($,W ) are equivalent representations. The following classical lemma

indicates that G-invariance is a very rigid structure:

Lemma 2.1 (Schur’s Lemma). Let G be a Lie group and let A ∈ HomG(V,W ),

where V and W are irreducible. If V and W are equivalent, then

dimC[HomG(V,W )] = 1,

and A is a multiple of the identity with respect to appropriate bases. Otherwise,

A = 0.

Thus, the possible G-maps between representations are determined by the equiv-

alences of their irreducible components.

Given a G-representation (π, V ) and an H-representation ($,W ), the tensor

representation (π ⊗$, V ⊗W ) is the G×H-representation with

(π ⊗$)(g,h)(v ⊗ w) = πg(v)⊗$h(w).

If G = H, the result is also a G-representation with (π ⊗$)g(v ⊗ w) = πg(v)⊗
$g(w).

Given a G-representation (π, V ), the dual representation (π̌, V ∗) is defined for

f ∈ V ∗ by (π̌g(f)) (v) = f (πg−1(v)).

For any subgroup H < G, a G-representation (π, V ) restricts to an H-

representation. Moreover, an H-representation ($, W ) gives rise to an induced

representation (π,
⊕

σ∈G/H W ) on G, where if g · g0 = gτh then

πg

( ∑
gσwσ

)
=

∑
gτπh(wσ).
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2.1 Functions on Compact Lie Groups

Let G act by conjugation on G∗, the linear space of functions on G:

g · f(x) = f(gxg−1).

A class function is a function which is invariant under this action, and may

be interpreted as a function on the space of conjugacy classes. Given a finite-

dimensional G-representation (π, V ), the character of the representation is the

trace map χπ(g) = tr(πg). Characters are automatically conjugation-invariant,

hence class functions. The characters of direct sum, tensor, and dual representa-

tions satisfy:

χπ⊕$ = χπ + χ$; χπ⊗$ = χπχ$; χπ̌(g) = χπ(g−1).

Let G be compact, and assume all representations are unitary. In this case, the

classical Peter-Weyl Theorem relates representations to functions on G. The

matrix elements or representative functions of a representation are the functions

g 7→ v∗(πg(w))

for some v∗ ∈ V ∗ and w ∈ V . The space of such functions is a subalgebra Calg(G)

of the algebra C(G) of continuous functions on G. It is also contained in L2(G),

the space of square-integrable functions on G.

Theorem 2.2 (Peter-Weyl Theorem). Let G be a compact group, and suppose

{(λ, V λ)}λ∈Λ is a complete set of inequivalent finite-dimensional representations

of G. Then, an arbitrary G-representation V may be constructed as the comple-

tion of a direct sum of copies of V λ for λ ∈ Λ. Consequently, with respect to

uniform convergence, Calg(G) is a dense subring of C(G).
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This theorem has important consequences for the structure of Calg(G). Note

that Calg(G) is a G×G-representation with π(g,h) taking f(x) 7→ f(gxh−1).

Theorem 2.3. There is a G×G-equivalence

⊕

λ∈Λ

V ∗
λ ⊗ Vλ

∼= Calg(G),

where the isomorphism takes v∗ ⊗ w ∈ V ∗
λ ⊗ Vλ to the function g 7→ v∗(λg(w)).

This isomorphism takes the direct sum inner product on the left to the L2-inner

product on the right. Moreover, the characters χλ form an orthonormal basis for

L2(G)G, the Hilbert space of class functions on G.

These theorems also show that all compact Lie groups G are matrix groups

and that all irreducible G-representations are finite-dimensional and determined

up to isomorphism by their characters. Finally, an arbitrary class functions can

be expanded into a convergent sequence
∑

λ〈f, χλ〉χλ, with respect to the L2

inner product.

2.2 Lie Algebra Representations

A Lie algebra representation is a pair (Π, V ) where V is a vector space over C

and Π : g → gl(V ) satisfies Π[x,y] = [Πx, Πy] = ΠxΠy − ΠyΠx. Recall that gl(V )

is the Lie algebra of endomorphisms on V . Every representation π : G → GL(V )

on a Lie group induces a map π∗ : Te(G) → Te(GL(V )) on the tangent spaces,

which is a Lie algebra representation π∗ : g → gl(V ).

In particular, the commutator representation Ψ : G → Aut(G) consisting of

inner automorphisms Ψg(h) = ghg−1 induces the adjoint representation of g:

ad : g → Der(g) ⊂ gl(V ),
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where Der(g) is the derivation algebra of g. Moreover, the induced map of the

automorphism Ψg : G → G is an automorphism Adg : g → g, giving the adjoint

representation of G.

Lie algebra and Lie group representations are closely related. In fact, there

is a one-to-one correspondence between representations of connected, simply-

connected Lie groups and representations of their Lie algebras, which is induced

by the differential/exponential maps.

The Unitary Trick

There is a one-to-one correspondence between compact connected Lie groups U

and connected, reductive linear algebraic groups G over C. The correspondence

is constructed via respect to their Lie algebras u and g, with g being the com-

plexification of u and u the compact real form of g. Of particular interest is the

C-algebra equivalence

C[G] = Calg(U)

between the ring of matrix coefficients of U and the coordinate ring of G. Using

the Peter-Weyl Theorem, this equivalence implies:

Theorem 2.4. Let G be a connected, reductive linear algebraic group with max-

imal compact subgroup U . Then

C[G] ∼=
⊕

λ∈Λ

V ∗
λ ⊗ Vλ,

where {Vλ}λ∈Λ is the set of finite-dimensional irreducible representations of U .

9



2.3 Classification of SU(n)-Representations

This section describes the classification of finite-dimensional irreducible represen-

tations of the unitary group SU(n). This will have consequences for the represen-

tations of SL(n,C), since SU(n) is the maximal compact subgroup of SL(n,C).

Under Weyl’s correspondence, GL(n,C)-representations are closely related to

representations of symmetric groups. Let V = Cn denote the standard repre-

sentation of GL(n,C), and let Vλ be a representation of the symmetric group

Σd. There is a natural injection Vλ ↪→ V ⊗d, whose image will be denoted SλV .

Then the actions of Σd and GL(n,C) on V ⊗d commute. Both direct sums and

irreducibility pass through this construction. In particular, there is a one-to-one

correspondence between irreducible representations of GL(n,C) and those of Σd

contained in V ⊗d [CSM, Ful, FH].

The irreducible representations of Σd may be indexed by partitions of the

integer d, hence the irreducible representations of GL(n,C) arising in this manner

are indexed by integer sequences

λ1 ≥ λ2 ≥ · · · ≥ λn.

These representations restrict to SU(n), although there is an equivalence of rep-

resentations in this case for λ1 ≥ λ2 ≥ · · · ≥ λn and λ1 + i ≥ λ2 + i ≥ · · · ≥ λn + i

since the determinant is fixed. Hence, the irreducible representations of SU(n)

are indexed by integer partitions

λ = (λ1, . . . , λn−1) with λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0.

A dominant weight argument on the Lie algebra sl(n,C) can be used to show that

these comprise the entire list of finite-dimensional irreducible representations of

SU(n). The next section describes these representations explicitly.
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Young Projectors

Integer partitions are commonly represented by Young diagrams, or collections

of boxes. For example, the partitions of 4 are represented by

(4) = , (3, 1) = , (2, 2) = , (2, 1, 1) = , (1, 1, 1, 1) = .

For a given partition λ = (λ1, . . . , λk) of d ∈ N, define aλ, bλ : V ⊗d → V ⊗d by

aλ = sλ1 ⊗ sλ2 ⊗ · · · ⊗ sλk
, b′λ = tλ1 ⊗ tλ2 ⊗ · · · ⊗ tλk

,

where si : V ⊗i → V ⊗i is the symmetrizer on i factors and tj : V ⊗j → V ⊗j is the

anti-symmetrizer on j factors. The anti-symmetrizer maps a given element to the

sum of positive permutations minus the sum of negative permutations; its image

is isomorphic to the exterior power
∧j V . Every partition λ also has a conjugate

partition λT given by transposing the diagram. For example, the partitions (3, 1)

and (2, 1, 1) are conjugate. Define the map bλ : V ⊗d → V ⊗d by bλ = b′λT , which

is therefore the anti-symmetrizer on the columns of the diagram.

For a fixed diagram, a Young tableau is an assignment of the integers 1, . . . , d

to the boxes of the diagram in such a way that numbers are increasing in each

column and row. For example, the (2, 2)-partition has Young tableaux

1 2
3 4

and 1 3
2 4

.

Two numbering schemes are obvious: number rows first then columns, or number

columns first then rows. The first is called the standard row tableau, and the sec-

ond the standard column tableau. Given a Young tableau Y , let the permutation

σY ∈ Σd be that taking the standard row tableau to Y , and let τY ∈ Σd be that

taking the standard column tableau to Y . Then, the Young symmetrizer of the

11



tableau is

cY = τ−1
Y bλτY ◦ σ−1

Y aλσY ,

and the Young projector of the partition λ is

cλ =
∑
Y

cY .

The representation Vλ above is precisely the image of cλ : V ⊗d → V ⊗d. Hence,

these are also representations of the group of interest SU(n), and they form a

complete set of finite-dimensional irreducible representations. Examples of this

construction are given in Chapter 7.

2.4 Representations of SL(2,C)

For the case SL(2,C), the admissible Young diagrams have just one row, hence

are indexed by the natural numbers N. For each diagram, there is just one Young

tableau, and bλ is trivial since it represents permutations on columns. Therefore,

the irreducible representations are the images of

cn =
∑
σ∈Σn

σ : V ⊗n → V ⊗n.

This image consists of the elements of V ⊗n which are invariant under all permu-

tations. It is commonly called the nth symmetric power of V = C2, and will

be denoted by Vn ≡ Symn(V ). This is also identified with the space of degree-n

homogeneous polynomials in C[e1, e2], where e1 =
[

1
0

]
and e2 =

[
0
1

]
comprise the

standard basis of V . For example, V0 is the trivial representation C, while V1 is

the standard representation V = C2.

It will be important later to specify a basis for both Vn = Symn(V ) and the

“dual” space V ∗
n ≡ Symn(V ∗). The dual V ∗ may be identified with row vectors

12



and the basis e∗1 = eT
1 and e∗2 = eT

2 . Then V1 = Ce1 ⊕ Ce2 and V ∗
1 = Ce∗1 ⊕ Ce∗2.

Denote the symmetric powers of these representations by

Vn = Symn(V ) and V ∗
n = Symn(V ∗).

Note that (Vn)∗ ∼= Vn
∼= V ∗

n , but the spaces (Vn)∗ and V ∗
n are not quite the

same. To see the difference, pair elements in Vn with elements in V ∗
n . Denote the

projection of v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n to Vn by v1v2 · · · vn. Then, bases for Vn

and V ∗
n are given by the elements

nn−k = en−k
1 ek

2 and n∗n−k = (e∗1)
n−k(e∗2)

k, k = 0, . . . , n.

In these terms, the pairing is

n∗n−k(v1v2 · · · vn) =
1

n!

∑
σ∈Σn

(nn−k)
∗(vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)),

where Σn is the symmetric group. In particular,

n∗n−k(nn−l) =
(n− k)!k!

n!
δkl =

1(
n
k

)δkl.

Thus, Vn and (Vn)∗ pair in the normal way, while Vn and V ∗
n pair with an extra

binomial factor.

Explicitly, the action of g =

[
g11 g12

g21 g22

]
∈ SL(2,C) on Vn is

g · nn−k = (g11e1 + g21e2)
n−k(g12e1 + g22e2)

k

=
∑

0≤j≤n−k
0≤i≤k

(
n−k

j

)(
k
i

) (
gn−k−j
11 gk−i

12 gj
21g

i
22

)
nn−(i+j).

Hence, the matrix elements with respect to this pairing are

n∗n−l(g · nn−k) =
∑

0≤j≤n−k
0≤i≤k

(
n−k

j

)(
k
i

) (
gn−k−j
11 gk−i

12 gj
21g

i
22

)
n∗n−l(nn−(i+j))

=
∑

i+j=l

(
n−k

j

)(
k
i

)
(

n
k

)
(
gn−k−j
11 gk−i

12 gj
21g

i
22

)
.
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Similarly, g acts on the dual V ∗
n in the usual way: (g · n∗n−k)(v) = n∗n−k(g

−1(v))

for v ∈ Vn.

The tensor product Va⊗Vb, where a, b ∈ N, is also a representation of SL(2,C)

and decomposes into irreducible representations as follows:

Proposition 2.5 (Clebsch-Gordan formula).

Va ⊗ Vb
∼=

min(a,b)⊕
j=0

Va+b−2j.

Proof. An irreducible representation Va has weights {a, a − 2, . . . ,−a + 2,−a}
[FH]. The weights of Va ⊗ Vb consist of all possible sums of weights of Va with

weights of Vb. With multiplicity, these are

{a + b, a− 2 + b, . . . ,−a + b} t {a + (b− 2), a− 2 + (b− 2), . . . ,−a + (b− 2)}

t · · · t {a− b, a− 2− b, . . . ,−a− b}

= {a + b, a + b− 2, . . . ,−(a + b)} t {a + b− 2, . . . , 2− (a + b)}

t · · · t {|a− b|, . . . ,−|a− b|}.

The decomposition follows by noting that these are the only possible irreducible

representations which give this set of weights.

We will denote the set of admissible representations by

da, bc ≡ {a + b− 2j : 0 ≤ j ≤ min(a, b)} = {a + b, a + b− 2, . . . , |a− b|}.

Hence Va ⊗ Vb =
⊕

c∈da,bc Vc.

Representations of more general SL(n,C) are discussed in Chapter 7.
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Chapter 3 Spin Networks

This chapter is a self-contained introduction to spin networks and the spin net-

work calculus. Most of the material here can be found in the literature [CFS,

Kau, Pen, St]. It seems prudent to include a full treatment here because we give

a nonstandard definition of spin networks, which is more natural when working

with traces. This definition leads to different versions of the usual spin network

relations. Additionally, we place a greater emphasis on functorial properties and

the symmetry of certain spin network functions.

Motivation for Diagrammatics

One motivation for the theory of spin networks is the use of diagrams to perform

calculations that can be extremely tedious using traditional methods. Diagram-

matic techniques are useful for maps as simple as permutations. For example,

the diagram
1 2 3�
1 2 3

says as much about a permutation as the traditional cycle notation (123). When

it comes to composing permutations, it can be easier to compute a result using

diagrams than using cycle notation. For example, computing

(1 2 3) ◦ (1 2) ◦ (2 3) ◦ (1 3 2)

15



directly is messy and unenlightening compared to stacking diagrams, which gives:����
=

1 2 3�
1 2 3

= (1 2 3).

Diagrams allow for more natural “non-linear” algebraic manipulations. Paren-

theses are usually unnecessary, and the full strength of topological invariance can

be leveraged.

The diagrams used in this thesis are most compatible with the language of

representation theory, since they can be interpreted as maps between irreducible

representations of a specified group. The structure of the diagrams will vary

depending on the group G.

3.1 Basic Definitions

This chapter is concerned entirely with spin networks suitable for working with

G = SL(2,C), or more generally any 2 × 2 matrix group. In this case, a spin

network is a graph that is identified with a specific function between tensor powers

of V = C2, the standard SL(2,C)-representation.

In order for this function to be well-defined, the edges incident to each vertex

of the spin network must have a cyclic ordering. This ordering is often called a

ciliation, since it may be represented on paper by a small mark drawn between two

of the edges. The edges adjacent to a ciliated vertex are ordered by proceeding

in a clockwise fashion from this mark. For example, in the degree 2 case, there

are two possible ciliations:

� Ã �12 and � Ã �21.
16



Another example follows: � Ã
1�3

4

2

5
.

Definition 3.1. A spin network s is a graph with vertex set sit sot sv consisting

of degree 1 inputs si, degree 1 outputs so and degree 2 ciliated vertices sv. The

graph need not be connected, and the graph � with no vertices is permitted.

Denote the set of spin networks by S and the set of spin networks with exactly

I inputs and O outputs by SO
I . For fixed I and O, the vector space C{SO

I } will

be denoted by [S]
O

I
, or sometimes [S2]

O

I
. Denote by S or S2 the union of all such

vector spaces.

Spin networks are usually drawn in general position inside an oriented square

with inputs at the bottom and outputs at the top. This convention permits a

definition of the composition of two spin networks. If s1 ∈ [S]
O1

I1
, s2 ∈ [S]

O2

I2
, and

O1 = I2, then the composition s2 ◦ s1 is defined to be the graph obtained by

placing s2 on top of s1. Thus, the output vertices of s1 are identified with the

input vertices of s2, and the new spin network has I1 inputs and O2 outputs. For

example, the diagram

s = � ∈ [S]
3

5

could be represented as a composition of three spin networks:

� =
( 
 � � 
 ) ◦ (  � � ) ◦ ( 
 
 
  )

.

(The marks on the local extrema here are a notational convenience and do not

indicate vertices of the graph.)

Since spin networks are just graphs with ciliations, it does not matter how

the graph is represented inside the square. Strands may be moved about freely
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and ciliations may “slide” along the strands. As long as the endpoints remain

fixed, the underlying spin network does not change.

3.2 Spin Network Component Maps

This section describes how spin networks may be identified with functions.

In the language of category theory, (N, S) forms a category, where the objects

are the natural numbers N = {0, 1, 2, . . .} and the morphisms are spin networks.

A spin network s ∈ [S]
O

I
is a morphism from I to O. There is a natural functor

from this category to (N, F), where F is the set of linear maps between tensor

powers of V = C2. The image of s ∈ [S]
O

I
under this functor will be denoted

by fs : {V ⊗I → V ⊗O}, and a function V ⊗0 → V ⊗0 will be interpreted as a

constant. The function is computed by decomposing s into four simple maps,

which are defined, given v, w ∈ V = C2 and the standard basis {e1, e2} for V , by

the following:


 ∈ [S]
1

1
−→ v 7→ v (the identity);� ∈ [S]

0

2
−→ v ⊗ w 7→ v∗w (the cap, or inner product);� ∈ [S]

2

0
−→ 1 7→ e1 ⊗ e1 + e2 ⊗ e2 (the cup); ∈ [S]

0

2
−→ v ⊗ w 7→ det[v w] (the ciliated cap);

This decomposition assumes a certain monoidal structure on S. If si ∈ [S]
Oi

Ii
, then

there is a map (s1, s2) 7→ s1s2 ∈ [S]
O1+O2

I1+I2
defined by placing two spin networks

side by side. In this case, fs1s2 = fs1 ⊗ fs2 . Hence, the identity function on V ⊗I is

the image of � · · · 
︸ ︷︷ ︸
I strands

. Moreover, permutations are given by spin networks with
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no local extrema:

f  : v ⊗ w → w ⊗ v.

For example, the cap with opposite ciliation � may be decomposed � =! =  ◦  , and so its function is

f � (v ⊗ w) = f  ◦ f  (v ⊗ w) = f  (w ⊗ v) = det[w v] = − det[v w].

The definition given here differs from the literature [CFS, Kau, Pen]. In

particular, we omit the i =
√−1 factor in the definition of  to gain an

advantage in trace calculations. Also, the maps � and � are included in

order to simplify the following proof.

Functorial Properties

Theorem 3.2. Every spin network s may be decomposed into the four above

maps, giving a function fs. This construction provides a functor s → fs.

Proof. Position s in such a way that all ciliations occur at local maxima, with

ciliation pointing up. The remainder of the diagram is a collection of arcs and

loops without vertices. Each arc may be taken to be a cap � , cup � , or line
 , while each loop may be decomposed 	 = � ◦ � .

For the second statement, it must be shown that every decomposition of s

gives the same function. Because the vertices  occur at local maxima in

the decompositions, it suffices to show that the function of any arc or loop is

well-defined. Two different decompositions of an arc or loop can only differ by

the insertion or deletion of a number of ‘kinks’ of the form $ . Since $ =
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� 
 ◦ 
 � , the kink’s function is computed:

f $ (v) = f � f 
 ◦ f 
 f � (v)

= f � f 
 (v ⊗ e1 ⊗ e1 + v ⊗ e2 ⊗ e2)

= (v · e1)e1 + (v · e2)e2 = v = f 
 (v).

Thus, these kinks do not change the overall function fs. Alternate proofs may be

found in [CFS, Kau].

Given this theorem, there is no difficulty in interpreting a spin network s

itself as a function. From now on, the notation fs will only be used to highlight

this difference in categories. It will also be convenient to expand the meaning of

‘decomposition’ to include the following maps:

Proposition 3.3. In the spin network sense,

1. the swap,  : V ⊗ V → V ⊗ V takes v ⊗ w 7→ w ⊗ v;

2. the vertex on a straight line, � : V → V takes v 7→ [
0 −1
1 0

]
v;

3. the vertex on a cup, � : C→ V ⊗ V takes 1 7→ e1 ⊗ e2 − e2 ⊗ e1;

4. with opposite ciliations, � = −  , � = − � , and � = − � .

Proof. The first statement requires no proof. For the second and third statement,

use the decompositions

� = ' =  
 ◦ 
 � and � = ( = 
  
 ◦ � � .

Thus � (v) for an arbitrary vector v =
[

v1

v2

]
is computed by

� (v) = ' (v) =  
 ◦ 
 � (v) =  
 (v ⊗ e1 ⊗ e1 + v ⊗ e2 ⊗ e2)

= det[v e1]e1 + det[v e2]e2 = −v2e1 + v1e2 =
[

0 −1
1 0

]
v.
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Similarly, � (1) is computed by� (1) = 
  
 ◦ � � (1)

= 
  
 (e1 ⊗ e1 ⊗ e1 ⊗ e1 + e1 ⊗ e1 ⊗ e2 ⊗ e2

+ e2 ⊗ e2 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2)

= det[e1 e2]e1 ⊗ e2 + det[e2 e1]e2 ⊗ e1 = e1 ⊗ e2 − e2 ⊗ e1.

The final statement follows from the observation � = ! = −  , which has

already been demonstrated.

Assumptions for Local Extrema

At this point, the maps � and � will not be needed, and for all spin networks

in s ∈ S we make the following assumption:

Convention 3.4. The set of ciliated vertices coincides exactly with the set of

local extrema. The ciliations are usually omitted, with the understanding that� ≡ � : 1 7→ e1 ⊗ e2 − e2 ⊗ e1 and � ≡  : v ⊗ w 7→ det[v w].

Under this assumption, there are just three component maps: 
 , � and  .

Vertices are usually omitted, and diagrams are not topologically invariant since

# (v) =  
 ◦ 
 � (v) =  
 (v ⊗ e1 ⊗ e2 − v ⊗ e2 ⊗ e1)

= det[v e1]e2 − det[v e2]e1 = −v2e2 − v1e1 = −v = − 
 (v).

Thus, each straightened kink introduces a sign and in general

& n = (−1)n % n.

This problem is commonly avoided by tacking on a factor of i =
√−1 to all

ciliated vertices. Unfortunately, this fix makes trace calculations difficult, so we

choose instead to keep track of signs introduced by straightening kinks.
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3.3 Symmetry Relations

Spin networks exhibit considerable symmetry, which can be exploited for calcu-

lations. For example:

Proposition 3.5. Let s ∈ [S]
O

I
be a spin network with function fs : V ⊗I → V ⊗O.

Denote its images under reflection through vertical and horizontal lines by s↔ and

sl, respectively. Then

fs↔ = (−1)|sv|(fs)
↔ : V ⊗I → V ⊗O,

where |sv| is the number of local extrema in the diagram and f↔ is the same as f

but with the ordering of inputs and outputs reversed. The function fsl : V ⊗O →
V ⊗I is exactly the dual of fs with respect to the standard inner product on V . In

other words, if BI is the standard basis for V ⊗I then

fsl(v1 ⊗ · · · ⊗ vO) = (fs)
∗(v1 ⊗ · · · ⊗ vO) =

∑
eb∈BI

(fs(eb) · (v1 ⊗ · · · ⊗ vO)) eb.

Proof. This only needs to be demonstrated for the component maps, since both

fs↔ and fsl respect composition:

fs↔◦t↔ = f(s◦t)↔ = (−1)|sv |+|tv |(fs◦t)↔ = (−1)|sv |(fs)
↔ ◦ (−1)|tv |(ft)

↔ = fs↔ ◦ ft↔ ;

fs↔t↔ = f(ts)↔ = (−1)|tv |+|sv |(fts)
↔ = (−1)|sv |(fs)

↔(−1)|tv |(ft)
↔ = fs↔ ⊗ ft↔ ;

fsl◦tl = f(t◦s)l = (ft◦s)∗ = (ft ◦ fs)
∗ = (fs)

∗ ◦ (ft)
∗ = fsl ◦ ftl ;

fsltl = f(st)l = (fst)
∗ = (fs ⊗ ft)

∗ = (fs)
∗ ⊗ (ft)

∗ = fsl ⊗ ftl .

For the component maps, consider first 
 , which is invariant under both

reflections. Its functions satisfy f 
 = I = (f 
 )∗ = (f 
 )↔. For the local extrema,

reflecting � through a vertical line gives  = − � , hence a sign is introduced
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in fs↔ for every local extremum. For the reflection fsl , consider s = � :

(fs)
∗(v ⊗ w) = � (1) · (v ⊗ w) = (e1 ⊗ e2 − e2 ⊗ e1) · (v ⊗ w)

= v1w2 − v2w1 = det[v w] =  (v1 ⊗ v2).

Thus fsl = f  = (fs)
∗ as expected. Similar identities hold for the other types

of local extrema.

When applied to relations, these symmetries give:

Theorem 3.6 (Spin Network Reflection Theorem). A relation
∑

m αmsm = 0

among some collection of spin networks {sm} is equivalent to the same relation

for the vertically reflected set {slm} and up to sign for the horizontally reflected

set {s↔m}. More precisely,

∑
m

αmsm = 0 ⇐⇒
∑
m

αmslm = 0 ⇐⇒
∑
m

αm(−1)|s
m
v |s↔m = 0.

There is a similar relation for rotation through π, and later sections give formulae

for other types of reflections and rotations.

3.4 The Spin Network Calculus

Proposition 3.7 (Loop and Fundamental Binor Identities). Any spin network

can be expressed as a sum of diagrams with no crossings or loops. In particular,

 = � − � ; � s = tr(I)s = 2s. (3.1)
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Proof. Evaluate on an arbitrary vector:

( � −  )
(v ⊗ w) = v ⊗ w − w ⊗ v

= (v1e1 + v2e2)⊗ (w1e1 + w2e2)

− (w1e1 + w2e2)⊗ (v1e1 + v2e2)

= (v1w1 − w1v1)e1 ⊗ e1 + (v1w2 − w1v2)e1 ⊗ e2

+ (v2w1 − w2v1)e2 ⊗ e1 + (v1w2 − w2v1)e2 ⊗ e2

= (v1w2 − v2w1)(e1 ⊗ e2 − e2 ⊗ e1)

= det[v w] � = � ◦ � (v ⊗ w) = � (v ⊗ w).

For the loop:� (1) = � ◦ � (1) = � (e1⊗ e2− e2⊗ e1) = det[e1 e2]− det[e2 e1]) = 2.

The first of these relations is called the Fundamental Binor Identity, and

represents a fundamental type of structure in mathematics; it is the core concept

in defining both the Kauffman Bracket Skein Module in knot theory [BFK] and

the Poisson bracket on the set of loops on a surface, which Goldman describes

in [Gol1]. It can also be identified with the characteristic polynomial for 2 × 2

matrices (3.2).

SL(2,C)-Invariance

Since 2 × 2 matrices act on V , the definition of spin networks may be extended

to allow matrices to act on the strands. We distinguish this case by calling such

graphs trace diagrams. The action v 7→ x ·v is represented by inserting a polygon

on a strand and identifying L ↔ x. The corresponding action on the tensor

product V ⊗n is represented by

P (v1 ⊗ · · · ⊗ vn) = xv1 ⊗ · · · ⊗ xvn.
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The matrices x ∈ SL(2,C) satisfy the following special property:

Proposition 3.8. The spin network component maps 
 , � = � , and � = are SL(2,C)-invariant.

Proof. This is clearly true for 
 . For the local extrema,

\ (v ⊗ w) = det[xv xw] = det(x[v w])

= det(x) · det[v w] = 1 · det[v w] = � (v ⊗ w)

indicates that  ◦ x = x ◦  . The proof for � follows by reflection.

Given the decomposition into component maps, the previous proposition im-

plies that all spin networks are SL(2,C)-invariant. Note that the condition re-

quired for invariance is exactly det(x) = 1, so there is no general invariance

outside SL(2,C). Moreover, all SL(2,C)-invariant maps between tensor powers

of V occur as spin networks:

Proposition 3.9. The image of [S]
O

I
in {f : V ⊗I → V ⊗O} is exactly the set of

SL(2,C)-invariant linear maps V ⊗I → V ⊗O. Moreover, since the restriction of

[S]
O

I
to diagrams without crossings is the Temperley-Lieb Algebra T LO

I , the basis

of T LO
I is also a basis for the SL(2,C)-invariant linear functions.

Proof. By duality and the fact that I +O must be even, the statement for [S]
O

I
is

equivalent to the statement for [S]
n

n
, where n = 1

2
(I +O). By Schur’s Lemma, the

SL(2,C)-invariant maps V ⊗n → V ⊗n are generated by permutations on n letters.

Using the binor identity, such permutations may be realized as spin networks

with crossings, hence spin networks generate the set of SL(2,C)-invariant maps.
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For the second statement, it only needs to be shown that the basis of T Ln is

linearly independent, as a set of functions. It is well-known that

dim(T Ln) =
1

n + 1

(
2n

n

)
,

the nth Catalan Number. It can be shown that the space of G-invariant maps

V ⊗n → V ⊗n has the same dimension. See [CFS] for details.

As examples, the first few Temperley-Lieb Algebras have bases:

{ 
 } ;
{ � , � }

;
{ � , � , � , � , � }

.

Consequently, invariant functions V ⊗1 → V ⊗1 are multiples of the identity, while

any invariant function f : V ⊗2 → V ⊗2 may be expressed as a linear combination

f = α1 � + α2 � .

3.5 Trace Diagram Interpretation

The SL(2,C)-invariance of diagrams also means that matrices in such a diagram

can “slide across” a vertex (local extremum) by simply inverting the matrix, so

that

if O = x−1 ∈ SL(2,C), then Y = Z .

For a general matrix x ∈ M2×2, the determinant is introduced in such relations

since [ = det( L )
⋃

. If x is invertible, this implies

Y = det( L ) Z .

Including matrices in spin networks leads to the following definition:

Definition 3.10. A trace diagram is a spin network s whose edges may be labelled

by M2×2 matrix variables. The algebra of trace diagrams is denoted by T or T2,

or by [T]
O

I
or [T2]

O

I
if the number of inputs and outputs is specified.
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Trace diagrams satisfy the same categorical properties of spin networks, and

may be interpreted as maps

G× · · · ×G −→ {f : V ⊗I → V ⊗O}.

Just as closed spin networks are interpreted as constants, so closed trace diagrams

are interpreted as functions G× · · · ×G → C. For example,

Proposition 3.11. For x ∈ M2×2 and I =
[

1 0
0 1

]
,

� = 2 = tr(I); S = tr(x) = T ; U = det(x) · tr(I).

Proof. The loop value has already been calculated, while the last relation is

implied by this and by [ = det(x)
⋃

. For x = [x1 x2] =

[
x11 x12

x21 x22

]
, the

second is given by:

S (1) = � ◦ (x⊗ I) ◦ � (1) = � ◦ (x⊗ I)(e1 ⊗ e2 − e2 ⊗ e1)

= � (x1 ⊗ e2 − x2 ⊗ e1) = det[x1 e2]− det[x2 e1]

= x11 − (−x22) = tr(x).

As another example, the binor identity  = � − � gives

V = W − X =⇒ x2 = x · tr(x)− det(x)I, (3.2)

which is just the characteristic polynomial.

Trace diagrams are usually not SL(2,C)-invariant, but they do satisfy the

following:

Theorem 3.12. Closed trace diagrams are invariant under simultaneous conju-

gation by G. In other words, for every t ∈ [T]
0

0
and g ∈ SL(2,C),

ft(gx1g
−1, gx2g

−1, . . . , gxng−1) = ft(x1,x2, . . . ,xn).
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Proof. A closed trace diagram consists of a collection of loops marked by elements

of G. By the previous proposition, each such loop is a trace of the product of ma-

trices along the loop. Such functions are necessarily invariant under simultaneous

conjugation.

Relations among trace diagrams are preserved under reflection, as in Propo-

sition 3.5. However, since the dual of a matrix is its inverse, the matrices in a

diagram tl are the inverses of the corresponding matrices in t.

Aside from invariance, there is a similar theory for any group acting on a

finite-dimensional complex vector spaces. These more general trace diagrams are

the topic of the next chapter.

3.6 Symmetrizers and Representations

Another important SL(2,C)-invariant map is the symmetrizer, defined by:

Definition 3.13. The symmetrizer - n : V ⊗n → V ⊗n is the map taking

v1 ⊗ v2 ⊗ · · · ⊗ vn 7→ 1

n!

∑
σ∈Σn

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n), (3.3)

where vi ∈ V and Σn is the group of permutations on n elements.

For example,

. 2 = 1
2

( � +  )
= � − 1

2

( � )
;/ 3 = 1

6

( � + � + � + � + � + � )

= � − 2
3

( � + � )− 1
3

( � + � )
.

The crossings are removed by applying the Fundamental Binor Identity.
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The image of - n is a subspace of V ⊗n isomorphic to the nth symmetric

power SymnV , and thus it can be thought of as either the projection π : V ⊗n →
SymnV or as the inclusion ι : SymnV → V ⊗n.

Thus, if a diagram s ∈ [S]
O

I
has symmetrizers at its top and bottom, it can be

identified with a unique map between irreducible representations VI → VO. We

will freely interpret such spin networks as maps between tensor powers of these

irreducible representations.

Proposition 3.14 (Basic Symmetrizer Properties).

Invariance: Qn = R n

; (3.4)

stacking relation: 0 k

n
= 1n

; (3.5)

capping/cupping: 2n
= 0 = 3n

; (3.6)

symmetrizer sliding: 8 = 9 ; (3.7)

Proof. Invariance is a general property of spin networks.

After applying the n-symmetrizer in the stacking relation, the elements are

all symmetric, and so an additional k-symmetrizer has no effect.

For the capping and cupping relations, notice that� ◦ . (v ⊗ w) = � (1
2
(v ⊗ w + w ⊗ v)) = 1

2
(det[v w] + det[w v]) = 0.

This implies the general case because, by the stacking relation, one may insert. between � and - n. The other case follows by reflection.

There are a number of ways to demonstrate (3.7). It follows by reflection

(Proposition 3.5) or as a special case of SL(2,C)-invariance, since � = " =Y for L = g =
[

0 1
−1 0

] ∈ SL(2,C). More directly, expand the symmetrizer into

a sum of permutations. Since each permutation is a product of transpositions,

then the statement is an extension of the relation : = ; .
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Recurrence Properties

Although it is easy to write down an arbitrary - n in terms of permutations,

it is usually rather difficult to write it down in terms of diagrams without cross-

ings (the Temperley-Lieb algebra). The next two propositions give recurrence

relations which simplify this process.

Proposition 3.15. The symmetrizer - n satisfies:

< n
= ? n−1 −

(
n− 1

n

) @ n−1
+

(
n− 2

n

) A n−1
+ · · ·

+ (−1)i

(
n− i

n

) B n−1
+ · · ·+ (−1)n−1

(
1

n

) C n−1
. (3.8)

Proof. If Σn is the group of permutations on the set Nn = {1, 2, . . . , n}, then

|Σn| = |Nn| |Σn−1|.

This statement has a combinatorial proof. Interpret |Σn| as the number of ways

to arrange n people in a line. To do this, one may first select someone to be at

the front of the line (|Nn| choices), and then rearrange the remaining n−1 people

(|Σn−1| choices).

In diagram form, the selection of someone to head the line corresponds to one

of the diagrams G , H , I , . . . , J , . . . , K .

The arrangement of the remaining people corresponds to ? n−1
. The dia-

grammatic form of the above reasoning is:

< n
= 1

n ? n−1 ◦ (G + H + I + · · ·+ J + · · ·+ K )
.

Now, use the binor identity to remove crossings. Most of the resulting terms

disappear, since any term whose cups are not in the ‘first position’ on top will
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vanish due to the capping relation. In particular:

? ◦ J = ? − @ + A + · · ·+ (−1)i B ,

where i is the number of ‘kinks’ % in J or 1 plus the number of kinks inB . Finally, group the number of terms on the righthand side with the same

number of kinks together: there will be n− i− 1 terms with i kinks.

Proposition 3.16. - n also satisfies the recurrence relations:

< n
=

i=n−1

n−i
+ (−1)i

(
n− i

n

)
i>n−1

n−i
; (3.9)

D n
= E n−1 −

(
n− 1

n

) F n−1

n−1
. (3.10)

Proof. The second relation is a special case of the first. For the first, compose

(3.8) with - i⊗ - n−i. This has no effect on the lefthand side, by the stacking

relation. On the righthand side, all but one of the terms with a cap on the bottom

vanish, due to the capping relation, since they will cap off either the - i or the- n−i. The one term which remains ‘caps between’ these two symmetrizers. The

coefficient is (−1)i
(

n−i
n

)
since in recurrence (3.8), i is equal to one more than the

number of kinks % in B .

The next relations follow directly from these recurrences:

Proposition 3.17 (Looping Relations).

4n =

(
n + 1

n

) 5n−1
; (3.11)

k

{6n =

(
n + 1

n− k + 1

) 5n−k
; (3.12)

7n = n + 1. (3.13)

31



Proof. Close off the left strand in (3.10) above. Then, D n
, E n−1

, andFn−1

n−1
become 4 n

, � - n−1 = 2- n−1 and - n−1, respectively. Now

collect terms to get (3.11), and proceed to (3.12) or (3.13) by applying the first

relation k or n times.

3.7 Trivalent Spin Networks

Recall the Clebsch-Gordon decomposition (Proposition 2.5):

Va ⊗ Vb
∼=

⊕

c∈da,bc
Vc, da, bc = {a + b, a + b− 2, . . . , |a− b|}.

The requirement c ∈ da, bc is equivalent to the following symmetric condition:

Definition 3.18. A triple (a, b, c) of nonnegative integers is admissible when

1
2
(−a + b + c), 1

2
(a− b + c), 1

2
(a + b− c) ∈ N. (3.14)

Thus, c ∈ da, bc is equivalent to requiring {a, b, c} to be admissible.

Two maps arise from the Clebsch-Gordon decomposition: an injection ia,b
c :

Vc → Va⊗Vb and a projection P c
a,b : Va⊗Vb → Vc. Both have simple diagrammatic

depictions [CFS]:

ia,b
c =

a]b

c

: Vc → Va ⊗ Vb; P c
a,b =

a^c

b

: Va ⊗ Vb → Vc.

The admissibility condition (3.14) is the requirement that there is a nonnegative

number of strands connecting each pair of symmetrizers. These “strand numbers”

appear frequently in diagram manipulations, and will be referenced by the Greek

letters α, β, γ:
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Convention 3.19. Given an admissible triple (a, b, c), denote by α, β, and γ the

total number of strands connecting Vb to Vc, Va to Vc, and Va to Vb, respectively.

Also, denote by δ the total number of strands in the diagram. Therefore

α ≡ 1
2
(−a + b + c); β ≡ 1

2
(a− b + c); γ ≡ 1

2
(a + b− c); δ ≡ 1

2
(a + b + c).

Note that (a, b, c) is admissible if and only if α, β, γ ∈ N.

Because the maps ia,b
c and P c

a,b are so important, they are commonly depicted

using thicker, labelled lines. We represent n lines with a symmetrizer by one thick

line labelled n, so that _ n ≡ - n. Such lines lead to a new notation for spin

networks:

Definition 3.20. A trivalent spin network s is a graph drawn in the plane with

vertices of degree ≤ 3 and edges labelled by positive integers such that:

• 2-vertices are ciliated and coincide with local extrema;

• 3-vertices are drawn ‘up’ c or ‘down’ d ;

• any two edges meeting at a 2-vertex have the same label;

• the three labels adjacent to any vertex form an admissible triple.

If there are m input edges with labels li for i = 1, . . . , m and n output edges with

labels l′i for i = 1, . . . , n, the network is identified with a map between tensor

products of irreducible SL(2,C) representations,

fs : Vl1 ⊗ · · · ⊗ Vlm → Vl′1 ⊗ · · · ⊗ Vl′n .

The map is computed by identifying s with a unique regular spin network by:

_ n ≡ - n; ` n ≡
n︷ ︸︸ ︷� � · · · � a n ≡ b n ≡)

ac b

c
≡

a]b

c
adc

b
≡

a^c

b

.
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Vertices of degree 2 are normally chosen to coincide with local extrema, and

degree-3 vertices, when expanded, also have a number of ciliated vertices. The

need to keep track of these ciliations makes diagram manipulation a more delicate

operation.

Trivalent Diagram Manipulations

For the remainder of this paper, we assume that all sets of labels incident to a

common vertex in a diagram are admissible. Moreover, whenever we sum over

a label in a diagram, the sum is taken over all possible values of that label for

which the requisite triples in the diagram are admissible.

Most of the proofs in this section are simplified by recognizing that spin

networks are topologically invariant apart from a factor of (−1)
1
2
c, where c is the

number of ciliations in a diagram. More direct arguments are included here for

consistency with the trace diagram interpretation.

The identity � = − 
 gives rise to the following compendium of sign changes

through diagram manipulations:

Proposition 3.21.

no = (−1)n _ n
; (3.15)

aqc

b
= (−1)

1
2
(a+b−c)

adc

b
; (3.16)

cp ba
= (−1)

1
2
(−a+b+c)

adc

b
; (3.17)

dr ba

c
e = (−1)

1
2
(a+b+c+d−2e)

a

df b

c

e
; (3.18)

(−1)
1
2
(a+c)

a

df b

c

e
= (−1)

1
2
(b+d)

a

de b

c

e
; (3.19)

dr ba

c
e = (−1)b+d−e

a

de b

c

e
. (3.20)
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Proof. First, (3.15) is a restatement of & n = (−1)n % n and (3.16) follows

by reflection, since
adc

b
contains γ = 1

2
(a + b− c) local extrema.

For (3.17), notice that in the simplest case

+ = −, ,

the negative sign comes from the strand on top of the diagram. Similarly, the

general case for transforming
cp ba

into
adc

b
has a sign for each strand between

b and c, giving (−1)α = (−1)
1
2
(−a+b+c). This identity is used twice to give (3.18).

Finally, (3.19) follows from:

a

df b

c

e
= (−1)e

ds b

c

a
e = (−1)e+ 1

2
(d+e−a+b+e−c)

a

de b

c

e
,

and (3.20) is given by combining (3.18) and (3.19).

The above relations permit the definition of a “π
4
-reflection” on certain types

of diagrams, which will be important later:

Proposition 3.22. If a relation consists entirely of terms of the form
a

de b

c

e

and
a

dg b

c
f , then one may “reflect about the line through a and c” in the following

sense:

∑
e

αe

a

de b

c

e
=

∑

f

βf

a

dg b

c
f ⇐⇒

∑
e

αe

a

bg d

c
e =

∑

f

βf

a

be d

c

f
.

Proof. By horizontally reflecting the first relation, using Theorem 3.6,

∑
e

αe

a

de b

c

e
=

∑

f

βf

a

dg b

c
f

⇐⇒
∑

e

αe(−1)
1
2
(a+b+c+d−2e)

b

cf a

d

e
=

∑

f

βf (−1)
1
2
(a+b+c+d−2f)

b

cg a

d
f

⇐⇒
∑

e

αe

b

cf a

d

e
=

∑

f

βf

b

cg a

d
f ,
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where the signs cancel due to the admissibility conditions.

Now, add strands to both sides, so that the right side
b

cg a

d
f becomes

br da

c
f = (−1)b+d−f

a

be d

c

f
.

Likewise, on the left side,
b

cf a

d

e
becomes (−1)b+d−e

a

bg d

c
e . Once again, admis-

sibility implies that e and f must have the same parity, so these signs cancel.

Two alternate versions of this proposition follow.

Corollary 3.23.

∑
e

αe

a

df b

c

e
=

∑

f

βf

a

dg b

c
f ⇐⇒

∑
e

αe

a

bg d

c
e =

∑

f

βf

a

bf d

c

f

⇐⇒
∑

e

αe(−1)
1
2
(e−b)

b
ah c

d
e =

∑

f

βf (−1)
1
2
(d−f)

b
ai c

d
f .

Proof. The first statement is equivalent to that in the previous proposition, aside

from a factor of (−1)
1
2
(a+c−b−d) on the

a

df b

c

∗
terms. But this factor cancels

since it is independent of the summation and occurs in both equations.

For the second equivalence, compose the diagrams on the left with a a c,

and apply a reflected version of (3.17).

As for regular spin networks, any closed trivalent spin network may be inter-

preted as a constant. The simplest such diagrams are computed next.

Proposition 3.24. Let Θ(a, b, c) = k ca b
and ∆(c) = l c

. Then Θ(a, b, c) is

symmetric in {a, b, c} and

∆(c) = c + 1 = dim(Vc); (3.21)

Θ(a, b, c) =

(−a+b+c
2

)
!
(

a−b+c
2

)
!
(

a+b−c
2

)
!
(

a+b+c+2
2

)
!

a!b!c!
=

α!β!γ!(δ + 1)!

a!b!c!
; (3.22)

Θ(1, a, a + 1) = ∆(a + 1) = a + 2. (3.23)

36



Proof. The first equation (3.21) is a consequence of the Looping Relation (3.11).

That Θ(1, a, a + 1) = ∆(a + 1) is a consequence of the stacking relation. The

formula for Θ(a, b, c) may be verified using the recurrence formula in Corollary

6.10. See [CFS] for a more direct proof.

Ratios of ∆ and Θ show up in the next two propositions, which tell us how to

“pop bubbles” and how to “fuse together” two thick edges. The first demonstrates

the usefulness of Schur’s Lemma in diagrammatic techniques.

Proposition 3.25 (Bubble Identity). jc

d

a
b =

(
Θ(a,b,c)

∆(c) _ c
)

δcd, where δcd is the

Kronecker delta.

Proof. Schur’s Lemma requires jc

d

a
b = C _ c

δcd for some constant C, since jc

d

a
b

is a map between irreducible representations. This equation remains true if we

“close off” the diagrams, giving:

k ca b
= C l c

=⇒ C =
Θ(a, b, c)

∆(c)
.

Proposition 3.26 (Fusion Identities).

an b
=

∑

c∈da,bc

(
∆(c)

Θ(a, b, c)

)
a

ag b

b
c

a

bm b

a
=

∑

c∈da,bc
(−1)

1
2
(a−b+c)

(
∆(c)

Θ(a, b, c)

)
a

be b

a

c
.

Proof. Maps of the form
a

ag b

b
c for c ∈ da, bc form a basis for the space of SL(2,C)-

invariant maps Va⊗Vb → Va⊗Vb [CFS]. Thus, the first diagram may be expressed

as a linear combination:

an b
=

∑

c∈da,bc
C(c)

a

ag b

b
c .

37



Given a specific d ∈ da, bc, the constant C(d) is computed by composing this

expression with
ac b

d
, giving:

ac b

d
=

∑

c∈da,bc
C(c)

ac b

c
◦ jc

d

a
b =

∑

c∈da,bc
C(c)

(
Θ(a, b, c)

∆(c)

)
ac b

c
◦ _ d

δcd

= C(d)

(
Θ(a, b, d)

∆(d)

)
ac b

d
=⇒ C(d) =

∆(d)

Θ(a, b, d)
.

For the second equation:

a

bm b

a
=

∑

c∈da,bc
(−1)

1
2
(−a+b+c)

(
∆(c)

Θ(a, b, c)

)
br ba

a
c

=
∑

c∈da,bc
(−1)

1
2
(a−b+c)

(
∆(c)

Θ(a, b, c)

)
a

be b

a

c
.

3.8 6j-Symbols

There are two natural bases for the SL(2,C)-invariant maps Vd → Va ⊗ Vb ⊗ Vc:





b
ah c

d
e





e∈da,dc∩db,cc

and





b
ai c

d
f





f∈da,bc∩dc,dc

.

Definition 3.27. The coefficients used to switch between these bases are called

6j-symbols and defined by:

b
ah c

d
e =

∑

f∈da,bc∩dc,dc

[
a b f
c d e

] ·
b

ai c

d
f .

This differs slightly from the usual definition in the literature [CFS, Kau].

These coefficients are closely related to the value of the following closed spin

network:

Definition 3.28. Given a, b, c, k, l, m ∈ N with the triples {a, b, m}, {a, c, k},
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and {b, c, l} all admissible, the tetrahedral coefficient is

Tet(a, b, c, k, l, m) ≡ u
l

a
b

c

k m

.

Proposition 3.29. The tetrahedral coefficient may be expressed in terms of 6j-

symbols by

Tet(a, b, c, k, l, m) =

(
Θ(a, c, k)Θ(k, l, m)

∆(k)

) [
a c k

m l b

]
. (3.24)

Proof. Move one strand and apply the bubble identity:

u
l

a
b

c

k m

=
∑

i

[
a c i
m l b

]v
l

a
i

c

k m

=
[

a c k
m l b

]v
l

a
k

c

k m

=
[

a c k
m l b

]Θ(a,c,k)
∆(k) k lk m

.

Another use of the tetrahedral coefficient is:

Proposition 3.30 (Triple Bubble Identity).

w lk

m

a

c b = Tet(a,b,c,k,l,m)
Θ(k,l,m)

kc l

m
= Θ(a,c,k)

∆(k)

[
a c k
l m b

]kc l

m
.

Proof. Close off strands on both sides of the equation, as in Proposition 3.25.
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Chapter 4 Trace Diagrams

This chapter focuses on properties of trace diagrams for more general groups.

As for SL(2,C), there are generally two ways to represent such diagrams: as

graphs with edges corresponding to the standard representation, and as trivalent

diagrams with edges labelled by finite-dimensional representations. Outside of a

few cases, not much is known about the general theory of such diagrams.

4.1 General Spin Networks

The advantage of the definition for spin networks given in the previous section is

that it easily generalizes to other cases. The more general definition follows.

Definition 4.1. Let G be a group. A G-spin network s is a ciliated, directed

graph drawn in the plane with vertices of degree ≤ 3 and edges labelled by

finite-dimensional irreducible representations of G such that:

• all vertices are either sources or sinks and are ciliated, giving adjacent edges

a well-defined ordering;

• the degree 1 edges are partitioned into inputs and outputs ;

• both edges incident to a 2-vertex have the same label;

• the representations Vα, Vβ, and Vγ are allowed to meet at a 3-vertex
βc γ

α

only if there is a nonzero G-invariant map Vα → Vβ ⊗ Vγ;
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• trivalent vertices are labelled by specific maps between the representations

at the corresponding edges, called intertwiners.

If there are m inputs with adjacent edges labelled Vli and n outputs with adjacent

edges labelled Vl′i , the diagram is identified with a map

fs : Vl1 ⊗ · · · ⊗ Vlm → Vl′1 ⊗ · · · ⊗ Vl′n .

If there are markings along specific edges corresponding to matrix variables, then

the diagram is called a G-trace diagram and represents a function

G× · · · ×G −→ {f : Vl1 ⊗ · · · ⊗ Vlm → Vl′1 ⊗ · · · ⊗ Vl′n}.

As in the previous chapter, the function is computed by decomposing the

diagram into its smallest pieces. There are two things to clarify about a trace

diagram’s function: first, when an edge’s orientation is opposite the ‘direction’

of a function, the function uses the dual of the representation. For example,

� a : Va → Va, while � a : (Va)
∗ → (Va)

∗. Second, the degree 2 vertices encode

vector space isomorphisms Va
∼= V ∗

a . For this to work, the resulting function must

be well-defined.

Diagrams without inputs or outputs are called closed diagrams. They may

be interpreted as a function V ⊗0 → V ⊗0, and therefore as a constant in the base

field. Such functions, being linear, are determined by their value at 1.

4.2 Trace Diagrams for Matrix Groups

A broad discussion of the properties of general trace diagrams is outside the scope

of this thesis. However, we will mention how such diagrams for matrix groups
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may be represented as unlabelled diagrams. The next section will cover in detail

the case G = SL(3,C), from which most of the results generalize.

In the case where G is an n×n matrix group, spin networks may be defined in

terms of unlabelled graphs. In this case, V = Cn is the standard representation,

and the conjugate transpose map v 7→ v∗ gives a vector space isomorphism V ∼=
V ∗. Note that V and V ∗ may not be isomorphic as G-representations.

Definition 4.2. An n-spin network is a directed, ciliated graph with vertices of

degree 1,2, and n and the following additional structure:

• all vertices are either sources or sinks;

• degree n vertices are ciliated, giving adjacent edges a well-defined ordering;

• degree 1 vertices are partitioned into inputs and outputs.

If V = Cn is the standard representation, then such diagrams may be interpreted

as functions from V̆ ⊗ · · · ⊗ V̆ −→ V̆ ⊗ · · · ⊗ V̆ , where V̆ represents either V

or V ∗. The number and type of factors corresponds to the number and type of

inputs and outputs.

If there are markings present, the diagram is an n-trace diagram and inter-

preted as a map from G× · · · ×G to the space of such functions.

Certain parts of this definition are irrelevant in some cases. The ciliation in

particular is only needed to give a well-defined sign to the maps for each vertex.

When n is odd, all that matters is a cyclic ordering, and so the ciliation need not

be drawn when the diagrams are represented in the plane. Even when n is even,

only two types of ciliations are necessary.
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Component Maps

There are two ways to compute the general function of a trace diagram. The first

parallels the component map model in the previous chapter:

Proposition 4.3. Any n-trace diagram can be subdivided into the following basic

maps, where v, w, vi ∈ V , f ∈ V ∗, {ei} form a basis for V , and L represents any

n× n matrix x:

• � : V → V where v 7→ v, the identity;

• � : V ⊗ V ∗ → C where v ⊗ f 7→ f(v);

• � : C→ V ∗ ⊗ V where 1 7→ ∑n
i=1 eT

i ⊗ ei;

• � : V ⊗ V → C where v ⊗ w 7→ w∗v;

• � : V ⊗ · · · ⊗ V → C where v1 ⊗ v2 ⊗ · · · ⊗ vn 7→ det[v1 · · · vn];

• + : V → V where v 7→ xv;

• the diagrams � , � , and � defined similarly on the dual.

Note that the vertices in � and � should be ciliated. The proof that

such functions are well-defined is similar to the case G = SL(2,C) considered

previously.

Combinatorial Method

A second method which may be used to compute these diagrams is combinatorial

in nature, and only applies to spin networks. It requires the following definition:
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Definition 4.4. A labelling of an n-spin network is an assignment of one of the

basis elements {ei}n
i=1 to each edge, such that (i) at each 2-vertex both edges have

the same label, and (ii) at each n-vertex the three edges have different labels.

Given a labelling and a ciliated vertex v, the permutation on edge labels

induced by the ciliation is denoted σv. Define the sign of v to be sign(σv) if v is

a source, or −sign(σv) if v is a sink. Given a labelled spin network s, the sign of

s is the product of signs at its n-vertices.

Proposition 4.5. Let s be a spin network with map fs : V̆ ⊗m1 → V̆ ⊗m2. Then the

coefficient of the basis element ej1⊗· · ·⊗ejm2
in the expansion of fs(ei1⊗· · ·⊗eim1

)

is equal to the sum of the signs of all possible labellings of s which respect the label

sets ei1 , . . . , eim1
and ej1 , . . . , ejm2

of the input and output edges.

In section 8.2, this proposition may be restated in terms of the signed pre-

chromatic index of a graph.

4.3 3-Spin Networks

This section describes the practical application of the above to the case G ⊂ M3×3.

When drawing the diagrams, we place the input vertices on the bottom of some

“box” and the output vertices on the top. For simplicity, we assume the diagrams

do not contain degree 2 vertices. The ciliation may be omitted since only a cyclic

ordering will be necessary at 3-vertices; such an ordering is implicit in drawing

the diagram in the plane. For example, the diagram

�
maps (V ∗)⊗3 ⊗ V ⊗ V ∗ ⊗ V ⊗ V ∗ −→ V ⊗ V ∗ ⊗ V ⊗ V ∗ ⊗ V ⊗ (V ∗)⊗2.
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Component Maps

It will be helpful to restate the component maps in this case. Keep in mind

that V may be thought of as column vectors and V ∗ as row vectors. Then, for

v, vi ∈ V and wT ∈ V ∗, the component maps are

• � : V → V where v 7→ v, the identity;

• � : V ⊗ V ∗ → C where v ⊗ wT 7→ wT v;

• � : C→ V ∗ ⊗ V takes 1 7→ eT
1 ⊗ e1 + eT

2 ⊗ e2 + eT
3 ⊗ e3;

• � : V ⊗ V ⊗ V → C where v1 ⊗ v2 ⊗ v3 7→ det[v1 v2 v3].

The components of opposite orientations are also necessary. But the dual diagram

of a network s, formed by reversing the directions of all arrows, is computed by

interchanging V and V ∗. For example, � : V ∗ → V ∗ is the identity on V ∗ rather

than V .

As an example of this decomposition, the map � : V ∗ → V ⊗V is the same

graph as ( , and therefore its function is computed via

( = ( � ⊗ � ⊗ � ) ◦ ( � ⊗ � ).

The next proposition lists additional simple maps whose explicit formulae will be

useful. These are given with respect to the standard bases {e1, e2, e3} of V and

{eT
1 , eT

2 , eT
3 } of V ∗.

Proposition 4.6 (Properties of 3-Spin Networks). As maps,

• � : C→ V ⊗ V ⊗ V takes

1 7→ e1⊗e2⊗e3−e1⊗e3⊗e2+e2⊗e3⊗e1−e2⊗e1⊗e3+e3⊗e1⊗e2−e3⊗e2⊗e1.
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• � : V ∗ → V ⊗ V takes eT
1 7→ e2 ⊗ e3 − e3 ⊗ e2;

• � : V ⊗ V → V ∗ takes v1 ⊗ v2 7→ (v1 × v2)
T , the cross product;

• ! : C→ C takes 1 7→ 3 = dim V and is identified with 3;

• # : C→ C takes 1 to 6 = 3! = 2 dim V and is identified with 6;

• � : V ⊗ V ⊗ V → V ⊗ V ⊗ V , the anti-symetrizer, takes v1 ⊗ v2 ⊗ v3 7→
v1⊗v2⊗v3−v1⊗v3⊗v2+v2⊗v3⊗v1−v2⊗v1⊗v3+v3⊗v1⊗v2−v3⊗v2⊗v1;

• 	 : V ⊗ V → V ⊗ V takes v1 ⊗ v2 7→ v1 ⊗ v2 − v2 ⊗ v1;

• � : V ⊗ V ∗ → V ∗ ⊗ V takes e1 ⊗ eT
1 7→ −(eT

2 ⊗ e2 + eT
3 ⊗ e3) and

e1 ⊗ eT
2 7→ eT

2 ⊗ e1.

Proof. Either a direct computation or the labelling interpretation of a spin net-

work’s value in Proposition 4.5 may be used. For example, the coefficient of

eσ(1) ⊗ eσ(2) ⊗ eσ(3) in � (1) is det[eσ(1) eσ(2) eσ(3)] = sign(σ), the sign of the

permutation σ. The other maps are similarly verified.

3-Diagram Manipulations

This section gives additional properties of 3-spin networks. The first proposition

considers degree 3 vertices.

Proposition 4.7. (a) * = $ = 2 � ; (b) ' = − � .

Proof. For (a), Schur’s Lemma implies that this map is a multiple of the identity.

Obtain the constant by evaluating on a single basis element. Alternately, there

are just two colorings possible when the endpoints are fixed.

For (b), swapping edges of a 3-vertex changes the sign at that vertex.
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The map � is a true anti-symmetrizer, since it evaluates to the sum of the

even permutations of its inputs minus the sum of the odd permutations:

Proposition 4.8. � = � + � +  − � − � − � .

The fundamental binor identity of 2-spin networks extends to the present

case, provided the cap and cup in � are “attached.” The resulting 	 is the

anti-symmetrizer on two elements.

Proposition 4.9 (SL(3,C) Binor Identities). (a) 	 = � − � ; (b) � =


 − � .

Proof. Relation (a) may be evaluated directly, and (b) follows by rotating (a).

4.4 3-Trace Diagrams

Next the properties of trace diagrams, or diagrams with matrices in M3×3, are

considered. Any 3-trace diagram with matrices may be drawn in the plane in

such a way that matrices are all on upward-facing arrows, so the only additional

component map, beyond that for spin networks, is

• + : V → V where v 7→ xv (trace diagrams only).

A matrix acts on “down arrows” via the contragradient representation:

Proposition 4.10. , : V ∗ → V ∗ takes w ∈ V ∗ to xT w.

Proof. Use the decomposition , = � � ◦ � + � ◦ � � .
Some simple properties of trace diagrams follow.

Proposition 4.11. Given a matrix x ∈ M3×3 represented by L , with x−1 rep-

resented by O if it exists, the following identities hold:
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1. 1 = tr(x) and - = det(x) · � ;

2. ! = tr(I) = 3 = dim V = dim V ∗ and 3 = 2tr(x);

3. . = det(x) · � and / = det(x) · 0 ;

4. 5 = 6 det(x) and 4 = 2 det(x)tr(x−1);

Proof. The determinant result is given by

� ◦ x(v1 ⊗ v2 ⊗ v3) = det[xv1 xv2 xv3] = det[x] det[v1 v2 v3]

= det[x] � (v1 ⊗ v2 ⊗ v3).

The trace calculation (2) is:

! = � ◦(x⊗I)◦� = � ◦(x1⊗e1+x2⊗e2+x3⊗e3) = x11+x22+x33 = tr(x).

The result is the same with two 2-vertices, since they may be ‘cancelled’.

The remaining results follow by these results and propositions in the previous

section. For example, the final calculation is:

4 = det(x) · 7 = 2 det(x) · 6 = 2 det(x)tr(x−1).

Closed 3-Trace Diagrams

When closed 3-trace diagrams are evaluated, the result is a trace word, just as for

2-trace diagrams, since the binor identity of Proposition 4.9 allows all 3-vertices

to be removed. Unfortunately, it is not possible to express such diagrams in

terms of diagrams without crossings. To evaluate such maps, a choice has to be

made between crossings and 3-vertices.

The trace word interpretation does suggest the following:
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Proposition 4.12. 3-spin networks without local extrema and 2-vertices are

SL(3,C)-invariant, and closed 3-trace diagrams without local extrema and 2-

vertices are invariant under simultaneous conjugation in their matrix variables.

Proof. This follows from the binor identity, but here is a more direct proof. Let

s be the spin network. Insert a copy of x ∈ SL(3,C) along each edge incident

to a source vertex, and a copy of x−1 along each edge incident to a sink vertex.

Denote this diagram by s′. Then, s′ = s as functions, by the above relations.

Moreover, all matrices on the interior edges of s′ cancel, leaving copies of x or

x−1 on the inputs and outputs. Indeed, s′ = x◦s◦x−1, and so x◦s = s′◦x = s◦x.

If this construction is applied to a closed trace diagram t, then t′ is exactly

what is obtained by conjugating in the matrix variables, and therefore ft is in-

variant under simultaneous conjugation.

Because of the trace interpretation, relations among trace diagrams give rise

to trace relations. This is a very fruitful source of trace relations. Among them is

the characteristic polynomial, so in a sense it contains all possible trace relations.

The following notation will be useful:

Notation 4.13. Given matrices x = x1,x2,x3 ∈ M3×3 represented by diagramsL , M , and N , respectively, define [[x1]], [[x1,x2]], and [[x1,x2,x3]] as follows:

[[x1]] = 3 ; [[x1,x2]] = 8 ; [[x1,x2,x3]] = 9 .

Thus, [[x1,x2]] = [[x1,x2, I]], and [[x1]] = [[x1, I]] = [[x1, I, I]].

When the matrices are equal, this notation gives the following

Proposition 4.14. [[x]] = 2tr(x), [[x,x]] = 2 det(x)tr(x−1), and [[x,x,x]] =

2 det(x).
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Proof. In diagrammatic form, these are given by [[x]] = 3 , [[x,x]] = 4 , and

[[x,x,x]] = 5 , which have already been evaluated.

The simplest trace relation comes from the binor identity 	 = � − � ,

and provides expressions for [[x1,x2]] and [[x,x]]. It also gives a formula for tr(x−1)

in terms of tr(x) and det(x):

Proposition 4.15. [[x1,x2]] = tr(x1)tr(x2)− tr(x1x2).

Proof. The binor identity implies the equivalent relation

: = ; − < .

Corollary 4.16. [[x,x]] = tr(x)2 − tr(x2).

Corollary 4.17. tr(x−1) = 1
2 det(x)

(tr(x)2 − tr(x2)).

Proof. Combine previous relations to obtain

tr(x)2 − tr(x2) = [[x,x]] = 2 det(x)tr(x−1)).

The most potent trace relations arise from expanding the anti-symmetrizer

� in terms of permutations. It allows [[x1,x2,x3]] to be expressed as a trace

polynomial:

Proposition 4.18. [[x1,x2,x3]] = tr(x1)tr(x2)tr(x3) + tr(x1x2x3) + tr(x1x3x2)−
tr(x1)tr(x2x3)− tr(x2)tr(x1x3)− tr(x3)tr(x1x2).

Proof. Begin with the identity

� = � + � +  − � − � − � .
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Apply x1,x2,x3 to the top strands, and close off the last two strands to get:

= = > +? +@ −A −B −C .

In terms of the original matrices, this equation is

G = tr(x2)tr(x3)x1+x1x2x3+x1x3x2−tr(x3)·x1x2−tr(x2x3)·x1−tr(x2)·x1x3.

(4.1)

Close off the final strand, or take the trace of this equation, to get the desired

result.

This formula is sometimes referred to as the polarization of the characteristic

polynomial, and indeed it is probably best thought of as a generalization of the

characteristic polynomial:

Corollary 4.19. x3 − tr(x)x2 + 1
2
(tr(x)2 − tr(x2))x− det(x)I = 0.

Proof. Set x = x1 = x2 = x3 and use the fact that H = 2 det(x)I in (4.1) to

obtain:

2 det(x)I = tr(x)2x + x3 + x3 − tr(x)x2 − tr(x2)x− tr(x)x2.

Collect terms and divide by two.

This result could also have been obtained via the following:

Proposition 4.20. tr(x1)[[x2,x3]] = [[x1,x2,x3]] + [[x2x1,x3]] + [[x3x1,x2]].

Proof. Regroup the terms of the permutation expansion of � :

� =
( � − � )

−
( � − � )

+
(  − � )

to obtain the alternate expression

I = J − K + L .
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Now, insert matrices and close off the diagram to get

M = N = O −P +Q = R − S − T ,

which is the desired formula. (Note that the sign switches in the last term due

to the extra swap which must be eliminated, ' = − � .)

This concludes the discussion of relations among 3-trace diagrams. There is

clearly a lot more to do, especially for diagrams with three or more vertices. There

is evidence to suggest that certain theorems on bicubic planar graphs might give

rise to methods for computation of general 3-trace diagrams without crossings.

This is discussed further in section 8.2.

Adjugate Matrices

The theory of trace diagrams is closely tied to basic linear algebra. Most of

the SL(3,C) maps have natural interpretations in terms of inner products, cross

products, and determinants:

� (v1, v2) = v1 · v2;

� (v1, v2) = (v1 × v2)
T ;

� (v1, v2, v3) = det[v1 v2 v3] = v1 · (v2 × v3).

Thus, in some sense, the diagram calculus is composed entirely of the inner

product, the cross product, and the triple product.

As another example, the identity

� = D =
1

2
det(x−1) H =

1

2 det(x) H
demonstrates that

x−1 =
Adj(x)

det(x)
= E =

1

det(x)

(
1

2 F )
.
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Therefore, the map 1
2 F is the traditional adjugate matrix Adj(x).

Recall that Adj(x) is constructed from the 2x2 cofactor determinants of the

matrix x. If the diagram Ui corresponds to the unit vector ei, then multiplying

a vector by a matrix can be represented using diagrams. For example,

V21 = eT
1 xe2 = x12,

the (1, 2) matrix entry of x. Using cofactor expansion across the first row of a

matrix to compute the determinant corresponds to the equation

det(x) =
1

2 W1
1

=
1

2


X

1

1

1

1

+X
1

2

2

1

+X
1

3

3

1


 .

Moreover, the [[·, ·]] and [[·, ·, ·]] notations used earlier have the following inter-

pretations as adjugates:

Proposition 4.21. [[x,x]] = 2tr(Adj(x)) and [[x,x,x]] = 2tr(xAdj(x)).

4.5 Properties for General Groups

Spin networks are generically described as trivalent graphs labelled by represen-

tations, although in certain cases they have alternate representations in terms

of simple, unlabelled diagrams. In the case for SL(2,C) and SL(3,C), these cor-

responded to graphs with vertex degrees in {1, 2} and in {1, 2, 3}, respectively.

These diagrams generalize to the case SL(n,C), with graphs having vertex degrees

in {1, 2, n}.
These diagrams could just as easily be used with any matrix group in Mn×n,

although their fundamental property, SL(n,C)-invariance, is lost. The following

proposition describes how the diagrams behave with respect to matrix groups in

general.
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Proposition 4.22. A matrix x ∈ Mn×n acts on n-spin networks via the following

relations:

• If x ∈ SL(n,C), then the degree n vertices � and � are invariant;

• If x ∈ O(n), the orthogonal group, then � ◦ (x ⊗ x) = � , so the local

extrema are invariant.

• If x ∈ SO(n), then matrices are invariant with respect to both local extrema

and the degree n vertices.

• If x ∈ sl(n,C), then 1 = 0, and a single loop with just x kills the entire

diagram. Also, [x1,x2] = −tr(x1x2) for x ∈ sl(3,C).

• If xk = I for some k, then the characteristic polynomial simplifies to give a

simpler trace relation.

The proofs of these statements involve applying the definitions of these groups

to the diagrams. A full discussion of the properties of such matrices in diagrams is

beyond the scope of this thesis. In some sense, invariance with respect to different

component maps is what defines the classical Lie groups. The 2-vertices, which

have been omitted in the above discussion, are U(n) invariant. Indeed, the 2-

vertex � can be arbitrarily defined as some G-invariant 2-form.
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Chapter 5 Central Functions of Hom(π,G)

This chapter introduces the central question of this thesis. The goal is to study the

coordinate ring C[X], where X is the G-character variety of a surface Σ, for some

reductive group G. Many spaces of geometric structures, such as Teichmüller

space and moduli space, are contained within the character variety [Gol2], and

so the structure of the coordinate ring gives an abundance of information about

the geometry of the surface. The approach given here analyzes a canonical basis

for C[X] consisting of what we call central functions. This chapter describes

the coordinate ring and the construction of these functions, while later chapters

consider specific examples.

5.1 The Character Variety

Let Σ be a compact oriented surface with nonempty boundary and fundamental

group π. The boundary condition permits Σ to be retracted onto a 1-complex,

hence π is isomorphic to a free group of rank r:

π ∼= a1 ∗ a2 ∗ · · · ∗ ar ≡ Fr.

Consider the space of homomorphisms of π into a reductive linear algebraic

group G, denoted Hom(π, G). Since π is a free group, f ∈ Hom(π, G) is deter-

mined by its values on the generating letters of Fr. Hence, there is a canonical
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isomorphism Hom(π, G) ∼= Gr sending

f 7−→ (f(a1), . . . , f(ar)).

The group G acts on Hom(π,G) by simultaneous conjugation:

g · (x1,x2, . . . ,xr) = (gx1g
−1, gx2g

−1, . . . , gxrg
−1).

The orbit of a point under this action may not be closed. For example, when

G = SL(2,C) and a 6= 0,

[
b−1 0

0 b

][
1 a

0 1

][
b 0

0 b−1

]
=

[
1 a

b2

0 1

]
−→
b→0

[
1 0

0 1

]
.

However,
[

1 a
0 1

]
and

[
1 0
0 1

]
are in different conjugacy classes.

The set of semistable points of Hom(π,G) is denoted Hom(π, G)ss. These

points are the reductive homomorphisms, for which every invariant subspace has

an invariant complement. Equivalently, every f ∈ Hom(π, G)ss is completely

reducible. The orbit space Hom(π,G)ss/G has the structure of an affine algebraic

variety X, commonly called the G-character variety of Σ. It may also be defined

as the categorical quotient

X ≡ Hom(π, G)ss/G = Hom(π,G)//G.

Hence, the character variety is comprised of conjugacy classes of completely re-

ducible homomorphisms in Hom(π, G) [Dol, Gol2].

The fundamental object of interest in this thesis is C[X], the coordinate ring

of the character variety. On the level of C-algebras, this ring is equivalent to

C[Hom(π, G)]G, the coordinate ring of functions on G which are invariant under

simultaneous conjugation. Procesi has shown that the coordinate ring of SL(n,C)-

character varieties is generated by traces of products of matrices [Pro].
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5.2 The Central Function Decomposition

Recall the isomorphism given in Theorem 2.4:

C[G] ∼=
⊕

λ∈Λ

V ∗
λ ⊗ Vλ,

where {Vλ}λ∈Λ is the set of finite-dimensional irreducible representations of the

maximal compact subgroup U ⊂ G. This also induces a decomposition of

C[Hom(π, G)], since

C[Hom(π,G)] ∼= C[Gr] ∼= C[G]⊗r ∼=
(⊕

λ

V ∗
λ ⊗ Vλ

)⊗r

. (5.1)

The action of G by simultaneous conjugation passes through these isomorphisms,

giving a decomposition of the coordinate ring C[X].

Consider the rank one case π ∼= F1, and assume all representations are unitary.

In terms of bases {ei} for Vλ and {e∗i } for V ∗
λ , the above isomorphism takes

e∗i ⊗ ej ∈ V ∗
λ ⊗ Vλ to the representative function x 7→ e∗i (x · ej). The G-invariants

are determined by the isomorphisms

C[X] = C[G]G ∼=
⊕

λ∈Λ

(V ∗
λ ⊗ Vλ)

G ∼=
⊕

λ∈Λ

Cχλ,

where χλ(x) =
∑

i e
∗
i (x · ei) = tr(x) is the character of the representation.

In the more general case, the decomposition continues:

C[Hom(π, G)] ∼=
( ⊕

λ

V ∗
λ ⊗ Vλ

)⊗r ∼=
r⊗

i=1

⊕

λi∈Λ

V ∗
λi
⊗ Vλi

∼=
⊕

λ1,...,λr∈Λ

(
V ∗

λ1
⊗ · · · ⊗ V ∗

λr

)⊗ (
Vλ1 ⊗ · · · ⊗ Vλr

)

At this point, the explicit isomorphism to C[Hom(π,G)] takes

(e∗i1 ⊗ e∗i2 ⊗ · · · ⊗ e∗ir)⊗ (ej1 ⊗ ej2 ⊗ · · · ⊗ ejr)

57



to the function

(x1,x2, . . . ,xr) 7→ e∗i1(x1 · ej1)e
∗
i2
(x2 · ej2) · · · e∗ir(xr · ejr).

These functions generate the coordinate ring, although they are not necessarily

irreducible. A basis of irreducibles is constructed by decomposing the tensor

powers into irreducibles in a canonical way. In particular, if λ = (λ1, . . . , λr) ∈ Λr

and the tensor product decomposes

Vλ1 ⊗ · · · ⊗ Vλr
∼=

⊕

α∈A(λ)

V λ
α , (5.2)

then the coordinate ring becomes

C[X] ∼=
⊕

λ∈Λr

α,β∈A(λ)

(
(V λ

β )∗ ⊗ V λ
α

)G ∼=
⊕

λ∈Λr

α∈A(λ)

Cχλ
α. (5.3)

The functions χλ
α are called the central functions of Hom(π, G), or the G-central

functions of Σ. They are not well-defined, since they depend on the injection

V λ
α ↪→ Vλ1 ⊗ · · · ⊗ Vλr . Regardless, for each choice of injection, they provide a

basis for C[X]. The next section concerns the possible choices for central function

bases.

It is easiest to see how this works with a simple example. Let G = SL(2,C) and

suppose π = F2. Then, the irreducible representations are indexed by the natural

numbers N, and the condition α ∈ A(λ) becomes the admissibility condition

c ∈ da, bc (Proposition 2.5). The choice of injection is clear, and so the central

functions are parametrized by triples χa,b,c ≡ χ(a,b)
c .

Example 5.1. Compute the central function χ1,1,2 in terms of the traces tr(x1),

tr(x2), and tr(x1x
−1
2 ). The standard basis elements {n2, n1, n0} for V2 = Sym2(V )

become, after injecting into V ⊗ V , the elements

{e1 ⊗ e1,
1

2
(e1 ⊗ e2 + e2 ⊗ e1), e2 ⊗ e2}.
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The space Hom(π, G) is identified with G × G, and a pair (x1,x2) acts on this

basis to give

{x1e1 ⊗ x2e1,
1

2
(x1e1 ⊗ x2e2 + x1e2 ⊗ x2e1),x1e2 ⊗ x2e2}.

Project this back to V2 to obtain, for x1 =
[

a b
c d

]
and x2 =

[
e f
g h

]
:

{ ae · n2 +(ag + ce) · n1 +cg · n0,

1
2
(af + be) · n2 +

1

2
(ah + cf + bg + de) · n1 +1

2
(ch + dg) · n0,

bf · n2 +(bh + df) · n1 +dh · n0 }.

Finally, read off the trace:

χ1,1,2(x1,x2) = ae + 1
2
(ah + cf + bg + de) + dh

= (a + d)(e + h)− 1
2
(ah + de− bg − cf)

= tr(x1)tr(x2)− 1
2
tr(x1x

−1
2 ).

5.3 Surface Cuts and Representations

A compact surface Σ with boundary necessarily retracts onto the one-point union

∨r(S1) ≡ S1 ∨ · · · ∨ S1, where r is the rank of the fundamental group. Consider

a deformation retraction

η : Σ → S1 ∨ · · · ∨ S1,

with corresponding loops ai around the ith term in the wedge sum. Then, π is

freely generated by ai, and a function f ∈ Hom(π, G) is determined entirely by

its values on {ai}. This is what gives the isomorphism Hom(π, G) ∼= Gr.

Now, construct r pairings (xi, di), where xi is a point on the ith loop of

∨r(S1) and di is an orientation of that same loop. Then
∨r(S1) \ {xi} is simply-

connected. For a suitable choice of η, the inverse image η−1({xi}) consists of
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several arcs with disjoint neighborhoods which “connect” boundary components

of Σ. They have orientations induced by di, as in the figure	
where the dotted line is the cut and the thick line is a loop of

∨r(S1). These

oriented arcs will be called cuts, and the complete set of r cuts will be called a

cut set.

For example, the four-holed sphere retracts onto S1 ∨ S1 ∨ S1, and so its

fundamental group has three generators, indicated by the loops in


x1

x2

x3

a1

x0

a2

a3

.

These generators induce the cut set {(x1, d1), (x2, d2), (x3, d3)} indicated by the

dotted lines.

The space Σ \ {η−1(xi)} formed by removing these cuts is a simply-connected

open subset of Σ. Denote its closure by Σ′. Notice that Σ′ looks like a polygon

with neighborhoods of its corners removed. The original surface is reconstructed

from Σ′ by pairing edges in some way. For example, if Σ is the four-holed sphere,
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then its fundamental group has rank 3 and Σ′ is a “hexagon”:�x1

x2

x3

becomes �x2

x1

x3

x2

x1

x3

.

As seen in this example, every set of cuts is homotopically equivalent to a real-

ization of Σ as a 2r-gon with edges identified in some way.

An assignment of matrices to cuts induces a direct isomorphism between

Hom(π,G) and Gr:

Definition 5.2. Given a cut set {(xi, di)} of a surface Σ, a pointed cut is a triple

(xi, xi, di), where xi ∈ G. The collection of r such triples is a pointed cut set.

Given a pointed cut set, a homomorphism f ∈ Hom(π, G) may be defined as

follows. A loop a ∈ π1(Σ, x0) is homotopic to a loop a′ which is transverse to the

given cut set. Define f(a) ≡ f(a′) to be the product of elements xi of the pointed

cuts, written in the order they are crossed along a′. The matrix xi is used for a

positive crossing, while x−1
i is used for a negative crossing. For example the loop

based at x0 in

x1

x2

x3

x0
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is taken to the word x1x
−1
3 x−2

2 . This construction provides a set equivalence

{pointed cut sets} = {cut sets} × Hom(π, G).

Therefore, there is an isomorphism Gr ∼= Hom(π, G) for every fixed cut set of Σ.

Now consider the character variety X = Hom(π,G)//G. The conjugacy quo-

tient means that loops are considered without basepoint, while the semisimple

restriction just restricts the possible {xi}. It is more interesting what happens

when passing to the coordinate ring C[X] = C[Hom(π,G)//G] ∼= C[Hom(π,G)]G.

Since the regular invariant functions are precisely the polynomials of word traces,

this is exactly what is obtained from considering the algebra of loops on the sur-

face. In other words,

Proposition 5.3. Let G be a reductive group and let Σ be a compact surface

with boundary having fundamental group π. Then, there is an injection from the

C-algebra of invariant regular functions in C[Hom(π, G)]G into the C-algebra of

loops on Σ. The identification is obtained by labelling a cut set by an r-tuple of

matrices in G.

5.4 Cut Triangulations

The topology of the surface can be used to further the decomposition of invariant

functions, by specifying the injections used to give (5.2). The chosen injection

will depend on a number of additional cuts which give a “triangulation” of the

surface:

Definition 5.4. A cut triangulation of a surface Σ with fundamental group Fr

is a cut set of Σ, together with a set of 2r− 3 additional cuts which divide Σ into

62



a set of triangles with neighborhoods of vertices removed. These additional cuts

will be called trivial cuts.

A cut triangulation of Σ produces exactly 2(r − 1) triangles, and 3(r − 1) edge

identifications may be used to obtain the original surface. In the case of the

four-holed sphere, one triangulation is�x1

x2

x3 �x2

x1

x3

x2

x1

x3

.

Every cut triangulation provides a canonical basis for FunG(Hom(π,G)). The

correspondence is indicated by the following example.

Example 5.5. The triangulation�1

2

3

4

5

6

may be redrawn as�2 3 4 5 6

1 .

The righthand side induces the nesting (2 · (3 · 4)) · (5 · 6), where each curved arc

represents a set of parenthesis. This gives an injection

Vλ1 ↪→ (
Vλ2 ⊗ (Vλ3 ⊗ Vλ4)

)⊗ (
Vλ5 ⊗ Vλ6

)
,

which corresponds to possible labellings of the dual graph

Vλ2
Vλ3

Vλ4
Vλ5

Vλ6�
Vλ1

Vµ1

Vµ2 Vµ3 .

A complete labelling also includes an intertwiner at each vertex.
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The ideas in this example are used to prove:

Theorem 5.6. Let Σ be a compact surface with boundary. Given a cut trian-

gulation extending a specified cut set, every spin network labelling of its dual

1-skeleton induces a trace diagram which is identified with a G-invariant func-

tion Hom(π, G) → C. Moreover, for every cut triangulation, the set of such trace

diagrams is a basis for FunG(Hom(π, G)).

Proof. The 1-skeleton is a graph with vertices of valency 3. Choose one of two

possible orientations for the graph which satisfy the source/sink condition. Place

r matrix markings along the nontrivial cut set, in the direction induced by the

cut set. This, together with a labelling, provides the requisite trace diagram.

To verify that the set of such networks forms a basis, recall (5.1). The decom-

position (5.3) assumed that the injections for both (V λ
α )∗ and V λ

α were the same.

This is not strictly necessary; any decomposition of

V ∗
λ1
⊗ · · · ⊗ V ∗

λr
⊗ Vλ1 ⊗ · · · ⊗ Vλr (5.4)

into tensor product pairs V ∗
α ⊗ Vα is permitted. Since the summation is over all

λ1, we may assume that V ∗
α = V ∗

λ1
, reducing the problem further to searching for

injections

Vλ1 ↪→ V ∗
λ2
⊗ V ∗

λ3
⊗ · · · ⊗ V ∗

λr
⊗ Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλr . (5.5)

Permute the tensor powers so they occur in the same order as the cut set

appears in Σ′. Then, there is a one-to-one correspondence between triangulations

of Σ′ and associative pairings of the righthand side of (5.5), as indicated in the

previous example. Each such pairing provides a decomposition

⊕
(V ∗

λ1
⊗ · · · ⊗ V ∗

λr
)⊗ (Vλ1 ⊗ · · · ⊗ Vλr)

∼=
⊕

V ∗
λ1
⊗ Vλ1

∼=
⊕

Cχλ1 .
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Note that χλ1 is determined not only by the representation Vλ1 , but also by the

injection and labellings corresponding to the triangulation.

There are more general notions of “triangulation” which may be extended to

give additional bases. Indeed, the ordering of tensor components is not strictly

necessary, and central functions may also be defined for alternate orderings. The

main point is that the selection of a particular trivalent graph with appropriate

matrix markings indicates a choice of a particular central function basis.

As a concrete example, the central functions induced by triangulations of the

three-holed sphere are�x2 x1

x1x2

↔� and �x2 x1

x1x2

↔� .

For the one-holed torus, which has the same fundamental group, the central

functions are�x1

x1

x2

x2

↔� and �x1

x1

x2

x2

↔� .

Since the fundamental groups are the same, all four function types provide bases

for each surface type. The more general notion of triangulation allows for this

expanded structure.

Transformations between central function bases are given by recoupling coef-

ficients, which are the generalizations of 6j-symbols given by the general change-

of-basis formula

λ2
λ1h λ3

λ4

(µ1) =
∑
(µ2)

[
λ1 λ2 (µ2)

λ3 λ4 (µ1)

] λ2
λ1i λ3

λ4
(µ2) .
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The parentheses here are meant to indicate that both the diagrams and the

summation must take into account the particular intertwiners chosen for each

vertex. If the recoupling coefficients for a given group G are known, then a

formula for one central function gives a formula for all central functions.

The computation of these central functions is not an easy task, even in the case

G = SL(2,C), where the diagrammatic theory is well-known. The main ingredient

required in the computation is a formula for a general injection Vα ↪→ Vλ1 ⊗
Vλ2 . If the computation is approached diagrammatically, then a diagrammatic

depiction of all irreducible representations is also required. Chapter 7 describes

the diagrammatics for G = SL(3,C).

In the next chapter, we will consider the case G = SL(2,C) in detail. The

corresponding central functions are chosen to be diagrams of the formj ,

where the polygons represent matrices in SL(2,C).
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Chapter 6 Central Functions for G = SL(2,C)

In the previous chapter, it was shown that labelled diagrams of the formj
comprise a basis for the central functions of a surface Σ with boundary. Here,

polygons are used to represent elements of G. This chapter describes some of

these functions explicitly in the case G = SL(2,C). Properties of the rank one

case are described in the first section. The remainder of the chapter concerns the

rank two case, for which the functions have the form

χa,b,c(x1,x2) =�ba
c

.

The author learned of the diagrammatic description of these functions from notes

of Reshetikhin [Res], which were also the starting point for the proofs of Theorems

6.6 and 6.14. Most of the results in this chapter are also contained in [LP].

6.1 Rank One SL(2,C) Central Functions

The algebraic construction of central functions in the rank one case is given

directly by the isomorphisms

C[X] ∼= C[G]G ∼=
⊕
n≥0

(V ∗
n ⊗ Vn)G ∼=

⊕
n≥0

Cχn,
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where χn ∈ End(Vn)G is a multiple of the identity on Vn. Therefore, the cen-

tral functions are parametrized by the finite-dimensional irreducible SL(2,C)-

representations. The function χn corresponds to an invariant function in C[G]G

by

χn =
n∑

i=0

ni(ni)
T 7−→

n∑
i=0

(
n
i

)
n∗i ⊗ ni

Υ7−→
n∑

i=0

(
n
i

)
n∗i (x · ni) = � n

.

We will freely identify χn with its image in C[G]G.

For example, the trivial representation V0 gives χ0 = 1 = � 0

. The standard

representation V1 has diagonal matrix coefficients x11 and x22, hence

χ1 = � 1

= S = x11 + x22 = tr(x).

The remaining functions may be computed directly, or by using the following

product formula:

Theorem 6.1 (Rank One SL(2,C) Central Function Product Formula).

χaχb =
∑

c∈da,bc
χc (6.1)

Proof. Recall the fusion and bubble identities in Propositions 3.25 and 3.26. If

the matrix x is represented by L , then:

χaχb = 
a b =
∑

c∈da,bc

(
∆(c)

Θ(a, b, c)

)�a c
b

=
∑

c∈da,bc

(
∆(c)

Θ(a, b, c)

)�a c
b

=
∑

c∈da,bc

(
∆(c)

Θ(a, b, c)

)c b a

=
∑

c∈da,bc

(
∆(c)Θ(a, b, c)

Θ(a, b, c)∆(c)

) � c

=
∑

c∈da,bc
� c

=
∑

c∈da,bc
χc.

There is also a direct algebraic proof using characters of the representations.

From the Clebsch-Gordan decomposition,

(Va ⊗ Vb)
∗ ⊗ (Va ⊗ Vb) ∼=

⊕

c,d∈da,bc
V ∗

c ⊗ Vd.
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Hence

End(Va ⊗ Vb)
G ∼=

⊕

c∈da,bc
End(Vc)

G

and the characters satisfy

χaχb = χ
(Va⊗Vb) = χ⊕cVc =

∑

c∈da,bc
χc.

Corollary 6.2. As functions

χn = tr(x)χn−1 − χn−2. (6.2)

Proof. The product formula (6.1) gives

χnχ1 = χn+1χn−1,

from which the recurrence relation follows since χ1 = tr(x).

This corollary implies that every χn is a polynomial in tr(x). Letting x =

tr(x), the rank one central functions can be thought of as χn(x) ∈ C[x].

Closed Formula for Rank One Central Functions

Given the above lemma, it is a straightforward task to find a closed formula for

χn(x). The following lemma contains the necessary combinatorial result.

Lemma 6.3. Suppose there are n − 1 arcs connecting the points {0, 1, 2, . . . , n}
with each point i connected to the two points i± 2 as in the following picture:

�
0 1 2 3 ··· ··· n−2 n−1 n

.

Then, there are
(

n−r
r

)
ways to select r non-intersecting arcs.
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Proof. The proof is by induction on n. In the case n = 1, there are no arcs, and

just one way to make a selection. As expected,
(
1−0
0

)
= 1. In the case n = 2, there

is just one arc, and one way to make the selection. The base case is completed

by noting that
(
2−0
0

)
= 1 and

(
2−1
1

)
=

(
1
1

)
= 1.

By way of induction, assume that there are
(

k−r
r

)
choices of r arcs for any

k < n. Now, consider the case for {0, 1, . . . , n} and a choice of r out of n − 1

arcs. If a selection contains the first arc, it must not contain the second, and

therefore must contain r − 1 out of the last n − 2. Hence, by induction, there
(

n−2−(r−1)
r−1

)
=

(
n−1−r

r−1

)
such selections. Otherwise, if the first arc is not included,

there are
(

n−1−r
r

)
choices. Since any choice of arcs must fall into one of these two

disjoint categories, there are

(
n− 1− r

r

)
+

(
n− 1− r

r − 1

)
=

(
n− r

r

)

choices all together. This last identity is the basic sum in Pascal’s triangle.

This relation implies:

Lemma 6.4. The polynomial χn(x) is

χn(x) =

bn
2
c∑

r=0

(−1)r

(
n− r

r

)
xn−2r.

Proof. Suppose χn(x) is computed by repeated application of the recurrence (6.2).

If we define χ−1(x) ≡ 0, then this process only ends when χ0(x) = 1 is reached.

Each term in the final result comes from a unique path from 0 to n in the following

directed graph: �
0 1 2 3 ··· ··· n−2 n−1 n

.

Each curved arc contributes (−1) and each straight segment x to the final term.

A path with r curved arcs must have n−2r straight segments, so it will contribute
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(−1)rxn−2r to the final sum. By the above lemma, the total contribution of the

xn−2r term will therefore be (−1)r
(

n−r
r

)
xn−2r. The limits follow from the fact

that paths must have between 0 and bn
2
c curved arcs.

The coefficients of these formulae for 0 ≤ i ≤ n can be thought of as the

coefficients for the change-of-basis matrix between the bases {1, x, x2, . . . , xn}
and {χ0, χ1, . . . , χn}. The inverse formulae, which expresses xn in terms of the

central function basis, is given next.

Proposition 6.5. The term xn may be written in terms of χn−2r(x):

xn =

bn
2
c∑

r=0

[(
n
r

)− (
n

r−1

)]
χn−2r(x),

where it is assumed that
(

n
r

)
= 0 for r ≤ 0.

Proof. Use induction. For the base cases n = 0, 1, the only term is r = 0 since

bn
2
c = 0, and the formula reduces to:

[(
0
0

)− (
0
−1

)]
χ0(x) = (1− 0)χ0(x) = 1 = x0. X

[(
1
0

)− (
1
−1

)]
χ1(x) = (1− 0)χ1(x) = x = x1. X.

Assume by induction that the proposition holds for xn. Then the formula
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xχn = χn+1 + χn−1 gives:

xn+1 = x(xn) =

bn
2
c∑

r=0

[(
n
r

)− (
n

r−1

)]
xχn−2r

=

bn
2
c∑

r=0

[(
n
r

)− (
n

r−1

)]
(χn+1−2r + χn−1−2r)

=

bn
2
c∑

r=0

[(
n
r

)− (
n

r−1

)]
χn+1−2r +

bn
2
c+1∑

r=1

[(
n

r−1

)− (
n

r−2

)]
χn+1−2r

=
(

n
0

)
χn+1 +

[(
n
bn
2
c
)− (

n
bn
2
c−1

)]
χn−1−2bn

2
c +

bn
2
c∑

r=1

[(
n
r

)− (
n

r−2

)]
χn+1−2r

=




bn
2
c∑

r=0

[(
n+1

r

)− (
n+1
r−1

)]
χn+1−2r


 +

[(
n
bn
2
c
)− (

n
bn
2
c−1

)]
χn−1−2bn

2
c.

This last step uses the fact that

(
n+1

r

)− (
n+1
r−1

)
=

[(
n

r−1

)
+

(
n
r

)]− [(
n

r−2

)
+

(
n

r−1

)]
=

(
n
r

)− (
n

r−2

)
.

Finally, notice that if n is even the last term vanishes since χn−1−2bn
2
c = χ−1,

and the upper index does not need to change since bn
2
c = bn+1

2
c. If n is odd, then

χn−1−2bn
2
c = χn+1−2bn+1

2
c and the binomials may be altered:

(
n
bn
2
c
)− (

n
bn
2
c−1

)
=

(
n

n
2
− 1

2

)− (
n

n
2
− 3

2

)
=

(
n

n
2
+ 1

2

)− (
n

n
2
− 3

2

)
=

(
n+1
bn+1

2
c
)− (

n+1
bn+1

2
c−1

)
.

Here is a list of the first several χn:

{1, x, x2 − 1, x3 − 2x, x4 − 3x2 + 1, x5 − 4x3 + 3x, x6 − 5x4 + 6x2 − 1}.

These functions satisfy some other interesting properties. For instance,

χn(i) = inFn,

where Fn is the nth Fibonacci number. For this reason, they are sometimes called

Fibonacci polynomials. Benjamin and Quinn give a number of combinatorial

results related to these polynomials in [BQ].
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The rank one central functions may also be expressed as functions of eigenval-

ues, since χn is determined by its values on normal forms

[
λ ∗
0 λ−1

]
∈ SL(2,C).

Using this fact, one can show that

χn(λ + λ−1) = λn + λn−2 + · · ·+ λ2−n + λ−n =
λn+1 − λ−n−1

λ− λ−1
= [n + 1]λ,

where [n + 1]λ is the quantized integer for q = λ.

The following table gives the first several rank one SL(2,C) central functions:

Function Expansion for x = tr(x)

χ0 1

χ1 x

χ2 x2 − 1

χ3 x3 − 2x

χ4 x4 − 3x2 + 1

χ5 x5 − 4x3 + 3x

Table 6.1: Rank One SL(2,C) Central Functions.

6.2 Rank Two SL(2,C) Central Functions

In the rank two case, central functions are computed via

χa,b,c(x1,x2) =�ba
c

=

a� b

c ,

where L and M denote the matrices x1 and x2, respectively.
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For example, if b = 0, then admissibility demands that a = c, and the central

function is

χa,0,a(x1,x2) =�0a
a

= � a

= χa(x1).

Likewise, if � represents x−1
2 , then

χ0,b,b(x1,x2) = � b

= χb(x2);

χc,0,c(x1,x2) = � c

= 	 c

= χc(x1x
−1
2 ).

As special cases, the first few central functions are χ0,0,0 = 1 and

χ1,0,1 = tr(x1) ≡ x; χ0,1,1 = tr(x2) ≡ y; χ1,1,0 = tr(x1x
−1
2 ) ≡ z.

We will use x, y, z throughout this chapter to denote these traces.

Algebraic Construction

Without the diagrams, such functions can be calculated via the isomorphism

C[G×G]G ∼=
∑

a,b∈N
c∈da,bc

Cχa,b,c,

where χa,b,c corresponds to the image of

c∑

k=0

ck(ck)
T 7→

c∑

k=0

(
c
k

)
c∗k ⊗ ck

under the injection

V ∗
c ⊗ Vc ↪→ V ∗

a ⊗ V ∗
b ⊗ Va ⊗ Vb.

determined by the Clebsch-Gordon injection ι : Vc ↪→ Va⊗Vb. We freely use χa,b,c

to denote its image in C[G×G]G.

An explicit formula for ι provides a means to compute χa,b,c directly. Recall

the map � : V0 ↪→ V1 ⊗ V1 given by

c0 7→ a0 ⊗ b1 − a1 ⊗ b0.

74



This generalizes to the following injection V0 ↪→ Va ⊗ Va:a a : c0 7−→
a∑

m=0

(−1)m
(

a
m

)
aa−m ⊗ bm. (6.3)

As an example of this equation, χ1,1,0 is computed directly:

χ1,1,0 7→ c∗0 ⊗ c0

7→ (a∗0 ⊗ b∗1 − a∗1 ⊗ b∗0)⊗ (a0 ⊗ b1 − a1 ⊗ b0)

7→ (a∗0 ⊗ a0)⊗ (b∗1 ⊗ b1)− (a∗1 ⊗ a0)⊗ (b∗0 ⊗ b1)

− (a∗0 ⊗ a1)⊗ (b∗1 ⊗ b0) + (a∗1 ⊗ a1)⊗ (b∗0 ⊗ b0)

7→ x1
11 ⊗ x2

22 − x1
12 ⊗ x2

21 − x1
21 ⊗ x2

12 + x1
22 ⊗ x2

11

7→ (x1
11x

2
22 + x1

22x
2
11)− (x1

12x
2
21 + x1

21x
2
12) = tr(x1x

−1
2 ) = z.

The representation Vc is identified with a subset of V ⊗c via the equivariant maps

Vc

Sym

%%
V ⊗c

Proj

ee

where Proj ◦ Sym = id. Thus, when c = a + b, ι is given by the commutative

diagram

V ⊗c

©
V ⊗a ⊗ V ⊗b

Proj⊗Proj

²²
Vc ι

//

Sym

OO

Va ⊗ Vb.

In particular,
(

c
k

)
ck

ι7−→
∑

0≤i≤a
0≤j≤b
i+j=k

(
a
i

)
ai ⊗

(
b
j

)
bj. (6.4)

The general form of ι is determined by combining (6.3) and (6.4) in the following

diagram:

Vc
ι //

ι

²²
©

Vβ ⊗ Vα

id⊗ a γ⊗id

²²
Va ⊗ Vb Vβ ⊗ Vγ ⊗ Vγ ⊗ Vα

oo
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It follows that the mapping ι : Vc → Va ⊗ Vb is explicitly given by:

(
c
k

)
ck 7−→

∑

0≤i≤β
0≤j≤α
0≤m≤γ
i+j=k

(
β
i

)
ai ⊗

[
(−1)m

(
γ
m

)
aγ−m ⊗ bm

]⊗ (
α
j

)
bj

7−→
∑

0≤i≤β
0≤j≤α
0≤m≤γ
i+j=k

(−1)m
(

β
i

)(
α
j

)(
γ
m

)
ai+γ−m ⊗ bj+m.

Using this formula, a general central function is computed as the trace of some

transformation from Vc to Vc. To obtain this transformation, inject both ck and

c∗k using ι. Let x1 act on the resulting “Va” terms, and x2 on the resulting “Vb”

terms. Pair the two Va terms together and the two Vb terms together to obtain

the desired transformation.

In practice, it will be much easier to compute the central functions diagram-

matically. There is no need in the diagrams to keep track of the binomial factors

or the difference between the Clebsch-Gordon injection and projection.

6.3 Symmetries for Rank Two

The next result is not clear from the algebraic definition of spin networks, but

essentially trivial in diagram form. In the theorem, we will use σ(♦1,♦2,♦3)

to denote the ordered triple (♦σ(1),♦σ(2),♦σ(3)) obtained by applying a given

permutation σ ∈ Σ3 to the triple (♦1,♦2,♦3).

Theorem 6.6 (Symmetry of Central Functions). Suppose a central function is

expressed as a polynomial p in the variables x = tr(x1), y = tr(x2), and z =

tr(x1x
−1
2 ), so that pa,b,c(x, y, z) = χa,b,c(x1,x2) for some admissible triple {a, b, c}.
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These polynomials are symmetric with respect to (x, y, z) in the following sense:

pσ(a,b,c)(x, y, z) = pa,b,c(σ
−1(y, x, z)).

Proof. Define the following function G×G×G → C:

χ
α,β,γ( L , M , N ) =�

α︷︸︸︷ β︷︸︸︷ γ︷︸︸︷
,

where the symmetrizer on the right is assumed to ‘wrap around’ to the one on

the left (imagine this diagram being drawn on a cylinder). By construction this

function is symmetric, in the sense that:

χ
σ(α,β,γ)

(
σ

( L , M , N )) = χ
α,β,γ

( L , M , N ) .

For x1 = L , x−1
1 = O , x2 = M , x−1

2 = � , a central function χa,b,c(x1,x2) may

be drawn as:

�ba
c

=�
a−b+c

2︷︸︸︷
a+b−c

2︷︸︸︷
−a+b+c

2︷︸︸︷
=�

β︷︸︸︷ γ︷︸︸︷ α︷︸︸︷

,

with the symmetrizers in the last two diagrams assumed to wrap around as before.

Thus, pa,b,c(x, y, z) = χ
α,β,γ(tr(x2), tr(x

−1
1 ), tr(x1x

−1
2 )) and so

pσ(a,b,c)(x, y, z) = χ
σ(α,β,γ)(y, x, z) = χ

α,β,γ(σ
−1(y, x, z)) = pa,b,c(σ

−1(y, x, z)).

This symmetry was in some sense expected, given the initial definition of

central functions as the basis for some space of homomorphisms from a surface

Σ to G. In the rank two case, one surface under consideration is the three-holed

sphere. If this is considered as the regular sphere with three equally spaced holes

on a diameter, then the Z3 symmetry on the surface is clear. It is this symmetry
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that carries over to the central functions. This symmetry is also one reason why

we prefer this basis of central functions to the alternate choice

{� ba c

}

c∈da,ac∩db,bc
.

The following table of central functions with parameters 1, 2, and 3 demonstrates

how the symmetry of Theorem 6.6 works:

χ1,2,3 = xy2 − 2
3
(yz + x) χ2,3,1 = yz2 − 2

3
(xz + y) χ3,1,2 = x2z − 2

3
(xy + z)

χ3,2,1 = xz2 − 2
3
(yz + x) χ1,3,2 = y2z − 2

3
(xy + z) χ2,1,3 = x2y − 2

3
(xz + y)

Table 6.2: Example of Rank Two SL(2,C) Central Function Symmetry.

6.4 A Recurrence Relation for Rank Two

This section uses the explicit computation of four 6j-symbols to give a recurrence

relation for rank two central functions, similar to (6.2) for the rank one case.

Define the rank of a central function to be:

δ = rank(χa,b,c) = 1
2
(a + b + c).

We will obtain a recurrence relation for an arbitrary central function χa,b,c by

manipulating diagrams to express the product tr(x1) · χa,b,c(x1,x2) as a sum of

central functions. This formula can be rearranged to write χa,b,c as a linear com-

bination of central functions with lower rank. There are three main ingredients

to the diagram manipulations: the bubble and fusion identities from Section 3.7,

and the two recoupling formulae in the following lemma.
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Lemma 6.7. For i = 1
2
(a− b + c + 1) and appropriate triples admissible,

1

ce a

b

c−1
=

1

cg a

b
a+1 −(−1)i

(
a+b−c+1
2(a+1)

)1

cg a

b
a−1 ; (6.5)

1

ce a

b

c+1
=(−1)i

(
−a+b+c+1

2(c+1)

)1

cg a

b
a+1 +

(
(a+b+c+3)(a−b+c+1)

4(a+1)(c+1)

)1

cg a

b
a−1 . (6.6)

Proof. Given the formulae for the number of strands between two symmetrizers

in Convention 3.19, i is the number of strands connecting - a+1 to - c in
1

cg a

b
a+1 =

cda+1

b
. For (6.5), use n = a + 1 and i in recurrence relation (3.9) to get:

< a+1
=

i=a

a+1−i
+ (−1)i

(
a + 1− i

a + 1

)
i>a

a+1−i
.

Compose this equation with
c�b

i︷︸︸︷ a+1−i︷︸︸︷
to get, via the stacking relation:

1

cg a

b
a+1 =

cda+1

b
=

1

ce a

b

c−1
+ (−1)i

(
a + 1− i

a + 1

)
1

cg a

b
a−1 ,

which is the desired result.

To prove (6.6), switch a and c in the previous relation and apply a “π
4
-

reflection” about the 1 ↔ b axis as in Proposition 3.22. Then i is unchanged

and the equation becomes

1

ce a

b

c+1
=

1

cg a

b
a−1 + (−1)i

(
c + 1− i

c + 1

)
1

ce a

b

c−1
.

Rearrange this equation, and use (6.5) in its exact form to get:

1

ce a

b

c+1
=

1

cg a

b
a−1 + (−1)i

(
c+1−i
c+1

) (
1

cg a

b
a+1 − (−1)i

(
a+1−i
a+1

) 1

cg a

b
a−1

)

= (−1)i
(

c+1−i
c+1

) 1

cg a

b
a+1 +

(
1− (a+1−i)(c+1−i)

(a+1)(c+1)

) 1

cg a

b
a−1

= (−1)i
(
−a+b+c+1

2(c+1)

) 1

cg a

b
a+1 +

(
(a+b+c+3)(a−b+c+1)

4(a+1)(c+1)

) 1

cg a

b
a−1 .
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For the last step, since a+1− i = 1
2
(a+b−c+1) and c+1− i = 1

2
(−a+b+c+1),

the numerator of the last term is

4((a + 1)(c + 1)− (a + 1− i)(c + 1− i))

= 4(a + 1)(c + 1)− ((b + 1) + (c− a))((b + 1)− (c− a))

= 4(a + 1)(c + 1)− (b + 1)2 + (a− c)2

= ((a + 1)− (c + 1))2 + 4(a + 1)(c + 1)− (b + 1)2

= ((a + 1) + (c + 1))2 − (b + 1)2

= (a + 1 + c + 1 + b + 1)(a + 1 + c + 1− b− 1)

= (a + b + c + 3)(a− b + c + 1).

Note that these are four coefficients in the general change-of-basis formula

a

de b

c

e
=

∑

f∈da,bc∩dc,dc

[
a b f
c d e

]′ ·
a

dg b

c
f .

Up to sign, these are the same as the regular 6j-symbols introduced in Definition

3.27. By Corollary 3.23,

[
a b f
c d e

]′
= (−1)

1
2
(b+d−e−f)

[
a b f
c d e

]
.

Therefore the above lemma gives formulae for the following 6j-symbols:

Corollary 6.8.

[
1 a a+1
b c+1 c

]
= 1;

[
1 a a−1
b c+1 c

]
= (−1)

1
2
(a−b+c+2) (a+b−c)

2(a+1)
;

[
1 a a+1
b c−1 c

]
= (−1)

1
2
(a−b+c+2) (−a+b+c)

2c
;

[
1 a a−1
b c−1 c

]
= (a+b+c+2)(a−b+c)

4(a+1)c
.

These coefficients are necessary in the proof of the following theorem:
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Theorem 6.9. When a, c ≥ 0, the product x · χa,b,c(x, y, z) is expressed in terms

of central functions as

x · χa,b,c = χa+1,b,c+1 + (a+b−c)2

4a(a+1)
χa−1,b,c+1

+ (−a+b+c)2

4c(c+1)
χa+1,b,c−1 + (a+b+c+2)2(a−b+c)2

16a(a+1)c(c+1)
χa−1,b,c−1. (6.7)

The equation holds for a = 0 or c = 0, provided the terms with a or c in the

denominator are excluded.

Proof. Diagrammatically, x · χa,b,c(x, y, z) is represented by

a

�
b

1
c ,

since x = tr(x1) = S and multiplication is automatic on disjoint diagrams.

Manipulate the diagram with the following three steps to obtain a sum over χ’s.

First, apply the fusion identity to connect the lone L strand to the χa,b,c:

a

�
b

1
c =

a

�
b

1

c+1
c

c +
c

c + 1

a

�
b

1

c−1
c

c , (6.8)

where the coefficients are evaluated from

∆(c± 1)

θ(1, c, c± 1)
=

c± 1 + 1

c + 3
2
± 1

2

.

Second, use the 6j-symbols computed in Corollary 6.8 above to move the _ a

strand from one side of the diagram to the other:

a

�
b

1

c+1
c

c =

a+1� b

c+1 + (a+b−c)2

4(a+1)2

a

�
b

1

c+1
a−1

a−1 (6.9)

a

�
b

1

c−1
c

c = (−a+b+c)2

4c2

a+1� b

c−1 + (a+b+c+2)2(a−b+c)2

16(a+1)2c2

a

�
b

1

c−1
a−1

a−1 . (6.10)
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In each case, there are two recouplings: one for the top piece h and one

for the corresponding bottom piece. As a consequence of Schur’s Lemma, or the

bubble identity, both recouplings must introduce the same coefficient a± 1.

Finally, use the bubble identity to collapse the final pieces:
a

�
b

1

c±1
a+1

a+1 =
(

Θ(1,a,a+1)
∆(a+1)

) a+1� b

c±1 = χa+1,b,c±1;

a

�
b

1

c±1
a−1

a−1 =
(

Θ(1,a,a−1)
∆(a−1)

) a−1� b

c±1 =
(

a+1
a

)
χa−1,b,c±1.

Multiply the coefficients obtained in the last few equations to obtain (6.7).

Now consider the special cases. If a = 0, then b = c and (−a+b+c)2

4c(c+1)
= c

c+1
, so

the desired formula is exactly (6.8). Similarly, for c = 0, the desired formula is

(6.9).

Despite the fact that the diagrams used are not topologically invariant, this re-

sult is exactly that obtained by ignoring the signs introduced by kinks completely.

In following the calculation, this is because all signs are eventually squared. As

a second explanation independent of the proof, the final result is not influenced

because all terms in the formula have the same number of ciliations modulo 4.

A consequence of this multiplication formula is

Corollary 6.10 (Central Function Recurrence). When a, c > 0, an arbitrary

central function χa,b,c may be expressed

χa,b,c = x · χa−1,b,c−1 − (a+b−c)2

4a(a−1)
χa−2,b,c

− (−a+b+c)2

4c(c−1)
χa,b,c−2 − (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2. (6.11)

The relation still holds for a = 1 or c = 1, provided the terms with a− 1 or c− 1

in the denominator are excluded.
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Proof. Rearrange and reindex the terms in (6.7) by replacing a with a − 1 and

c with c − 1. The requirement a, c ≥ 0 becomes a, c > 0, which is equivalent to

requiring {a − 1, b, c − 1} to be admissible. The special cases a = 0 or c = 0

become a = 1 or c = 1.

Note that formulae for multiplication by y and z may be obtained by applying

the symmetry relation of Theorem 6.6. This fact will be indispensable in the proof

of Theorem 8.1.

6.5 Graded Structure for Rank Two

This section concerns the types of terms which occur in the central function basis.

The majority of the content in this section was suggested by Carlos Florentino

after reading an early draft of [LP].

Recall the α, β, γ, δ notation used earlier, and the notation

χ
α,β,γ(y, x, z) = χa,b,c(x1,x2)

introduced in the proof of Theorem 6.6. In these terms, recurrence (6.11) is

χ
α,β,γ = χ

0,1,0
χ

α,β−1,γ − γ2

a(a−1)
χ

α+1,β−1,γ−1 − α2

c(c−1)
χ

α−1,β−1,γ+1 − δ2(β−2)2

a(a−1)c(c−1)
χ

α,β−2,γ.

Note that the symmetry theorem guarantees the interchangeability of (a, α) and

(c, γ) here.

Proposition 6.11. The polynomial χa,b,c = χ
α,β,γ is monic, with highest degree

monomial xβyαzγ.

Proof. Induct on the rank δ = α + β + γ of central functions. The statement is

clearly true for the base cases, since χ
0,0,0 = 1, χ0,1,0 = x, χ1,0,0 = y, and χ

0,0,1 = z.
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The recurrence relation implies that the highest order term of χ
α,β,γ is x times the

highest order term of χ
α,β−1,γ, hence x(xβ−1yαzγ) = xβyαzγ. This fact, together

with the appropriate symmetric facts for y and z, completes the induction.

The basis also preserves a certain grading on C[x, y, z]. To define this grading,

partition the standard basis B = {xaybzc}a,b,c∈N of this space as follows. Let

f : B → Z2 × Z2 be defined by:

f(xaybzc) = (a + c, b + c) mod 2.

Under multiplication, B is a semigroup and f is a homomorphism since

f(xaybzc) + f(xa′yb′zc′) ≡2 (a + c, b + c) + (a′ + c′, b′ + c′)

≡2 (a + a′ + c + c′, b + b′ + c + c′)

≡2 f(xa+a′yb+b′zc+c′).

Therefore, f defines a grading on this basis.

Proposition 6.12. The basis {χa,b,c} respects the Z2×Z2 grading f on C[x, y, z]

defined above, in the sense that

χa,b,c ∈ Span(f−1((a, b) mod 2)).

Proof. This is another proof by induction on the rank. Clearly, χ0,0,0 = 1 ∈
f−1(0, 0), and likewise χ1,0,1 = x ∈ f−1(1, 0), χ0,1,1 = y ∈ f−1(0, 1), and χ1,1,0 =

z ∈ f−1(1, 1). In the induction step, note that

(a, b) ≡2 (1, 0) + (a− 1, b) ≡2 (a− 2, b),

so all terms on the righthand side of the recurrence relation in Corollary 6.10

have the same grading. Thus χa,b,c ∈ f−1(a, b).
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This proposition means that central functions can be divided into four types

corresponding to the decomposition

{xaybzc}a,b,c∈N = {1, x, y, z} × {(x2)i(y2)j(z2)k}i,j,k∈N.

The four types correspond to the four choices in the first set {1, x, y, z}.

6.6 Multiplicative Structure for Rank Two

General 6j-symbols and recoupling formulae may be used to write down a formula

for the product of any two central functions. The following lemma encodes the

most tedious diagram manipulations:

Lemma 6.13.

a

a�
b′

b′

c c′

a′

a′

b

b

=
∑

ji,ki,li,m

Cabc,a′b′c′
j1k1l1,j2k2l2,m

a

a 
b′

b′

m

k1

k2

l1

l2

a′

a′

b

b

,

where the coefficients are given by the formula

Cabca′b′c′
j1k1l1,j2k2l2,m = Θ(c,c′,m)

∆(m)

∏
i=1,2

∆(ji)
Θ(a′,b,ji)

· [ a a′ ki
ji c b

][
b′ b li
ji c′ a′

][
ki li m
c′ c ji

]
.

The following 15 triples are assumed to be admissible:

{a′, b, ji}, {c, ji, ki}, {c′, ji, li}, {b, ji, li}, {ki, li,m}, {a, a′, ki}, {b, b′, li}, {c, c′,m}.

Proof. It suffices to demonstrate the diagram manipulation for the top half of the

diagram, which by symmetry must be the same for the bottom half. Combining

these two manipulations and applying a bubble identity will give the desired

result. Signs will be watched closely throughout, but the admissible triples will
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be enumerated only after the manipulation.

a� b′

c c′

a′ b

=
∑

j

(−1)
1
2
(a′−b+j) ∆(j)

Θ(a′,b,j)

a� b′

c c′

a′ b

b

a′j

=
∑

j,k

(−1)
1
2
(a′−b+j)+j ∆(j)

Θ(a′,b,j)

[
a a′ k
j c b

]a� b′

c c′

a′ b

k
a′j

=
∑

j,k,l

(−1)
1
2
(a′−b−j) ∆(j)

Θ(a′,b,j)

[
a a′ k
j c b

][
b′ b l
j c′ a′

]a� b′

c c′

a′ b

k l

j

=
∑

j,k,l

(−1)
1
2
(a′−b−j)+ 1

2
(j+l−c′) ∆(j)

Θ(a′,b,j)

[
a a′ k
j c b

][
b′ b l
j c′ a′

]a� b′

c c′

a′ b

k lj

=
∑

j,k,l,m

(−1)
1
2 (a′−b+c−c′−j−m)+l ∆(j)

Θ(a′,b,j)

[
a a′ k
j c b

][
b′ b l
j c′ a′

][
k l m
c′ c j

]a� b′

c c′

a′ b

k l
m

.

The (−1) terms all cancel in the end, a consequence of the fact that the following

triples must be admissible:

{a′, b, j}, {c, j, k}, {c′, j, l}, {b, j, l}, {k, l, m}, {a, a′, k}, {b, b′, l}, {c, c′,m}.

One computes the 13-parameter coefficients Cabc,a′b′c′
j1k1l1,j2k2l2,m by reflecting this result

vertically, taking two sets of indices for the variables j, k, l, m on the two halves,

and noting that the resulting bubble in the middle collapses with a factor of

Θ(c,c′,m)
∆(m)

for m = m1 = m2.

This lemma is used to write down the central function multiplication table.

Note the symmetry with respect to k, l, m, which is guaranteed by Theorem 6.6.

Theorem 6.14 (Multiplication of SL(2,C) Rank Two Central Functions). The

product of two central functions χa,b,c and χa′,b′,c′ is

χa,b,cχa′,b′,c′ =
∑

j1,j2,k,l,m

Cj1klmCj2klm
Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m)
χk,l,m,

where the sum is taken over admissible triples

86



{a, a′, k}, {b, b′, l}, {c, c′,m}, {a′, b, ji}, {c, ji, k}, {c′, ji, l}, {b, ji, l}, {k, l,m}

and the coefficients are Cjiklm = ∆(ji)
Θ(a′,b,ji)

[
a a′ k
ji c b

][
b′ b l
ji c′ a′

][
k l m
c′ c ji

]
.

Proof. The previous lemma and the bubble identity imply

�
a a′ b b′

c c′ =
∑

ji,ki,li,m

Cabc,a′b′c′
j1k1l1,j2k2l2,m�

a a′ b b′

m
k1

k2

l1
l2

=
∑

ji,k,l,m

Cabc,a′b′c′
j1kl,j2kl,m

(
Θ(a, a′, k)Θ(b, b′, l)

∆(k)∆(l)

) k� l

m

=
∑

ji,k,l

Cj1klmCj2klm
Θ(a,a′,k)Θ(b,b′,l)Θ(c,c′,m)

∆(k)∆(l)∆(m)

k� l

m .

6.7 Direct Formula for Rank Two

The computation of a direct formula for central functions is rather difficult. One

step in this process is the expansion of an arbitrary polynomial in terms of central

functions, thus computing the coefficients in

xAyBzC =
∑

k,l,m

Ck,l,mχk,l,m,

This will be done by first expressing xA, yB, and zC in terms of χa,0,a, χ0,b,b, and

χc,c,0, respectively, and then computing the product χa,0,aχ0,b,bχc,c,0.

Proposition 6.5 states that

xA =

bA
2
c∑

r=0

[(
A
r

)− (
A

r−1

)]
χA−2r(x).

Therefore χA−2r(x) = χA−2r,0,A−2r. Since the formulae for yB and zC follow by

symmetry, the first step is complete.

For the second step, recall the triple bubble identity (Proposition 3.30):

w lk

m

a

c b =
Tet(a, b, c, k, l, m)

Θ(k, l, m)

kc l

m
=

Θ(a, c, k)

∆(k)

[
a c k

l m b

]
kc l

m
.
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All that remains is to put these ingredients together to obtain the final formula.

We will use the shorthand notation
((

A
r

))
to indicate the difference

(
A
r

)− (
A

r−1

)
.

Theorem 6.15. The term xAyBzC written in terms of central functions is:

xAyBzC =

bA
2
c,bB

2
c,bC

2
c∑

r,s,t=0
k,l,m

((
A
r

))((
B
s

))((
C
t

)) ∆(l)∆(m)Θ(A−2r,C−2t,k)
∆(k)Θ(A−2r,B−2s,m)Θ(B−2s,C−2t,l)

[
A−2r C−2t k

l m B−2s

]2χk,l,m.

Proof. The product χa,0,aχ0,b,bχc,c,0 is computed by first fusing each pair of strands

together and then applying the “triple bubble” identity in the previous lemma

twice.

!a c b
=

∑

k,l,m

∆(k)∆(l)∆(m)
Θ(a,c,k)Θ(b,c,l)Θ(a,b,m)"k l m

a

c b

a c b

=
∑

k,l,m

∆(k)∆(l)∆(m)
Θ(a,c,k)Θ(b,c,l)Θ(a,b,m)

Tet(a, b, c, k, l, m)2�lk
m

=
∑

k,l,m

Θ(a,c,k)∆(l)∆(m)
∆(k)Θ(b,c,l)Θ(a,b,m)

[
a c k
l m b

]2χk,l,m.

Combine this with the expansion of the xA, yB, and zC terms to complete the

formula.

It is a tedious but straightforward calculation to check that this is the same

result obtained using the multiplication formula from Theorem 6.14. This formula

may be inverted to obtain a direct formula for an arbitrary central function. The

change-of-basis between central functions and the standard basis for C[x, y, z] is

an (infinite) triangular matrix, so the only remaining step is to apply a formula

for the inverse of a triangular matrix.

The following table lists, in order of increasing δ, several central functions

which were computed with Mathematica using recurrence (6.11). Given the sym-

metry guaranteed by Theorem 6.6, only one function per triple of indices needs

to be listed.
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δ χa,b,c χ
α,β,γ Expansion for x = tr(x1), y = tr(x2), z = tr(x1x

−1
2 )

0 χ0,0,0 χ
0,0,0 1

1 χ1,0,1 χ
0,1,0 x

2 χ2,0,2 χ
0,2,0 x2 − 1

χ1,1,2 χ
1,1,0 xy − 1

2
z

3 χ3,0,3 χ
0,3,0 x3 − 2x

χ2,1,3 χ
1,2,0 x2y − 2

3
(xz + y)

χ2,2,2 χ
1,1,1 xyz − 1

2
(x2 + y2 + z2) + 1

4 χ4,0,4 χ
0,4,0 x4 − 3x2 + 1

χ3,1,4 χ
1,3,0 x3y − 3

4
x2z − 1

2
(3xy − z)

χ2,2,4 χ
2,2,0 x2y2 − xyz + 1

6
z2 − 1

2
(x2 + y2) + 1

3

χ3,2,3 χ
1,2,1 x2yz − 2

3
(xz2 + xy2)− 1

2
x3 − 1

9
(2yz − 13x)

Table 6.3: Rank Two SL(2,C) Central Functions.
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Chapter 7 Central Functions for Other Groups

The well-known Littlewood-Richardson Rule [Ful] describes how one may de-

compose the tensor product of two irreducible representations of SU(n), and is a

necessary ingredient in the computation of arbitrary SL(n,C)-central functions.

This section describes how this rule is represented using spin networks. In di-

mensions 2 and 3, this gives a surprisingly simple description of the rule which

also demonstrates its inherent symmetry. Much of the necessary background for

this chapter is discussed in Chapter 2.

7.1 Diagrams for SU(n) Representations

It is first necessary to describe irreducible SU(n) representations diagrammat-

ically. Beyond SU(2), these representations are usually described in terms of

Young projectors, which are compositions of symmetrizers and anti-symmetrizers.

The exposition that follows parallels [St]. Necessary background on Young pro-

jectors may be found in [FH, Ful].

The symmetric group Σn is easily represented using diagrams. For example,

the permutation (1 2 3) in cycle notation, or
[

2 3 1
1 2 3

]
in traditional notation, could

just as easily be represented by the diagram

� .

With this notation, the composition of permutations corresponds to the compo-
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sition of two diagrams, so that

(1 2 3) ◦ (1 2 3) = � ◦ � = � = � = (1 3 2).

Likewise, sums of permutations in the group algebra CΣn can be represented

by sums of diagrams. For example, the sum of all permutations on 3 elements is

a(3) ≡ � + � + � + � + � + � .

The following notation will be used for the symmetrizer and anti-symmetrizer on

Σn: - n ≡
∑
σ∈Σn

σ ≡ a(n); � n ≡
∑
σ∈Σn

sign(σ) · σ ≡ b(1,...,1).

For example,

� = � + � + � + � + � + � ;

� = � + � + � − � − � − � .

In contrast to previous chapters, the factor 1
n!

is not included. This notation also

varies slightly from [St].

Next, Young tableau and projectors are used to describe arbitrary represen-

tations of Σn.

Definition 7.1. Let an arbitrary partition λ = (λ1, . . . , λk) of n ∈ N be given,

with conjugate partition µ = (µ1, . . . , µl). Then the Young diagram of λ is the

diagram consisting of µ1 rows of boxes, with λi boxes in the ith row and µj in

the jth column. A Young tableau is an assignment of {1, 2, . . . , n} to the boxes

in a Young diagram in such a way that the entries in each row and column are

increasing.
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There are two standard numbering schemes for any Young diagram: the stan-

dard row numbering counts left to right, then top to bottom, while the standard

column numbering counts top to bottom, then left to right. For a fixed Young

tableau, define σa ∈ Σn to be the permutation taking the Young tableau to the

standard row numbering, and define σb ∈ Σn to be the permutation taking the

Young tableau to the standard column numbering.

Definition 7.2. The general symmetrizer cλ corresponding to an arbitrary par-

tition λ and Young tableau is given by cλ = aλ · bλ, where aλ is a “product” of

symmetrizers and bλ a “product” of anti-symmetrizers:

aλ = σ−1
a ◦ (- λ1 - λ2 · · · - λk

) ◦ σa;

bλ = σ−1
b ◦ (� µ1 � µ2 · · · � µl

) ◦ σb;

cλ = aλ · bλ = σ−1
a ◦ (- λ1 - λ2 · · ·- λk

) ◦ σaσ
−1
b ◦ (� µ1 � µ2 · · ·� µl

) ◦ σb.

Each strand corresponds to a copy of V , the standard representation. The

order of the strands is given by the Young tableau numbering. Thus, aλ permutes

the boxes labelled {1, . . . , λ1}, those labelled {λ1 + 1, . . . , λ1 + λ2}, and so on.

Definition 7.3. The Young projector Pλ corresponding to a given partition of n

is the sum of cλ over all possible Young tableau.

For example, the Young tableau 1 2
3

contains the standard row numbering.

Therefore, σa = (1), σb = (2 3), and

c12,3 = (1) ◦ . 
 ◦ (1) ◦ (2 3)−1 ◦ � 
 ◦ 
  ◦ (2 3) = � .

Likewise, the diagram for 1 3
2

is c13,2 = � . Together these form the Young
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projector

P(2,1) = � + �
=

( � + � − � − � )
+

( � + � − � − � )

= 2 � −
( � + � )

.

This is a map V ⊗3 → V ⊗3 whose image is isomorphic to the irreducible repre-

sentation V(2,1) of Σ3. The coefficients in this formula could also be read off from

the character table for Σ3:

(1) (12) (123)

(3) 1 1 1

(2,1) 2 0 -1

(1,1,1) 1 -1 1

The coefficients in the equation P(2,1) = 2 � −
( � + � )

are the entries in

the row (2, 1) for the corresponding conjugacy class! This actually works for all

Σn-representations [St].

Since the finite-dimensional irreducible representations of SU(n) are all real-

ized as representations of Σd for some d ∈ N (Chapter 2), the Young projector is

sufficient to describe the representations in diagrammatic form. These diagrams

also satisfy idempotence and orthogonality conditions [St]. However, all that is

needed to proceed is the understanding of how to write down Young symmetrizers

and Young projectors.
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7.2 The Littlewood-Richardson Rule

For reductive groups, every finite-dimensional representation may be decomposed

into irreducibles. Hence, every tensor product may also be decomposed:

Va ⊗ Vb =
⊕

c∈♦[a,b]

Vc,

where ♦[a, b] represents the set of all possible factors of Va ⊗ Vb. The simplest

example is SU(2), for which the irreducibles are the symmetric powers Va =

SymaV and

Va ⊗ Vb = Va+b ⊕ Va+b−2 ⊕ · · · ⊕ V|a−b|.

For SU(n), this decomposition is determined by the following rule [FH, Ful]:

Proposition 7.4 (Littlewood-Richardson Rule). Given representations Vλ and

Vµ of SU(n), there is a one-to-one correspondence between the irreducible factors

of Vλ⊗Vµ and the strict µ-expansions of the partition λ with n rows or less. Each

expansion corresponds to an irreducible component Vν, where ν is the partition

formed from the µ-expansion by removing the columns with n boxes.

A strict µ-expansion for a given µ = (µ1, . . . , µl) is an addition of µ1 boxes

labelled with a 1, µ2 boxes labelled with a 2, and so on to the Young diagram

for the partition λ in such a way that (i) the sequence of numbered boxes in any

column is strictly increasing, hence no two of the same number are in the same

column; (ii) in the sequence formed by reading off the numbered boxes from right

to left along the top row, and then right to left along subsequent rows, one never

has more i boxes than j boxes if i > j.

This is not an easy rule to state, even in low dimensions. Perhaps it would

be better to give an example. For SU(3), a representation Va,b corresponds to the
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Young diagram with a + b boxes in the first row and b boxes in the second row,

that is the partition (a + b, b) of a + 2b. How can one decompose the product

V1,1 ⊗ V1,1? Take λ = µ = (2, 1), so that the strict µ-expansions with 3 or fewer

rows are:

1 1
2

1 1

2

1
1 2

1
1

2

1
2

1
1

1 2
.

Note the three given rules for such expansion: there are no more than 3 rows

in any diagram, no number is repeated in any column, and the 1 boxes are all

‘above’ the 2 boxes. This gives the tensor decomposition (formed by removing

the columns with three boxes):

V1,1 ⊗ V1,1 = V2,2 ⊕ V3,0 ⊕ V0,3 ⊕ V1,1 ⊕ V1,1 ⊕ V0,0.

As this example shows, there may be more than one injection

Va,b ↪→ Vc,d ⊗ Ve,f .

This was not possible for irreducible SU(2) representations.

The remainder of this section describes the Littlewood-Richardson rule in

terms of diagrams for dimensions two and three. The key will be that for every

component c ∈ ♦[a, b], there is up to scalar multiples a unique surjective map

Va ⊗ Vb ³ Vc. Rather than finding all possible values of c, we will find all

possible projections of Va ⊗ Vb onto irreducible components. It turns out that

diagrams work well for representing these projections, and are especially suited

to demonstrating their inherent symmetry. For the most part, each column of a

strict µ-expansion corresponds to a strand of a diagram for the given projection,

and therefore determining the types of possible columns will determine the types

of diagrams.
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7.3 SU(2) Admissibility Condition

In dimension two, the irreducible representations are Va = SymaV for integers

a ≥ 0, where V is the standard representation. These correspond to trivial

partitions (a) and are represented by symmetrizers

P(a) ↔ - a.

Using the Littlewood-Richardson rule, the decomposition of Va ⊗ Vb corre-

sponds to adding b boxes labelled with 1 to a blank boxes . In a strict µ

expansion, three types of columns may occur:

1
1

Thus, if i boxes are added to the first row, there are i 1 columns, b − i
1

columns, and a− b + i columns, giving the representation Va−b+2i. Note that

b− i ≤ a, since there can be no more than a boxes labelled 1 on the second row.

Thus, i can take any value between b (everything added to the first row) and

a − min(a, b) (as much as possible added to the second row), which implies the

usual decomposition Va ⊗ Vb = ⊕c∈da,bcVc.

Diagrammatically, the projection Va ⊗ Vb → Vc is represented by a collection

of edges connecting the symmetrizer - c to a pair of symmetrizers - a - b.

In the strict expansion, there are α = 1
2
(−a+ b+ c) 1 columns, β = 1

2
(a− b+ c)

columns, and γ = 1
2
(a+b−c)

1
columns. Hence, the usual admissibility condition

is the simple fact that there are a nonnegative number of each column type.

Alternately, there is a one-to-one correspondence between columns and con-

necting strands in the diagram

a^c

b

← 1→

↑

1

.
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7.4 SU(3) Admissibility Condition

Represent the irreducible representations Vλ of SU(3) diagrammatically as indi-

cated earlier. Then, the diagram

P(2,1) = � + �
may be viewed as either a surjective map V ⊗3 → V1,1 or as an injective map

V1,1 → V ⊗3. We will denote this projector by a single black bar labelled with two

numbers: - a,b ≡ Pa,b : V ⊗a+2b → V ⊗a+2b.

In a strict µ-expansion for SU(3) representations, there may be several types

of columns. The following proposition gives an algorithm for partitioning these

columns into well-defined sets.

Proposition 7.5. Let a strict µ-expansion of the partition λ be given. Remove

the columns of the resulting diagram in the following order:

1
2

1
2

1

2
1

1
1

.

Thus, all 1
2

columns are removed first, then all 1
2

columns, and so on. The

diagram obtained at each step is a strict expansion, although for different µ and

λ, and the process terminates with an empty diagram. Moreover, only one of the

two column types
1

2
and 1

2
will be used.

Proof. To verify that each step gives a strict expansion, it must be shown that (i)

the numbers in each column are still strictly increasing, and (ii) when sequenced

in the appropriate manner (right to left, top to bottom), there will never be more

2 ’s than 1 ’s.
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For (ii), note that whenever a 2 is removed, it can be regarded as the first

2 in the sequence of numbers. Since it is always removed with a 1 , its removal

does not influence the strictness requirement. Once all 2 ’s are removed, the

condition (ii) is trivially satisfied.

The requirement (i) will be verified for each column type. For 1
2

, note that

any 2 in the second row must have a corresponding 1 in the first row by the

strictness condition. Assume this 1 is the leftmost in the first row, and swap it

with the box in 2 ’s column. Then, remove this entire column. After this step,

the first row will still have all boxes to the left of 1 boxes. The only column

which remains changed is that which received a in place of 1 , hence must

still satisfy (i).

After the removal of all possible 1
2

, the remaining 2 must be in the third

row. By condition (ii), each 2 must have a corresponding 1 in either the first

or second row. Remove box sets 1
2

until no more are available, and then remove

1

2
. During this process:

• There will always be boxes when needed, since each 1 in the second

row is directly below a in the first row.

• If there are no more 1 in the second row, there must be enough in the

first row to remove the rest of the 2 boxes. But then each 2 in the

third row must have two empty boxes above it (otherwise it could not have

been placed in the third row), allowing them to be removed as
1

2
. This

removal process ends only when there are no more 2 .

• At each step, the diagram may be reorganized so that an entire column is
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being removed, or two entire columns in the case of
1

2
. This is only a

problem if a number is inserted in the middle of a row of ’s, and this can

be prevented by choosing the leftmost number in the required row.

When removing 1
2

, if 2 run out before 1 , then the remaining 1 boxes may

occur in any row. If 1 runs out first, then the remaining 1 may occur anywhere

but the second row, so that
1

will never be removed. Therefore, the process will

not remove both
1

2
and

1
.

At this point, all that remains are and 1 boxes, so each column corre-

sponds uniquely to one of those above. Removal in the order above ensures that

the columns are removed one by one.

Stated in other words, this proposition says that every strict µ-expansion can

be written as a sum of sets of boxes of these forms. Here is an example:

1 1 1
1 1 2

2
= 1

2
+ 1

2
+ 1 + 1 +

1
+ + .

The next proposition concerns the uniqueness of this decomposition:

Proposition 7.6. The decomposition of an arbitrary strict expansion into eight

sets of “columns” as indicated above is unique up to the relation

1

2
+

1
∼ 1

2
+ + 1 .

Proof. Relations cannot exist without 2 , since the columns are unique with

respect to and 1 . Moreover, a relation cannot include 1
2

, since these are the

only columns removed with 2 in the second row. Any relation which includes

one of
1

2
and 1

2
must also include the other. Once these are in place, there is

only one way to complete the relation.
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This proposition is sufficient to describe the SU(3) admissibility condition, and

will be used to determine the diagrammatic form of the Littlewood-Richardson

Rule in this case.

In addition to the permutation maps, the SU(3) case requires the following

component maps, which were first described in Chapter 4.

� : V ⊗2 → C with v ⊗ w 7→ v∗w (the inner product);

	 : C→ V ⊗3 with 1 7→ e1 ⊗ e2 ⊗ e3 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2

− e2 ⊗ e1 ⊗ e3 − e1 ⊗ e3 ⊗ e2 − e3 ⊗ e2 ⊗ e1;


 : V ⊗3 → C with u⊗ v ⊗ w 7→ det[u v w];

� : V → V ⊗2 with ei 7→ ei+1 ⊗ ei+2 − ei+2 ⊗ ei+1;

� : V ⊗2 → V with ei ⊗ ei 7→ 0, ei ⊗ ei+1 7→ ei+2, ei+1 ⊗ ei 7→ −ei+2.

In the last two cases, the indices are considered modulo 3. Compositions of these

maps are anti-symmetrizers:

 = � ◦ � = � and I = 	 ◦ 
 = � .

As in the SU(2) case, each of the columns given in Proposition 7.5 corresponds

to a specific way to connect three projectors. A specific projection Vλ ⊗ Vµ →
Vν is represented in trivalent spin network form by

λdν

µ
, with an appropriate

intertwiner labelling the vertex. It is formed using the following connections:

• 1
2

connects 2 strands between Vµ and Vν using � ;

• 1
2

connects 1 strand of Vλ to 2 strands of Vµ using � ;

•
1

2
connects 2 strands of Vλ, 2 strands of Vµ, and a strand of Vν using

� ;
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• 1 connects a stand of Vµ to a strand of Vν using � ;

•
1

connects a strand of Vλ, a strand of Vµ, and two strands of Vν using

� ;

•
1

connects two strands of Vλ with a strand of Vµ using � ;

• connects a strand of Vλ to Vν using � ;

• connects two strands of Vλ to Vν using � .

This depiction forgoes the orientation originally assigned to 3-spin networks.

If this orientation is reintroduced, then two strands in the same column may be

identified with a single down strand

� ↔ � and � ↔ � .

Essentially, this represents an isomorphism from V ∗ to the image of � in V ⊗2.

This adds much more symmetry to the diagrams above, for up to a constant the

following diagrams are correlated:

↔ � ↔ � ; ↔ � ↔ � ;

1 ↔ � ↔ � ; 1
2
↔ � ↔ � ;

1
2
↔ � ↔ � ;

1
↔ � ↔ � ;

1
↔ � ↔ � ;

1

2
↔ � ↔ � .

Given the mutual exclusivity of � and � , all strand types possible for

a single projector can be represented on a single diagram without crossings, if

multiples of the same types are permitted to be placed atop one another:

# or $ .
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An advantage to this oriented approach is that the representations are easier to

read off. For example, if there are four up and three down arrows at the top of

a diagram, then the corresponding representation is V4,3.

Admissibility and Multiplicity for SU(3)

This description of the possible projections Vλ ⊗ Vµ → Vν gives a much clearer

picture than the Littlewood-Richardson Rule as normally stated, especially with

regard to symmetry. It can also be used as a starting point for determining

if ν ∈ ♦[λ, µ], and more generally, how many ways ν can occur as a strict µ-

expansion of λ.

To begin, notice that the following three diagrams all have the same endpoints:

they connect three V1,1’s:

1
2

1
↔ � 1

1
2

↔  1
1

2
↔ " .

Since only the above eight diagrams may be used for a projector, the types of

endpoints (up and down arrows) of Vλ, Vµ, and Vν determine the diagram uniquely

up to interchange of these three diagrams. Since the third case is not allowed

under the algorithm in the previous section, all multiplicities in the Littlewood-

Richardson Rule for SU(3) arise from the interchangeability of the ‘cycles’ �
and ! .

The admissibility condition for SU(3) may now be stated. It is only necessary

to determine whether three irreducible representations can be connected by the

above diagrams, and if they can, how many possible diagrams there are. This

will give both admissibility and multiplicity.

Theorem 7.7 (SU(3) Admissibility Condition). The multiplicity of the projection
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Va1,b1 ⊗ Va2,b2 ³ Vb3,a3 (note the order of a and b on the last piece is switched) is

M = 1 + min{a′i, b′i, γi}3
i=1,

where a′i = ai− 1
6
(|N |+ N), b′i = bi− 1

6
(|N | −N), and γi = a′i+1 + a′i+2− a′i, with

the indices in the last equation considered mod 3.

Proof. This proof amounts to counting the number of possible oriented diagrams

which can be used to connect the three representations. Starting with the as-

sumption that such a diagram is possible, sets of strands are “removed” until the

empty diagram is left. This process determines the strands which existed in the

original diagram.

Define N = (a1 +a2 +a3)− (b1 + b2 + b3). In order to be admissible, this must

be in 3Z since, of the eight diagram types, � and � contribute +3 and -3

to this number, while the rest contribute 0. These two diagrams are mutually

exclusive according to the above algorithm, so sign(N) determines the type of

diagram which appears and |1
3
N | the number of such diagrams.

In particular, if N < 0, then −1
3
N is the number of � which appear,

while if N > 0, 1
3
N is the number of � which appear. The primed constants

{a′i, b′i}3
i=1 are defined to be the number of each type of endpoint remaining after

these diagram triples have been removed, hence:

N < 0 =⇒ remove � =⇒ a′i = ai, b′i = bi + 1
3
N ;

N > 0 =⇒ remove � =⇒ a′i = ai − 1
3
N, b′i = bi;

N = 0 =⇒ none removed =⇒ a′i = ai, b′i = bi.

Given that

1

2
(|N |+ N) =





|N | N ≥ 0;

0 N ≤ 0,

and
1

2
(|N | −N) =





0 N ≥ 0;

|N | N ≤ 0,
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these integers may be expressed directly as

a′i = ai − 1
6
(|N |+ N), b′i = bi − 1

6
(|N | −N).

Let γ3 be the number of strands of the form � or � , γ2 the number of

the form � or � and γ1 the number of the form � or � . Because all strands

with vertices were removed,

N ′ = (a′1 + a′2 + a′3)− (b′1 + b′2 + b′3) = 0.

It follows that

γ3 = 1
2
((a′1 + b′1) + (a′2 + b′2)− (a′3 + b′3)) = a′1 + a′2 − a′3 = b′1 + b′2 − b′3.

Similar formulae hold for γ2 and γ1. Since {γi} represent “physical” quantities,

they must be nonnegative, so admissibility requires

γi = a′i+1 + a′i+2 − a′i = b′i+1 + b′i+2 − b′i,

where the indices are considered mod 3.

It is clear at this point where the multiplicity arises, since the numbers {γi}
do not determine the numbers of strands of the types

� , � , � , � , � , �
uniquely. To determine the extent of non-uniqueness, define

M = 1 + min{a′i, b′i, γi}3
i=1.

The number M − 1 is exactly the number of cycles of the form � or !
which occur in the diagram. In particular, for any m ∈ {0, . . . , (M − 1)}, a

diagram using m � and (M − 1)−m ! may be constructed.

104



It remains to show that the remainder of the diagram may be completed once

the triple points and cycles have been removed. Define

a′′i = a′i − (M − 1), b′′i = b′i − (M1), γ′i = γi − (M1)

to be the values of these constants after the cycles are removed. One of these

constants must now be zero. Up to symmetry, there are two cases to check:

a′′i = 0 or b′′i = 0, and γ′i = 0. For the first, suppose a′′1 = 0. Then the number of

each strand type is:

0� , γ′3� , 0 � , γ′2 � , b′′3 � , b′′2 � .

On the other hand, if say γ3 = 0, then the numbers are:

0� , 0� , a′′1 � , b′′1 � , a′′2 � , b′′2 � .

The other cases may be handled similarly. Hence, the diagram may be completed,

and the number of values for m is the multiplicity, which is M .

The symmetry of the above condition is given by

Proposition 7.8. The SU(3) admissibility/multiplicity condition is symmetric in

the following sense. If the multiplicity M of the projection Va1,a2 ⊗ Vb1,b2 ³ Vc1,c2

is written as a function of a 2× 3 matrix D with

M
([ a1 a2 a3

b1 b2 b3

])
= M

(
D

)
,

then M(D) = M(D′) whenever D′ is formed from D by permuting its rows or

columns.
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7.5 SU(4) and Beyond

The key ideas used in the previous sections can be extended to higher dimensions,

although it is more difficult to describe the diagrams. However, there are some

new phenomena which arise starting with SU(4). In this case, the columns of a

strict expansion can be ordered in the following way:

1
2
3

1
2
3

1

2
3

1
2

3

1
2

1
3

1
2 1

2

1

2 1
2

1

2

1

2

1 1 1 1

.

It is not hard to see how this ordering works for general SU(n): start from n and

work down to 1. For each number, remove it first from the highest (closest to the

top) possible row and proceed to the lowest possible row. Give the cases for the

higher numbered, or empty, boxes running out first.

However, this case breaks the pattern of the previous two somewhat. In each

of those cases, there were n2 − 1 types of columns corresponding to all the ways

to combine columns of different lengths for Va and Vb. In this case, there are

eighteen columns in total. This new phenomenon occurs with the following three

columns:
1
2

1
3

and
1

2
and 1

2

.

We are unsure of the implications of these “extra” columns. They are admissible

under the Littlewood-Richardson Rule and cannot be decomposed in terms of

the other types of columns. They represent the SU(4) projections

V0,1,0 ⊗ V1,0,1 ³ V0,1,0 and V0,1,0 ⊗ V0,1,0 ³ V1,0,1 and V1,0,1 ⊗ V0,1,0 ³ V0,1,0.
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Their existence will probably add another redundancy to diagram fillings, and

therefore another ingredient to the computation of multiplicity.

7.6 Group Properties and Diagrammatics

It is possible that the possible strand types, or column types, which occur in the

Littlewood-Richardson Rule relate somehow to the dimension of the coordinate

ring C[χ] on the character variety. When G = SL(2,C), for example, the rank

two coordinate ring C[G×G]G is three-dimensional, and there are three possible

strand types under the Littlewood-Richardson Rule. Likewise, for G = SL(3,C),

there are eight types of strands and the local dimension of C[G×G]G is eight. This

correspondence is clear for SL(2,C), but it remains to be seen whether it is just a

coincidence for SL(3,C). If it is not a coincidence, how does this correspondence

generalize to SL(n,C)?

107



Chapter 8 Concluding Remarks

This chapter describes the application of spin networks to the Fricke-Klein-Vogt

Theorem, and also offers some speculation on other possible applications of spin

networks. The final section concerns the next step for tackling the main problem

of this thesis, as described in Chapter 5.

8.1 The Fricke-Klein-Vogt Theorem and Geometry

Spin networks can be used to prove a classical theorem of Fricke, Klein, and

Vogt [FK, Vo]. While there are many proofs of this theorem, we provide a direct

constructive proof. The machinery used may seem excessive, but it could offer a

means of extending the theorem to more general groups and higher rank cases.

Theorem 8.1 (Fricke-Klein-Vogt Theorem). Let G = SL(2,C) act on G×G by

simultaneous conjugation. Then, every regular function f : SL(2,C)×SL(2,C) →
C satisfying

f(x1,x2) = f(gx1g
−1, gx2g

−1) for all g ∈ SL(2,C),

can be written as a polynomial in the three trace variables x = tr(x1), y = tr(x2),

and z = tr(x1x
−1
2 ).

Proof. Given the isomorphism

C[G×G]G ∼=
⊕

c∈da,bc
Cχa,b,c,
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it suffices to show that (i) every polynomial in x, y, and z can be written in

terms of central functions χa,b,c, and (ii) every central function may be written as

a polynomial in x, y, and z. Theorem 6.15 gives an explicit formula for the first

statement, and two proofs of the second statement follow:

Nonconstructive diagrammatic proof. Expanding the symmetrizers in the

central function χa,b,c gives a collection of circles with matrix elements, each of

which correspond to a product of traces of words in x1,x2, so it suffices to express

the trace of any word in x1,x2 as a polynomial in x, y, and z. This reduction

depends entirely on the binor identity, which when composed with x1⊗x2 = L M
gives:

� = L M − � . (8.1)

As special case, if O denotes x−1
1 then

� = L O − � = L O − � and � = L L − 	 = L L − � .

By the first relation, no loop need contain both x1 and x−1
1 , while by the second

relation, no word need have more than one of a given matrix. This reduces the

problem to traces of words x1, x2, x1x2, and x1x
−1
2 . Closing off (8.1) gives:

tr(x1x2) = tr(x1)tr(x2)− tr(x1x
−1
2 ).

Thus, the word x1x2 is unnecessary, leaving only x = tr(x1), y = tr(x2), and

z = tr(x1x
−1
2 ).

Constructive diagrammatic proof. Proceed by induction on the rank δ =

1
2
(a + b + c) of a central function χa,b,c. For the base cases δ = 0, 1 recall that

χ0,0,0 = 1, χ1,0,1 = x, χ0,1,1 = y, χ1,1,0 = z.
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For δ > 0, inductively assume that all central functions with rank less than δ are

in C[x, y, z]. The admissibility conditions imply that at least two out of the triple

{a, b, c} are nonzero. By symmetry, these may be assumed to be a and c. But

Corollary 6.10 permits χa,b,c to be written in terms of central functions of lower

rank:

χa,b,c = x ·χa−1,b,c−1− (a+b−c)2

4a(a−1)
χa−2,b,c− (−a+b+c)2

4c(c−1)
χa,b,c−2− (a+b+c)2(a−b+c−2)2

16a(a−1)c(c−1)
χa−2,b,c−2.

By induction, each of the terms on the right must be in C[x, y, z]. Therefore,

χa,b,c ∈ C[x, y, z], completing the proof.

This theorem is closely related to the possible hyperbolic structures on the

three-holed sphere. Indeed, such a structure is uniquely determined by the lengths

of the boundary curves, which can be related to the trace variables x, y, and z.

More General Coordinate Systems

It is interesting to ask whether this correspondence also holds in higher rank

cases. Since spin network bases can be defined as graphs which are dual to

triangulations, it seems a natural step to relate them to the Penner coordinates

on Teichmüller space. There is also a corresponding spin network basis for each

pants decomposition of a surface, giving a connection with the Fenchel-Nielsen

coordinates. This basis consists of products of diagrams/functions of the rank

two form

χ
α,β,γ( L , M , N ) =�

α︷︸︸︷ β︷︸︸︷ γ︷︸︸︷
,
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Deformations

Given these correspondences, central functions may provide insight into how the

geometry of a surface changes under certain actions, such as Dehn twists or earth-

quake deformations. It is possible that such deformations behave in a canonical

way on spin networks, allowing the geometry of the resulting surface to be neatly

described. In particular, this may be a way to obtain formulae for how the Penner

or Fenchel-Nielsen coordinates change under such deformations.

The Poisson Structure

Goldman defined a bracket on the algebra of loops on a surface in [Gol1] which

has a Poisson structure and can be used to give a bracket on the function space

C[X]. The Casimirs of this bracket are the boundary elements because they may

be taken to be disjoint from all other loops on the surface. The bracket on the

remaining elements may be used to give a general formula for a symplectic form

on the surface.

The action of this bracket on a minimal set of generators induces its action

on all trace words. Moreover, since it is a derivation, the bracket itself is defined

by the local operation

� Ã 
 − � .

Using the derivation property of the bracket together with the recurrence formula

for rank two central functions, one can obtain a formula for the Poisson bracket

of two arbitrary central functions. Additional information is needed, however,

since the central functions depend on the fundamental group of a surface, and
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not its actual shape. In particular, the distinction between� and �
becomes very important.

Moreover, Chas and Sullivan have extended the notion of the bracket to a

homology theory [CS], which begs the question: how does one define a homology

theory for general spin networks?

8.2 Combinatorics of Spin Networks

It is possible that spin networks could shed some light on a number of high

profile theorems and conjectures regarding graph coloring, since the values of

spin networks are essentially just chromatic indices.

Recall the following theorem, proven in section 4.5:

Proposition 8.2. Let s ∈ [Sn]
O

I
be a spin network corresponding to a map s :

V ⊗I → V ⊗O. Then the coefficient of the basis element ej1 ⊗ · · · ⊗ ejO
in the

expansion of s(ei1 ⊗ · · · ⊗ eiI ) is equal to the signed sum of all possible labellings

of s by {e1, e2, . . . , en} which respect the input and output labels ei1 , . . . , eiI and

ej1 , . . . , ejO
.

This theorem may be restated in the language of graph theory. Given a

graph G = (V,E) and label set N , a Tait coloring or edge coloring of G by N

is an assignment K : V → N of labels to edges such that no two edges incident

to the same vertex have the same label. A edge pre-coloring is an assignment

K ′ : V ′ → N for some subset V ′ ⊂ V . A coloring K extends K ′ if K|V ′ = K ′,

and this condition is written K Â K ′.
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If G is a ciliated n-valent graph, then a coloring by N = {1, . . . , n} induces

a permutation at each vertex, and therefore a sign. Thus every edge-coloring K

has a well-defined sign(K) = ±1, defined to be the product of the signs at the

vertices. With these notational conventions, the signed pre-chromatic index of G

with respect to an edge pre-coloring K ′ is

χ̄e
K′(G) ≡

∑

KÂK′
sign(K).

The coefficients of a spin network map are exactly these signed pre-chromatic

indices:

Proposition 8.3. Let N = {1, . . . , n}, and let s ∈ [Sn]
O

I
be a spin network with

I inputs, O outputs, and |sink(s)| source vertices. Then, the corresponding map

s : V ⊗I → V ⊗O is given by the mapping:

ei1 ⊗ · · · ⊗ eiI 7−→ (−1)|sink(s)| ∑
jk∈N

χ̄e
K′(s)ej1 ⊗ · · · ⊗ eO,

where K ′ is the pre-coloring assigning i1, . . . , iI to the input edges of s and

j1, . . . , jO to the output edges of s.

Spin Networks and Bicubic Graphs

All spin networks are bipartite graphs, since the source/sink condition provides

a natural partition of the vertices. Thus, spin networks in S3 are bicubic graphs,

meaning both bipartite and cubic (trivalent). It is known that every bicubic

graph is 3-edge colorable, and it has been conjectured that every 3-connected

planar bicubic graph is Hamiltonian (the Barnette Conjecture).

In the context of spin networks, the first statement implies that every s ∈ S3

has a term with nontrivial coefficient. Because the coefficient is a signed index,
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this does not necessarily mean the spin network evaluates to a nonzero function.

For the second statement, note that the binor identity � = 
 − � permits

any s ∈ S3 to be expressed as a sum of planar bicubic graphs. Thus the Barnette

Conjecture is equivalent to the following:

Conjecture 8.4. Every spin network s ∈ S3 can be expressed as a sum of planar

Hamiltonian diagrams.

It is possible that the theory of 3-spin networks, or of trace diagrams, could

shed some light on the Barnette Conjecture. As a first step, it seems likely that

a Hamiltonian cycle in a diagram would permit an algorithm for computing the

value of a 3-spin network.

Coloring and the Binor Identity

The above propositions relating spin network values and chromatic indices would

be more useful if either were easy to compute. Unfortunately, the computation of

chromatic indices, for both vertices and edges, is an NP -complete problem. The

vertex chromatic index χn(G), is most directly computed using the recursion

χn

(


)
= χn

(
�

)
− χn

(
�

)
.

There is not an easy recurrence for edge colorings, although the binor identity

� = 
 − � gives rise to such a recurrence for signed colorings. Of course, the

binor identity for Sn gives rise to a recurrence for more general signed colorings.

It is hoped that techniques for spin network simplification will overlap with

techniques for computation of chromatic polynomials, providing for some cross-

pollination. It seems likely, given the connections described here. The corre-

spondence will might prove especially valuable for the computation of central

functions beyond SL(2,C).
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8.3 Computation of Central Functions

The main focus of this thesis was the structure of central function bases for a

given group G and a compact surface Σ with boundary. The case G = SL(2,C)

was studied extensively, especially in the rank one and two cases. A partial list

of remaining questions follows:

• What are the symmetries of central function bases of rank ≥ 3? This should

generalize from the rank two case and be particularly evident in diagram

form.

• Is there a direct way to compute the alternate rank two central functions� ? If so, this could also provide a direct way to compute the

rank n central functions of the form

� .

This also relates G to its Lie algebra g; since

X ≡ x− 1
2
tr(x)I =� ∈ sl(2,C),

the matrices in these alternate bases may be replaced with their Lie algebra

representatives.

• Develop an algorithm for computing central functions for G = SL(n,C).

The first step would be extending the diagrammatic Littlewood-Richardson

Rule in Chapter 7. In general, the structure of the coordinate ring C[X]

is not well understood for G = SL(n,C) when n ≥ 4. This also requires a

good understanding of how general diagrams are manipulated.
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• What do central functions look like for other groups? The relationship of the

G-coordinate variety to geometric structures provides a strong motivation

for looking at other cases.

I am most intrigued by the relationship with the Lie algebra, since this may

provide a direct way to demonstrate the relationship between the fundamental

class of a surface and the Poisson bracket. This fundamental class, combined

with the Scott-Wolpert form, may be used to give the symplectic structure of a

surface, which therefore induces the Poisson bracket. Is there a simple, direct

way to relate this to Goldman’s bracket? The cut triangulations introduced in

Chapter 5 are a first step in this construction.
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