The Clepsydra

I never lost a football game.
Once in a while time ran out.

Vince Lombardi

The clepsydra, which measures time by the flow
of water, was the chronometer of the Egyptians,
Greeks, and Romans. The word derives from the
Greek rAe'mTew, to steal, and véwp, water. An-
cient water clocks consisted of an earthenware bowl
with one or more small holes in the bottom from
which water escaped, or “stole away.” The old-
est extant clepsydra, which today is in the Science
Museum in London, comes from Karak in Upper
Egypt and was made about 1400 B.C.E.

As you can see from the picture, it was al-
ready a refined object, and so was hardly a new
invention.!

! The best single volume dealing with water
clocks is The Time Museum: Catalogue of the Col-
lection, Vol. 1, part 3, Water-Clocks/Sand-Glases/
Fire-Clocks, by Anthony J. Turner, Rockford, IL:
Time Museum, 1984. The general editor of this
catalog is historian of mathematics Bruce Chan-
dler, professor of mathematics at the City Univer-
sity of New York. This lavishly illustrated volume

The clepsydra was used to determine the max-
imum length of speeches in the courts of justice
and in the Roman senate. For the verbose among
these orators, time literally ‘ran out,” and this
must be the origin of our phrase today.2 When
used in this way a clepsydra simply measured a
fixed unit of time.

But there was also a need for a device to tell
time. In the ancient world this was complicated
by their custom of having twelve hours in each day
and twelve in each night. Thus the length of the
ancient hour, both daytime and nightime hours,
varied according to the seasons. Consequently,
various arrangements, of which we have no clear
account, were needed to obvitiate this irregular-
ity. Thankfully, this custom has been abandoned
today.

More importantly, the rate of flow of water
out of a punctured vessel is not uniform. The rate
becomes less as the vessel empties itself. This is
due to the decreasing force caused by the weight of
the water above the hole. That the Egyptians had
some empirical knowledge of this is demonstrated
by the fact that their waterclock has sides which
slant in at the bottom, so that there is less water
to flow out where the rate of flow is less. A simpler
way of overcoming this difficulty was by keeping
the level of water in the clepsydra constant, say
by having water flow into the vessel from a stream
while the excess flows out at the top. Then all that
one must do is note the volume of water discharged
into a right circular cylinder. A uniform measuring
scale for the depth of water in the cylinder thus
gives an accurate measure of time. Such a device

has a detailed history of water clocks and an exten-
sive bibliogrphy. The volume has been reviewed
by Silvio A. Bedini, Technology and Culture, 28
(1987), 159-161.

% Unfortunately, -the etymological dictionaries
do not confirm this claim, but it must be true.

® Encyclopedia Britannica, 11*® edition, 1910,
vol. 6, pp. 495-496.
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2 The Clepsydra

is called an outflow clepsydra.

It is interesting that the young Isaac New-
ton built several waterclocks at his home at Wool-
sthorp Manor. Sadly they do not survive.* He
most likely got the idea for these clocks from a
book by John Bate entitled The Mysteryes of Na-
ture and Art.® This was first published in 1634,
but Newton, who was twelve when he read it,

4 A. A. Mills, “Newton’s water clocks and the
fluid mechanics of clepsydrae,” Notes and Records
of the Royal Society of London, 37 (1982-83), 35—
61. Errata, 38 (1983), 146. This article has an
extensive bibliography. I would like to thank Julio
Gonzales Cabillon for bringing this very interest-
ing article to my attention.

® One would think it would be very difficult to
obtain a copy of a work such as this, but, as a
matter of fact, virtually everything published in
England (regardless of language) and its colonies
before 1700 is available on microfilm. See the cat-
alog of Alfred W. Pollard and G. R. Redgrave, A
Short-Title Catalogue of Books Printed in Eng-
land, Scotland, & Ireland, and of English Books
Printed Abroad, 1475-1640. For the next period
consult Donald G. Wing, Short-Title Catalogue
of Books Printed in England, Scotland, Ireland,
Wales, and British America, and of English Books

Printed in Other Countries, 1641-1700. These works,

together with their indices of microfilms, are some-

V. Frederick Rickey

probably used the third edition of 1654. The two
illustrations on which Newton based his clocks are
from this edition and are reproduced below.

In the first of these clocks the water flows from
the clepsydra into a reservoir that has a floating
skeleton which points out the hour on the scale.
Although the scale is uniform, the graduations be-
tween the hours at the top of the scale should be
closer together.

The second is more interesting technologically.
Water flows out of an upper chamber which con-
tains a float. As the float descends, a string at-
tached to the float turns the dial in a counterclock-
wise (!) direction. At the end of the day when the
upper reservoir is empty the owner simply blows
on the tube at the left. This forces the water back
up into the upper reservoir. Thus it is not at all

what hard to use, so you should consult your ref-
erence librarian for assistance. The 1654 edition
of Bate is on reel 1415, item 15 (Wing number
B1092). Even handier, the 1634 edition was reprinted
in 1977 as volume 845 of The English Experience,
its Record in Early Printed Books Published in
Facsimile. This series contains a number of other
works of interest to the historian of mathematics.
In particular Robert Record’s The Whetstone of
Witte (1570) is volume 142. Reporting on this
book, which contains the first use of the equals
sign, makes a good student project.
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messy to reset the clock.

Note that in neither of Newton’s clocks are
the hours of uniform length. This is because the
rate of flow decreases as the head of water — the
distance between the surface the water and the
oriface — diminishes. This led to a mathemat-
ical question. What shape should the vessel be
so that the level of water decreases at a constant
rate. While the Egyptians had some awareness of
this problem, its first known clear statement is by
Evangelista Torricelli®, the founder of hydraulics.
The first printed solution of the problem was in
1686 in a posthumous book by the French physi-
cist Edme Mariotte.”

“In the absence of the calculus Mariotte’s so-

8 See the appendix.

" For information about Mariotte, see B. Davies,
“Edme Mariotte, 1620-1684,” Physics Education,
9 (1974), 275-278 and Christian Licoppe, “The
crystallization of a new narrative form in exper-
imental reports (1660-1690): The experimental
evidence as a transaction between philosophical
knowledge and aristocratic power,” Science in Con-
text, 7 (1994), 205-244, which uses Mariotte’s dis-
covery of the blind spot in the eye as a case study
of discovery.
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lution is verbally tortuous,”® so we relegate it to
the appendix and proceed with a modern solution.

Let y = f(z) be a monotonically increasing
function defined for positive . When it revolves
around the y-axis it will form the bowl of g clep-
sydra. The feature we want this bowl to have js
that, when a small hole is put in the bottom, the
water drains out in such a way that the water level
drops equal vertical intervals in equal time spans.
If this can be arranged, then time can be measured
by a linear scale placed in the center of the bowl.
This means that if y is the depth of the water and
t is time, then

dy
dt
where ¢ is some constant.

Since it is the water that is draining from the
bowl, we need to know its volume. But that is an
easy computation using infinitesimally thin (dy)
disks of radius z:

Y
V= / 2 dy,
0

where the radius z is the inverse of the function
frie, z = f"*(y). Thus,

:C)

v=[ i wray

Since we want to find the function f, we shall ap-
ply the Fundamental Theorem of Calculus, to ob-
tain

o [F )P

We now have a connection between V and y,
but we want a connection between y and ¢t. These
three variables can be connected via the chain rule:

av._dvV dy

dt dy di
The needed connection between V and y is pro-
vided by Torricelli’s law, namely that the velocity
of the outflow is proportional to the square root
of the head, i.e., the distance between the surface
of the water and the hole.®:

av —
— = +/2gy.
- = V29y
® This is how A. A. Mills describes it on p. 43
of his paper cited in note 4.

® Torricelli’s law is sometimes explained by not-
ing that water falling freely from a height y attains
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4 The Clepsydra

Now substituting these derivatives into the chain
rule we have

V2y =n[f~(y)]? <.

Solving for f~! we obtain

—1y,y _ (2gy)t4
or

f(z) = az*

where a is the constant (cr)2/2g. Thus we see
that the shape of the inside of the bowl should be
a fourth degree monomial.1?

speed /2gy at height 0, but water in a clepsydra
is not ‘falling freely.” However, equating the po-
tential energy of a mass m of water at height y
with the kinetic energy of an equal mass flowing
out of the bottom of the vessel with velocity v, we
have

mgy = muv?/2

or
v = +/2gy.

This argument is paraphrased from R. D. Driver,
“Torricelli’s law — an ideal example of an elemen-
tary ODE,” The American Mathematical Monthly,
105 (1998), 453-455. Driver continues by assum-
ing the surface of the water has area A, the hole
area a, and that Ay and At are small increments
of depth and time. Then

AAy = —avAt = —ay/2gyt.

Thus,

dy a
at = AV

19 T would like to thank my Bowling Green col-
league Steven Seubert for bringing the beautiful
mathematics of the clepsydra problem to my at-
tention and Calvin Jongsma for pointing out that
it has appeared in several calculus books, includ-
ing C. H. Edwards, Jr. and David E. Penny, Calcu-
Ius with Analytic Geometry, fourth edition (1994),
p- 383, and George F. Simmons, Calculus with An-
alytic Geometry, second edition (1996), p. 230. It
is also in Deborah Hughes-Hallet et al., Calculus
(1994), p. 475. None of these books include the
history of the problem.
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Curiously, Mariotte may not have been the
first to solve the clepsydra problem. Vincenzo Vi-
viani (1622-1703), a student of Galileo and Tori-
celli, wrote a long manuscript in Italian entitled
Treatise of Clepsydrae which was never published
but has been described by Sylvio A. Bedini.!' The
date of this manuscript is uncertain. It may have
been written prior to 1670 or as late as 1684, and
if the later date is correct then the discovery was
simultaneous with that of Mariotte.

A. A Mills after citing one modern author
who misread Mariotte as talking about a paraboloid
of revolution notes that “the parabola is indeed
mentioned by a few authors as the theoretically
correct shape, although no sound justification has
been traced in the existing literature. The earli-
est of these appears to be Viviani”.!? Since this
casts doubt on the correctness of Viviani’s result,
we shall check it.

Viviani’s manuscript illustrates a parabolic
trough (as Mills notes and as can be seen in the
illustration) and describes the construction of his
clepsydra very clearly, beginning with the words
“Let us make four exactly identical parabolas of
clear crystal glass.’® While it might seem natural
that the solution to the clepsydra problem should
be a solid of revolution, there is nothing in the
problem that dictates that it should be so. The
problem was stated so that a “vessel” was sought,
not a “bowl.”

Suppose y = f(z) is the equation of the curve
that is to form the end of the cylindrical trough.
If the depth of the water in the trough is y then
its volume is

Y Y
v=i/ viy=1 [ 1) dy,
0 0

where [ is the length of the trough. By the Fun-
damental Theorem of Calculus, we have

=) =t

' “The 17th century table clepsydrae,” Physis.
Rivista Internazionale di Storia della Scienza, 10
(1968), 25-52. The illustration below was repro-
duced from p. 46.

12 P. 43 of the Mills article cited in note 4.

1% See pp. 44-45 of the paper of Bedini cited in
note 11.
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t=0, 10, 20, --- . You will get results very close
to what Torricelli’s law predicts. Your students
will be impressed that mathematics works, 4

2. A common calculus problem is to ask for
the range R of the initial spurt of water out of a
tank when h is the height of the hole and D is the
depth of the water. Even more interesting is to
-ask the inverse problem: For a given range R at
what height & should one puncture the vessel S0
that the initial spurt of water has range R? This
simple differential equation sometimes has two so-
lutions, so provides a wonderful learning experince
for students. Of course, you should put another

hole, properly placed, in your plastic bottle and
then do a demonstration to illustrate the two so-
lutions.'®
" ke g i e e}
%{Zi‘mmwk 4
el sl &
Using the chain rule,
v _dv dy
dt — dy dt’
and Toricelli’s law,
av
= = .
dy gy
we obtain
flz) = kx? 4 Careful instructions on how to do this are
. L nicely written up in Tom Farmer and Fred Gass,
where k 15a consta‘nt. Thus Viviani is correct. A “Physical demonstrations in the calculus classroom,”
parabolic trough will produce an accurate clepsy- The College Mathematics Journal, 23 (1992), 146-
dra. 148,
. 15 C. W. Groetsch, “Inverse problems and Torri-
Three More Things to Do celli’s law,” The College Mathematics Journal, 24
w i able” ol (1993), 210-217. This problem and the clepsydra
1 For an “impressive and memorable” class- problem are also treated in his Inverse Problems:

room discussion one Ca’i talfde a two llllterbpli‘sm Activities for Undergraduates, The Mathematical
bottle, puncture it on the side near the bottom, Association of America, 1999.

and then record the height of the water at time
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"6 The Clepsydra

3. Charles Hutton (1737-1823) published A
Mathematical and Philosophical Dictionary'® in
1796 and 1795 (the second volume appeared first)
and while the article entitled “Clepsydra” does not
mention Mariotte, Hutton was aware of his result. -

But such a figure might be given to the con-
taining vessel as would require the dividing
marks to be equi-distant, which Dr. Hut-
ton, in his recent edition of “Ozanam’s Recre-
ations,” has asserted to be a paraboloid, or
vessel, formed by the circumvolution of a parabola
of the fourth degree, the method of describing
which, he has given thus:

Let ABS, ... be a common parabola, the axis
of which is PS, and the summit S. Draw, in
any manner, the line, RrT, parallel to that
axis, and then draw any ordinate of the parabola
AP, intersecting RT in R; make PQ a mean
proportional between PR and PA, and let
pg be a mean proportional also between pr
and pa; and so on; The curve passing through
all the points @, g, &c. will be the one re-
quired, which, being made the mould for a
vessel to be cast by, will produce an instru-
ment, which, when perforated at the apex,
will have the singular property of equalizing
the scale, so as to correspond to equal times
while the water is running out.”

Now the challenge here is to see if Hutton’s
description of the required quartic is accurate.!8

18 This was reprinted in 2000 with a new intro-
duction by Richard Gregory, Bristol, England and
Sterling, VA: Thoemmes Press.

17 Available on the web at
www.ubr.com/clocks /pub/clep/clep.html
where it is reprinted from Ree’s Clocks, Watches
and Chronometers (1819). This, in turn, is from
The Cyclopdia, or, Universal Dictionary of Arts,
Scieences, and Literature (1819) by Abraham Rees.
The passage continues: “Mr. Varignon has given
a geometrical and general method of determining
the scale for a clepsydra, whatever may be the
shape and magnitude of the vessel. (See “Mem-
oires de I’Academi Royale des Sciences” p. 78,

1699.)” but I have not seen this work.

18 In interpreting this passage one needs to re-
alize that “in any manmer, the line, RrT” means
that ST should have length 1. Also m is a mean
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The Advantages of History

It is worthwhile to reflect on the advantages of in-

troducing this particular example into the calculus

classroom.
1. Time measurement is an important question,
one which people cared about (and still care
about), so it makes sense to introduce it in the
classroom. Curiously, the precise mathemat-
ical solution to the clepsydra problem came
only after the clepsydra had been replaced by
the mechanical clock, and thus the problem
ceased to be a real world problem. This is in
marked contrast to what usually happens in
mathematics: Abstract problems are solved
and then they lead to applications (e.g., Ke-
pler’s ellipses) or physical problems give rise
to mathematical ones which are solved and
applied to the physical situation.

. This problem is easy to understand, both in
its statement and in its solution. This is a sine
qua non of classroom examples. This is also a
non-standard problem, both in its statement
and solution. It provides a beautiful example
of the power of combining a variety of math-
ematical ideas.

3. Several famous people are involved in the so-
lution and it is always good to introduce our
students to them. Also, a relatively unknown
individual played a crucial part in the solu-

[\]

proportional between a and b iff a/m = m/b.
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tion. This allows us to make the point that

mathematics is not just a field for geniuses.
4. Nice illustrations are available to capture the

interest of the students. It is far more inter-

esting to show the pictures of Newton’s wa- -

terclocks rather than just talk about them.

5. Some nice mathematics is involved. Students
must see examples where a variety of tech-
niques are combined in powerful ways. Here
they get to see solids of revolution, inverse
functions, and the chain rule all used together.
Most importantly, the first Fundamental The-
orem of Calculus was used in both solutions
of this practical problem. This is a rare event,
for usually it is only used in theoretical con-
texts. To say it a different way, the solutions
of the clepsydra problem involved ideas not
computation and this makes it particularly
suited for the classroom.

6. Physical principles, in particular the law of
Torricelli, are involved and so students see an
example of how mathematics interacts with
physical science.

7. The problem has two distinct solutions, a solid
of revolution and a trough. This offers the
opportunity to point out to students that we
should not make assumptions that are not
part of the statement of the problem and we
should not get psychologically trapped into
assuming the problem has a certain form.

Appendix

The following is the original text of Mariotte's
solution of the clepsydra problem in the English
translation of Desaguliers.'® It is included here so
that you may contrast it with the solution given
above and thereby come to appreciate what a won-
derful contribution the calculus of Newton and
Leibniz was. This should help you appreciate the
value of symbolic algebra and the algorithmic na-
ture of the calculus. It is only by reading original
sources that one comes to understand the history
of mathematics and the magnificence of its meth-
ods.

' Edmé Mariotte, The Motion of Water, and
Other Fluids, Being a Treatise of Hydrostatics,
tanslated by J. T. Desaguliers, London, 1743, pp.
185-187.
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“It is proper enough in this Place to resolve
a pretty curious Problem which Toricelly has not
undertaken to resolve, tho’ he proposed it; this
Problem is to find a Vessel of such a Figure that
being pierc’d at the Bottom with a Small Hole the
Water should go out, its upper Surface descend-
ing from equal Heights in equal Times. If in the
Conoidal figure (Fig. 75%°) BL is to BN, as the

Square squared of LM is to the Squared square of
NO; and BN to BH, as the Squared squar’d of
NO, to the Square squar'd of HK, an[d so| on;
the Water will descend from ADC unif[orml]y, till
it comes to the Hole at B; for let BP [be t]he
mean Proportional betwixt BD and BH; since the
Square squared of KH and of DC, are to each
other as the Heights BH, BD; the Squares of HK,
DC, will be in a subduplicate Ratio of BH to BD,
or as the Heights BP, BD; but the Velocity of
the Wate" that goes out at B by reason of the
Pressure of the Height BD, is to the Velocity of
that that goes out by reason of the Pressure of
the Height BH, in a Subduplicate Ratio of BD

20 The digaram is from Edmé Mariotte, Traité
du mouvement des eaux et des autres corps fl uides,
Nouv. éd. corr., Paris, 1700. The diagram agrees
with that in the English edition, except that the
‘B’ at five O’Clock in the French is a K or R in
the English.
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8 The Clepsydra

to BH, that is to say as BP to BD, therefore
the Velocity of the Water descending from H is
to the Velocity of the Water descending from D,
as the Square of HK to the Square of DC; but

the Circular Surface of the Water at H is to the -

circular Surface of the Water at D, as the square
of HK to the Square of DC, therefore they will
descend and run out one as fast as the other; and
if the Surface ADC, runs out in a Second, the
Surface GHK will run out likewise in a Second,
since the Quantities are as the Velocities. The
same Thing will happen to the other Surfaces at
E and F, &c. But the Hole at B must be very
small, that no considerable Acceleration may be
made, and that the Water may not go out thro’
the Hole sensibly, but in proportion to its Weight.
Such a Vessel may serve for a Clepsydra or Water
Clock. :

“The Explanation of it in Numbers.

“Let BD be 16 and BI 1; the Square square’d
of IR will be one, if the Squar squared of DC be
16, and consequently DC will be 2 if IR be one.
Let BH be the mean Proportional betwixt BI,
and BD, which consequently will be 4. The Ve
locity by [reajson of the Weight IB will be 4, if
the Veloclity] by reason of the Weight DB be 16;
but the Clircle] or Surface IR will be 1, and the
Circle DC be 4; therefore these Quantities will
be as their Velocities, and consequently the Cir-
cles or Surfaces DC, and IR will run out in the
same Time; and if the Surface IR requires a Sec-
ond of Time to run out; Four times as much will
run out in the same Time, by the Quadruple Ve-
locity, namely, the Surface DC, since that is the
Quadruple of the other. The same Proportion will
be found in all the other Surfaces that compose the
whole of the Water, or in the Solids, whose Thick-
ness is indefinitely little. You suppose in all these
Experiments, that there is no Turning, or Circular
Motion in the Water; nor any little Pit, as there
is in Funnels, when they empty themselves.”

No doubt few will take up pencil and devote
the time to read this with understanding, but they
will undoubtedly have a richer understanding of
this problem and the calculus. Such are the bene-
fits of reading original sources. We should always
remember the comment that Niels Henrik Abel
(1902-1828) scribbled in one of his notebooks: “It

V. Frederick Rickey

appears to me that if one wants to make progress
in mathematics one should study the masters and
not their pupils.2!

21 This reluctance to read original sources re-
minds me of a letter from Baltazar Mathias Keil-
hau to Christian Peter Bianco Boeck (both friends
of Abel since their student years) in the Spring
of 1830: “Yet here our friend has such a touch-
ing resting place. It will rarely be visited by any-
one capable of understanding his worth, but once
in a while through the years it will happen, and
then only for his own sake. Then let such a wan-
derer find a secure and imperishable mark on this
place of his pilgrimage, a sumptuous one would
not be in harmony with his feelings.” The pas-
sage can be found in the last chapter of Niels
Henrik Abel, mathematician extraordinary writ-
ten by Oystein Ore, Minneapolis: University of
Minnesota Press, 1957, page 267, reprinted New
York: Chelsea Publishing Co., 1974. These words
were quoted by Man Keung Siu in the summer
of 1988 when a group of historians visited Abel’s
grave, and I thank him for the reference and a
touching moment.
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