Cauchy’s Famous Wrong Proof

The following example stems from my own teach-
ing experience. Once, when I came to the topic
of sequences and series of functions while teaching
an undergraduate analysis class, 1 realized that
the book had done a particularily poor job on this
topic (to protect the guilty, no reference will be
given). Thus something had to be done. Since I
had been rereading Imre Lakatos's delightful little
book, Proofs and Refutations, 1 decided to see if
his analysis of Cauchy’s famous wrong proof could
be adapted to the classroom.!

In presenting the topic of sequences and series
of functions, I began, as always, with a goodly sup-
ply of carefully chosen examples, drew pictures of
some of them, and left others for homework. After
noting how nicely the examples behaved, I coaxed
the following observation out of the students.

THEOREM. A convergent series of continu-

! Imre Lakatos, Proofs and Refutations, edited
by John Worrall and Elie Zahar, Cambridge Uni-
versity Press, 1976, pp. 123-141. '

ous functions converges to a continuous function.

After congratulating my students for making
this brilliant conjecture, I pulled Cauchy’s Cours
d'Analyse (1821) from my briefcase, attributed the
theorem to him, and then presented his proof.
This dusty tome lent authority to the argument
to be given below, and the students were pleased
that T had taken the trouble to go back to original
sources. As often as appropriate, I take relevant
books to class, and after explaining how they bear
on the material, I pass them around for the stu-
dents to look at. If that is impossible, I try to have
excerpts on overhead transparencies to show. The
students appreciate this.

Before giving the proof, some notation needs
to be introduced. Cauchy is dealing with a series
of functions whose sum is the function s. The
nth partial sum of this series is denoted sn, and
the remainder by r,. Today all of this is usually,
presented in terms of sequences, but I wanted to
follow Cauchy fairly closely. Consequently, I read
Cauchy’s proof to them and wrote it on the board
in translation:

When the terms of the series contain the same
variable z, and this series is convergent, and
its different terms are continuous functions of
z, in the neighborhood of a particular value
assigned to this variable; and sn, ™™ and s
are again three functions of the variable z, of
which the first is evidently continuous with
respect to z in the neighborhood of the par-
ticular value in question. This assumed, let
us consider the increases that these three func-
tions receive when one increases = by an in-
finitely small quantity. The increase of s, will
be, for all possible values of n, an infinitely
small quantity; and that of r, will become
insensible at the same time as ry, [sic], if one
assigns to n a very considerable value. Hence,
the increase of the function s can only be an
infinitely small quantity. From this remark,
one deduces immediately the following propo-
sition [i.e., the Theorem above].?

2 Augustin Cauchy, Cours d’Analyse, 1821, p.
120. Reprinted in his Buvres, I, 3.
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Since the students were familiar with Weier-
strassian -6 techniques, I took the time to care-
fully formulate Cauchy’s proof in the modern lan-
guage that they were learnirig to understand.

PROOF: Let € > 0 be given. Then
(1) Since each function is continuous, their partial
sum, s,(z), is continuous,

36Va |a]< 8 = |sa(z + 0) — sa(2)] <€
(2) Since the series converges at z,
INVn > N Ira(z)} < €
(3) Since the series converges at z + @,
NV >N |ra(z+a) <e.

Thus:
s(z + a) — s(z)]

= |sp(z +a) + ra(z +a) - sn(z) — ra(z)]
< [8a(z +a) = sn(@)| + Ira(@)] + Ira(z + )]
<3¢

Hence the function s is continuous. [It is pedan-
tic to insist on ending with precisely “¢.” Why
make the mathematics even more mysterious for
the student.] Q.E.D.

By careful planning, the class ended just as
the proof did, and I was relieved that there were

no questions after class. The next day the stu- -

dents were upset, for they had done their home-
work (this was a good class) and observed that
some of the examples I had given (and left the
graphs as exercises) contradicted Cauchy’s Theo-
rem. But they were ready to do mathematics.

I asked about the counterexample they had
discovered in their homework:

sin(z) — -;— sin(2z) + —é—sin(B:c) - -}isin(fix) SRR

Were all the terms of the series continuous func-
tions? Did the series converge? Was the limit
function really discontinuous? “Yes, yes, yes.”
they said. Well then, what about the theorem?
Cauchy published it in his Cours d 'Analyse, so
it must be correct, right? “Yes,” they readily
agreed. They had also accepted the proof when
it was presented in class, for it seemed correct to
them. They were puzzled. Something was wrong,
but what?

V. Frederick Rickey

I asked if they had examined the proof to see
if anything was wrong with it. No, that had not
occurred to them. So I suggested that we should
look at the proof carefully.

Imre Lakatos makes the argument that it was
in the mid-nineteenth century that mathemati-
cians made the same advance as my students were
now making: When a proof is wrong, do not just
abandon it, but analyze it carefully to see if there
are any “hidden hypotheses” that would make it
correct. Lakatos took this phrase from a student of
Dirichlet, Philipp Ludwig von Seidel (1821-1896),
who used it in 1847 when he took the steps that
my students were now ready for.

Thus, we shall now analyze Cauchy’s proof.
In step (1) above we need to realize that 6 depends
one, z, and n. To make this explicit, we shall write
6(e,z,n). Now, in step (2), N depends on € and z,
so we write N(e,z). However, in step (3), N de-
pends on ¢, z, and ALSO on a. Using the same no-
tation, we express this by N(¢,z 4 a). Now comes
the critical observation. To make Cauchy’s proof
work, we need an integer M bigger than N(e, z)
and simultaneously bigger than N (¢, z+a) for each
a whose absolute value is less than 6(¢, z, n). Thus
we must know that

M = Max;N(¢,t)

exists for all ¢, i.e., that M does not depend on
z. Consequently, the additional hypothesis that
we need is the following:

Ye>03IM Van>M Vo |ra(z)] <e.

This is the definition of uniform convergence, and
is precisely what is needed to make Cauchy’s the-
orem correct and the proof work.

What I have done here is to motivate the def-
inition of uniform convergence. Had I just writ-
ten it down in the usual definition-theorem-proof
style of modern mathematics, it would appear to
be very much ad hoc. The historical presenta-
tion allows the student to see the true origin of
the concept. As Lakatos has observed, the correct
concept is generated by the incorrect proof. This
is one case where I feel that a historical presenta-
tion is absolutely necessary to the understanding
of the material.

You may object that this type of presentation
takes too much time, for it did take two whole
class periods. But that is not so. The time was
well spent. Presenting the wrong proof and then
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analyzing it to see what additional hypotheses are
needed takes far less time than presenting an ad
hoc definition, trying (probably unsuccessfully) to
explain it, and then finally giving the proof. With
my presentation there is no need to give a correct '
proof after the definition has been discovered; that
is an easy exercise for the student. In fact, my stu-
dents said there was no reason for me to write out
a new proof, for they had a deep understanding
of how it works. Moreover, with this presentation
the students have also learned more. The opportu-
nity to analyze an incorrect proof builds both con-
fidence and skepticism (students must learn that
books may contain errors). More importantly, it
shows them where theorems come from: We make
conjectures, attempt proofs, analyze them, and re-
fine them. It also shows the importance of def-
initions, showing that they are carefully chosen,
not things arbitrarily written down just before a
proof. I trust you will agree with my assessment
that without giving this historical presentation,
the student’s understanding of the concept of uni-
form convergence would be severely hampered.
In this example, the history has stayed in the
background, but by the time I had finished, the
students were anxious to have some details. Since
this whole issue has been extensively and hotly de-
bated in the literature over many years, I shall re-
frain from giving the historical details here. Many
of them are in Lakatos’s book. For a current en-
try into the literature, see Laugwitz.® Nonethe-
less, I must end with a historical point. In 1826, a
mathematician wrote “... it seems to me that the
theorem admits of exceptions” and then provided
the first counterexample, the same counterexam-
ple that my students had done for homework. The
mathematician was the Norwegian, Niels Henrik

Abel (1802-1829).4
Pictures
The presentation of this material is greatly en-

hanced today by the use of graphers. The first
to adopt the graphical approach was William Fogg

3 Detlef Laugwitz, “Infinitely small quantities
in Cauchy’s textbooks,” Historia Mathematica, 14
(1987) 258-274.

4 Niels Henrik Abel, “Untersuchungen iiber die
Reihe: 1+ 224 m-(rz~1)xz+ m'(m;}z)ém“z)z‘i—{—' .
u. s. w.,” Journal fiir die reine und angewandte
Mathematik, 1(1826), 311-339. Reprinted in French
translation in Abel’s (Buvres complétes (1881), 1,
219-250. Also in Ostwald’s Klassiker, #71.
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Osgood (1864~1943), who, after receiving his Ph.D.
under the influence of Felix Klein at Erlangen in1890
taught at Harvard from 1890 to 1933.5 The first
example that Osgood considers is the sequence of
functions

Sy = nee= "
where to obtain the graph of the general curve (2),
“it is sufficient to divide the abscissas and multiply

the ordinates of (1) by /n:8

This sequence of functions is not uniformly conver-
gent, as is immediately evident from the diagrams.

For draw the curves y = f(z)+¢, y— f(z)—e.
Then it is clear that m cannot be taken so
large that the approximation curve y = sn(x)
will’i lie wholly within the belt thus marked
off.

5 For information on Osgood see J. L. Walsh,
“William Fogg Osgood,” pp. 79-85 in A Century
of Mathematics in America, Part II, edited by Pe-
ter Duren et al,, AMS, 1989 and A Semicente-
nial History of the American Mathematical Soci-
ety, 1888-1938 by R. C. Archibald, AMS 1938,
pp. 153-158, which contains a bibliography of his
works.

6 W.F.Osgood, “A geometrical method for the
treatment of uniform convergence and certain dou-
ble limits,” Bulletin of the American Mathemati-
cal Society, series 2, volume 3 (1897), pp. 59-86.

7 QOsgood, op cit., p. 66. Matthias Kawski of
Arizona State University pointed out on the cale-
reform email list (24 May 1996) that there is a
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Exercises:

1. Work out the details of Abel’s counterexam-
ple to Cauchy’s “Theorem.” This is a fairly
hard example to work out in detail, but it is
easy to convince yourself by the use of a gra-
pher:3

Py

2. Construct a problem about Cauchy’s Famous
Wrong Theorem that shows the Max can be
infinite.®

beautiful graphing calculator view of the difference
between uniform continuity and pointwise conti-
nuity (and which is applicable, mutatis mutandis,
to the corresponding notions of convergence). Pic-
torically, a function is continuous at a point if
given a viewing window of any height (2¢) cen-
tered at that point, one can always find a width
(26) such that the graph exits the window only
through the sides and not through the top and
bottom. This is nice for classroom exploration
because students will naturally choose different
heights for their windows. Now if one traces the
graph, keeping the same window size, and if the
graph never exits the top or bottom of the win-
dow, then the function is uniformly continouous
over the interval that you have traced. Students
easily observe that continuity implies uniform con-
tinuity on closed bounded intervals.

8 This picture is from E. Hairer and G. Wan-
ner, Analysis by Its History, Springer, 1996, p.
212. This book contains a great deal of interest-
ing historical material.

9 An earlier version of this note appears in my

V. Frederick Rickey

) S ()
% S (2
=

PROBLEMS

Problems worthy
of attack

prove their worth
by hitting back.

paper “My favorite ways of using history in teach-
ing calculus,” pp. 123-134 in Learn From the Mas-

ters, edited by Frank Swetz et alia, MAA, 1995.
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