Mathematics of the Gregorian Calendar

October 15, 1982 was the beginning of the second 400
year cycle of the Gregorian calendar, an event insuf-
ficiently celebrated by mathematicians. Although a
number of recent articles deal nicely with the history
of the calendar, one has to go back to early editions of
the Encyclopaedia Britannica [12]-—a place few would
think to look—to find a good treatment of the math-
ematical issues involved. While most of these are ele-
mentary, the calendar does give rise to many curious
facts, some of which are presented in italics below as
exercises (with references for the lazy).

By 45 B.C., the old Roman calendar was in such a
chaotic state, due mostly to political manipulations,
that Julius Caesar, with the advice of the Graeco-Egyp-
tian astronomer, Sosigenes, declared that every year
divisible by four was to be a leap year with 366 days;
the other years were to be common years of 365 days.
The extra day was inserted before the sixth day before
the Calends of March, hence that month contained
two sixths, or was, as we still say, bissextile. The new
year then began in March, thus explaining why the
months September through December are etymologi-
cally the seventh through tenth.

In the Julian calendar, the years had an average
length of 365.25 days while the tropical year was then
11 minutes 4 seconds shorter and so every 131 years
the calender retrogressed one day with respect to the
seasons. This defect was known at the time of reform,
but it took several centuries for the calendar to become
out of whack enough to matter.

Scores of scholars devised schemes for revising the
Julian calendar. Regiomontanus (1436-1476), the fa-
ther of trigonometry as a science independent of as-
tronomy, became involved at papal behest, but before
he could do anything he was poisoned by the sons of
a man that he had written a polemic against. This was
doubly unfortunate: the Protestant reformation was
yet to come and change would have been easier. In
1514 Pope Leo X asked Copernicus for assistance, but
he declined saying that the length of the year was not
known precisely enough; this was one of his reasons
for writing De Revolutionibus.

Pope Gregory VIII appointed a commission of math-
ematicians, astronomers, and clerics to revise the cal-
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endar. It was led by the mathematician, Christopher
Clavius (1537-1612) who is generally given most of the
credit for the reform, primarily since he defended it so
staunchly. The plan that was used was the work of
the physician, Luigi Lilio, who died shortly before.
(For additional historical details, see Moyer [7] or
Philip [8].) Gregory’s reform, which was promulgated
in the papal bull Inter gravissimas (Of the gravest con-
cern) of February 24, 1582, was intended to solve sev-
eral problems:

1. How could the year be brought back in accord
with the seasons?

2. How could the Julian leap year rule be corrected
so as to stop further dislocation?

3. Where should the beginning of the year be fixed?

4. How should the date of Easter be determined?

Although the new leap year rule now seems like the
important point, it was actually the Easter issue that
motivated papal intervention. The determination of
the date of Easter has always been of mathematical
interest, but it is complicated enough to deserve a note
of its own.
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In A.D. 325 the Council of Nicaea “fixed” the vernal
equinox at March 21, but by the sixteenth century it
had slipped ten days behind. To convince Pope Gre-
gory XIIT of this the Tower of Winds was built at the
Vatican containing a Meridian Room with an inlaid
marble meridional sundial line across the floor. At
noon on March 11, 1582, not March 21 as it should
have, the sun shone in through the mouth of the South
Wind, a mural on one wall, and crossed the meridional
line.

This room had another connection with mathe-
matics. In 1655, when Christina converted to Catho-
licism and abdicated as Queen of Sweden, she lived
in this tower. She was, you will remember, the spartan
queen who contributed to Descartes’ death by insisting
that he tutor her in an unheated library early in the
morning, contrary to his custom of staying abed until
noon. For years there were rumors that parts of the
frescoes had been overpainted before she arrived, per-
haps by adding drapery to the figures so as not to
offend her. Later when the paintings were restored it
was learned that what was overpainted was a para-
phrase of the Biblical motto Jeremiah 1:14, “All bad
things come from the North.” No doubt this would
have offended her.

Bringing the calendar back into accord with the sea-
sons was accomplished by declaring that the day after
Tuesday, October 4, should be Wednesday, October
15, in'the year 1582. These dates were chosen so as to
minimize the importance of the feast days omitted.
Dropping these ten dates brought the equinox back to
the time of the Council of Nicaea (A.D. 325), not to the
time of Caesar’s reform, thereby giving the whole
thing an ecclesiastical touch. Nonetheless, this retro-
spective aspect was a mistake; it has confused histo-
rians ever since.

The reform was adopted quickly by Catholic Eu-
rope, but it was resisted elsewhere both for religious
and academic reasons. For example, Frangoise Viete
(1540-1603) condemned the reform as a corruption of
the Julian calendar. Certainly the two bitterest critics
were Michael Maestlin, Kepler's teacher, and Joseph
Justus Scaliger. (Scaliger’s father made his reputation
by attacking Cardano. When Cardano didn’t reply im-
mediately Scaliger thought he had died; Scaliger had
a change of heart and wrote a laudatory funeral ora-
tion. Then Cardano replied.) Although “the calendar
reform literature is on the whole ‘interesting to few
and entertaining to none’ and a scholar of sense and
taste will readily turn to other labours rather than cul-
tivate this barren field” [11], the history of this dispute
has been interestingly presented by Moyer [7].

The calendar was not adopted quickly. It was still
possible in 1908 for a University of Michigan professor
to state that he traveled for 43 days in August in
Northern Europe, but that his September had only
eighteen days. The explanation here is the same as

54 THE MATHEMATICAL INTELLIGENCER VOL. 7, NO. 1, 1985

why the “October Revolution” is celebrated in No-
vember—Russia did not adopt the Gregorian cal-
endar until 1918.

Shakespeare and Cervantes died on the same date. Which
one died first?

The New Leap Year Rule

The Gregorian reform also introduced a new leap year
rule which was designed to keep the equinox near

March 21. In the Gregorian calendar every year divi-
sible by four is a leap year, except that years divisible
by 100 are common, except years divisible by 400 are
leap. Thus the Gregorian calendar has 97 leap years
every 400 years, three fewer than the Julian. For ex-
ample, the year 1500 was a common year under the
new Gregorian calendar, but not under the Julian.
Thus England, which did not adopt the reform until
1752, fell one day further behind. Judging by past per-
formance, the year 2000 will confuse many. It will be
a leap year, but it will not be the first year of the 21st
century, rather the last of 20th.

The adoption of the Gregorian calendar was more
traumatic in England than elsewhere. John Wallis, the
theologian appointed as the first Savilian Professor
with no more mathematical reputation than broakmg
a few coded messages for the king, strongly opposed
the new calendar as a popish plot.

The delay in England led to additional historical con-
fusion. George Washington's birth was recorded as 11
February 1731/32 O.S. This is an old style or Julian
date. It became 22 February in our calendar. The “slash
date” indicates that the year was 1731 in England, but
1732 on the continent. This is because the beginning
of the year was then celebrated on March 25 in En-
gland. It was also the day taxes were due. When the
Gregorian change occurred in 1752, the beginning of
the year was changed to January 1 (this was also part
of the Gregorian reform), but the tax date was delayed
eleven days to April 5, where it remains. Apparently
the tax collectors couldn’t do fractions.

The 400 year cycle of our calendar leads to a number
of peculiar results. My favorite—for it never fails to
perplex—is that the thirteenth of the month is more
likely to occur on Friday than on any other day of the
week. B. H. Brown [1] posed this as a Monthly problem
in 1933 and it continues to appear [5]. Since there are
400 x 12 = 4800 thirteenths of the month in one cycle
and 7 does not divide 4800, it is clear that the 13th
does not occur equally often on the different days of
the week. (This is an example of a non-constructive
existence proof that was not done by contradiction,
something many feel can’t happen.) To show that
Friday is the most likely day for the 13th to occur on
requires a brute force compilation with a perpetual cal-




endar (I would be happy to see an elegant solution).
The distribution of the thirteenth of the month in the
4800 months of the cycle is as follows:

Sunday 687
Monday 685
Tuesday 685
Wednesday 687
Thursday 684
Friday 688
Saturday — 684.

5o Friday wins, but not by much.

January 20 is inauguration day in the U.S. Although
20 = 13 (mod 7), it is more likely to fall on Sunday than
any other day. (Skolnik, [10])

It is an interesting exercise to prove that a calendar
year has at least one and at most three Friday-the-
thirteenths. (The solution of Bush and Heuer [2],
which uses equivalence relations, is a nice classroom
example.) In this respect 1983 was a good year (May
was the sole offending month) but 1984 may be as bad
as George Orwell predicted. It's the last leap year of
the century with three Friday-the-thirteenths. They
occur in a seven month period (January, April, and
July), the most densely packed that three can be. The
phrase “calendar year” is important in this exercise,
for there are thirteen month periods (but no longer
ones) that are free of Friday-the-thirteenths (the next
being August 1984 to August 1985). The triskaideka-
phobics among you will be encouraged that this cen-
tury will end with a good sign: The 37-month period
from September 1999 to October 2002 will contain only
three Friday-the-thirteenths.

Is This the Best Possible Leap Year Rule?

There are a number of difficulties in designing an
ideal solar calendar. Practicality dictates that only in-
tegers be used, yet the year does not contain an inte-
gral number of days, so something must be done. For
the moment we shall leave the moon out of this, even
though it gives another natural (as opposed to hours
and weeks which are conventional) division of time.
We shall deal with a purely solar calendar.

The tropical year is the time it takes the earth to
return to the equinox point of its orbit. This consists
of 365.24219879 days (in 1895 according to Simon New-
comb. In 1582 the value was 365,24222-—24 seconds
different from Clavius’). To simplify computation, we
take 365.2422.

If .2422 is converted to a continued fraction (this is
easy on a calculator: take the reciprocal, record the
integral part, subtract it, then repeat), one obtains:
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The convergents, obtained by throwing away the frac-
tional denominators after a certain point, are
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The first, third . . . of these are over approximations
of .2422 and the others are too small. These represent
the best rational approximations to our (rational)
number that can be made without using a larger de-
nominator.

The first of these means that one leap day should be
added every four years— that’s the Julian calendar.
The next-—add seven leap days every 29 years-—isn’t
much good. Around 1079, Al-Khayyami, the poet and
mathematician Omar Khayyam, suggested a 33 year
calendar cycle with years 4, 8, 12, 16, 20, 24, 28, and
33 designated as leap years. Ironically, 8/33 = (0; 4, 7,
1) = .2424 is a better correction than the Gregorian 97/
400 = (0; 4, 8, 12) = .2425, which is not even an in-
termediate fraction. None of the other convergents
leads to practical calendars except the last “exact”
value, 1211/5000, which means that 1211 leap days
should be added every 5000 years. This is easy to
achieve if the Gregorian rule is altered so that every
fifth (not fourth) century is leap and there is a double
leap year every 5000 years. We add 1250 days every
5000 years because every fourth year is leap, but sub-
tract 50 days for the century year, and add ten days
for the fifth centuries and add one at the end. Thus
we added 1250 — 50 + 10 + 1 = 1211 days every
5000 years.

This rule has been suggested by Rasof [9], but the
one that gets the most press is that suggested by Her-
schel: Every 4000th year should be ordinary. From the
mathematical point of view this isn’t so wonderful
(perhaps numerology keeps all those 4s in): while 969/
4000 lies between 8/33 and 31/128, it is not an inter-
mediate fraction.

This continued fraction argument goes back at least
to Euler [3].

On January 1, 1972, the question of revising the leap
year rule became moot, for Coordinated Universal
Time (UTC) then became effective internationally.
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Leap seconds are introduced (or deleted) to account
for variations in the Earth’s rotation. In 1972—a leap
year—two leap seconds were added, making it the
longest year since 46 B.C., the “last year of confusion”,
which had 445 days.

Why 97/400?

Having shown that the Gregorian leap year isn’t the
best, it remains to explain where that rule came from.
The only good cxplanation is due to Swerdlow [11]

The Gregorian year is 365 97/400 days = 365.2425 =
365 days 5 hours 49 minutes 12 seconds. This value is
about four seconds shorter than the best values then
available:

Alphonsine tables (1518) 365d 5; 49, 15, 58 . . . h
De revolutionibus (1543) 365d 5; 49, 16, 28 . . . h
Prutenic tables (1551) 365d 5; 49, 15,45 . . . h

Note that these differ by less than a second. If con-
verted to continued fractions, none will give rise to 97/
400. Rounding to seconds doesn’t hel p, but truncating
the first and last to 5; 49, 15 will do the trick—Dbut this
seems an unlikely procedure.

The explanation of 97/400 comes from restating these
values in sexagesimal fractions of a day, not of an
hour:

Alphonsine tables 365; 14, 33, 9,57 . .. days
De revolutionibus 365; 14, 33, 11, 12 . . . days
Prutenic tables 365; 14, 33, 9,24 ... days

Now if these are rounded to 365; 14, 33—a much
more reasonable procedure than above—you get

14 33 97

014,33 = 502 = 200

Perverse Months

There are 14 different calendars that are needed to
have a complete set since the year can begin on any
day of the week and the year can be common or leap.
These calendars are used in a 28 year cycle unless it is
interrupted by a common century year.

What is the greatest number of years that it can take to
collect a complete set of calendars? (The minimum is 25
years.)

Kirby Baker calls a month perverse if it requires six
lines to print on a calendar without double-dating

(squeezing two dates into one box).

Each year contains at least two and at most four perverse
months [4].
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The next really perverse year, with four perverse
months, is the leap year 2000. There is an inverse re-
lationship between Friday-the-thirteenths and per-
verse months; so what is good for the calendar makers
is bad for the superstitious. The exact relationship be-
tween the two is a bit complicated to state: There are
a total of four perverse months and Fridays-the-thir-
teenths each year, except for common years beginning
on Sunday or Thursday, and leap years beginning on
Sunday or Saturday, when the sum is five. We end on
a happier note.

A year and a month are selected at random. What is the

probﬁbility that the calendar for the month requires only four
lines, with no “double-dating”'? (Kravitz [6])
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